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Using density functional theory we analyze the stress-strain responses of 22 simple metals and ceramics to
determine the maximum shear strain a homogeneous crystal can withstand, a property for which we suggest the
name shearability. A shearability gap is found between metals and covalent ceramics. Shearability of metals
further correlates with the degree of valence charge localization and directional bonding. Depending on the
deformation constraints, ionic solids may possess even larger shearability than covalent solids. The Frenkel
model of ideal shear strength works well for both metals and ceramics when shearability is used in the scaling.
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The ductility of solids is controlled by the energy needed
to break a bond by shear compared to that by tension.1–7 It is
characteristic of ceramics to have a larger ratio of shear to
bulk moduli; however, little is known about the range of
shear deformation in solids with different types of bonding.
The maximum shear and tensile distortions that chemical
bonding can withstand are particularly important for defects,
e.g., dislocation cores and crack tips.6,7 A first step toward
better understanding begins with two aspects of affine defor-
mation of perfect crystals. One is the elastic constant describ-
ing the linear response of the lattice to small strain, and the
other is a fundamental characterization of the large-strain
nonlinear response.8–11 While use of the former in scaling
relations is almost universal in defect mechanics, the ques-
tion of whether the latter also factors into microstructure-
controlling quantities such as the intrinsic stacking fault en-
ergy has been examined only recently.12 Here we apply
density functional theory(DFT) to compute the shearability
and tensibility of simple metals and ceramics, defined by the
maximum shear and tensile strains at which a perfect crystal
under affine deformation becomes unstable, to bring out the
fundamental connection between critical mechanical re-
sponse of a solid and the underlying electronic structure such
as redistribution of valence charge density. To be precise, we
define shearability assm;arg maxsssd, wheresssd is the
resolved shear stress ands is the engineering shear strain in
a specified slip system. Similarly, tensibility is taken to be
tm;arg max−Pss1+tdV0d, where PsVd is the pressure-
volume relation andV0 is the equilibrium volume,PsV0d
=0.

We have studied the following metals and ceramics using
the ViennaAb-Initio Simulation Package13: FCC Ag,Cu,Au,
ferromagnetic (FM) and paramagnetic sNMd Ni,Al;
BCC W,Mo,FesFMd; HCP Mg,Ti,Zn; L10 TiAl,
D019 Ti3Al; diamond cubic C,Si;b−SiC, a− ,b−Si3N4;
B1 NaCl,MgO,KBr,CaO. The exchange-correlation density
functionals adopted are Perdew-Wang generalized gradient

approximation(GGA) for metals except Au and Ag, and
Ceperley-Alder local density approximation(LDA ) for the
others. Ultrasoft(US) pseudopotential is used in most cases,
but for difficult systems we switch to the projector
augmented-wave(PAW) method.14 Brillouin zone (BZ)
k-point sampling is performed using the Monkhorst-Pack al-
gorithm. For metals, BZ integration follows the Methfessel-
Paxton scheme15 with the smearing width chosen so the
“−TS” term is less than 0.5 meV/atom. For nonmetallic sys-
tems, the tetrahedron method with Blöchl corrections16 is
used.

Incremental affine shear strains are imposed on each crys-
tal along experimentally determined common slip systems to
obtain the corresponding unrelaxed and relaxed energies and
stresses, defined respectively by the conditions,ei j =0 except
s;x/d0 with d0 being the interplanar separation andx taken
along the Burgers vector, andsi j =0 except for the resolved
shear stress. Fora−, b−Si3N4, the common slip systems are
unknown experimentally. We therefore calculate six systems
for each phase, and take the one that has the lowest ideal
shear strength.17

In Table I, the equilibrium lattice constantsa0sc0d ob-
tained from energy minimization, with attention to energy
cutoff Ecut and k-sampling convergence, are compared with
experimental results. In Table II, the calculated relaxed and
unrelaxed shear moduliGr ,Gu in the specified slip systems
are compared with analytical values computed from experi-
mental elastic constants. The resolved moduli are calculated
using fine meshesDs=0.5% –1% along the shear path,
whereas coarser meshesDs=1% –5% are used to interpolate
the sssd curves. Affine stress components are relaxed to
within a convergence tolerance 0.05 GPa, and in crystals
with internal degrees of freedom, the force on each atom is
relaxed to less than 0.01 eV/Å.

The relaxed ideal shear stresssm
r normalized byGr and

the shearabilitysm
r for different materials are plotted together

in Fig. 1(a). For simplicity we display only results in the
experimentally determined primary slip system, except for
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BCC metals where all three slip systems are equally
likely,8,18 in which case we use the one that gives the mini-
mum sm

r . For Ni we plot only the FM case. The correspond-
ing unrelaxed results are shown in Fig. 1(b). Note that relax-
ation has a particularly pronounced effect in ionic ceramics.

From these results we see gaps in the distributions ofsm
r

andsm
u between the metals and the covalent solids. Such gaps

also may be seen by comparing results of previous works for
elastic shear instability of metals8,12,18 and covalent
solids.17,19 Moreover, among the metals the noble metals
Au,Ag,Cu and the more directionally bonded Al and
BCC Mo,W,FesFMd are at opposite sides of the distribu-
tions. This suggests that directional bonding allows for
longer-range shear distortion of the bonds before peak resis-
tance is attained, which one can rationalize by observing that
the greater the covalency, the more valence charge will con-
centrate in non-nuclear-centered regions,20,21 e.g., bond cen-
ters and other high-symmetry interstices, as can be verified
by an examination of the charge density isosurface plots(see
Fig. 2, and also Supplementary Material22). These localized

charge pockets would require certain spatial arrangement
among them for the total energy to be well-minimized. In
contrast, if the valence charge density in the interstices is
completely delocalized, then there would be no such con-
straints and the energy barrier to shear would come mainly
from a misfit-volume effect. In FCC Cu and Ag one can see
that when the local interstice volumes completely recover
their equilibrium values at the intrinsic stacking fault, the
energy penalities are very low, despite the “wrong” bond
angles.12 Consequently a rather general interpretation of our
results is that, so far as the rearrangement of charge density
in response to mechanical deformation is concerned, bond-
angle dependence brings about geometric constraints on the
atomic configurations above and beyond the volumetric con-
straints. From the standpoint of energy landscape, the stable
attractive basin of the ground state is steeper and wider in the
shear direction because many low-energy metastable states
are eliminated or greatly elevated by the extra constraints in
configurational space.

TABLE I. Equilibrium properties: Calculation vs experiment.

a0, c0fÅg Expt. Elastic constfGPag
Material # atoms Method #k-points EcutfeVg Calc. Expt. C13 C33 C11 C12 C44

C 2 US-LDA 63636 358.2 3.53 3.567d 1079.3 125 578.9e

Si 2 US-LDA 53535 188.2 5.39 5.4238e 167 65 80e

b-SiC 2 US-LDA 63636 358.2 4.32 4.36e 390 142 256k

a-Si3N4 28 US-LDA 43434 434.8 7.70,5.58 7.818,5.591f

b-Si3N4 14 US-LDA 43438 434.8 7.56,2.88 7.595,2.9023g 127 574 433 195 108l

NaCl 8 US-LDA 63636 274.1 5.46 5.593e 57 11.5 13.3e

KBr 8 US-LDA 63636 207.1 6.36 6.566e 43 4.8 5.4e

MgO 8 US-LDA 63636 494.6 4.14 4.2072e 306 93 158e

CaO 8 US-LDA 63636 494.6 4.57 4.80e 210 67 74e

Mo 1 US-GGA 31331331 233.1 3.15 3.144e 476 158 111e

W 1 US-GGA 31331331 235.2 3.17 3.0213e 534 205 163e

Fea 1 PAW-GGA 31331331 334.9 2.83 2.8603h 243 138 122e

Tic 2 PAW-GGA 27327317 278.0 2.93,4.63 2.9457,4.6727e 68.3 190.5 176 86.9 50.8m

Mg 2 PAW-GGA 39339325 262.6 3.19,5.18 3.2094,5.2103e 21.7 66.5 63.5 25.9 18.4e

Zn 2 PAW-GGA 33333323 345.9 2.64,5.04 2.6638,4.9431e 52 69 178 35 46e

TiAl 4 US-GGA 21321321 226.5 3.98,4.08 3.975,4.068i 74.8 182 187 74.8 109i

Ti3Al 8 US-GGA 15315317 226.5 5.74,4.65 5.814,4.649j 62.6 225.1 183.2 89.0 64.1j

Al 6 US-GGA 18325311 161.5 4.04 4.0321e 114 62 30.8e

Nia 1 US-GGA 31331331 302 3.53 3.5136e 262 151 132e

Nib 1 US-GGA 31331331 302 3.52

Ag 1 US-LDA 31331331 225.8 4.02 4.07e 132 97 51e

Au 1 US-LDA 43343343 224.6 4.06 4.08e 202 169 45.3e

Cu 6 US-GGA 1231737 292.2 3.64 3.616e 176.2 124.9 81.8e

aFerromagnetic.
bParamagnetic.
cp-valence.
dReference 23.
eReference 24.
fReference 27.
gReference 28.

hReference 30.
iReference 31.
jReference 32.
kReference 25.
lReference 29.
mReference 26.
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In the relaxedsm
r , sm

r distributions[Fig. 1(a)], ionic ce-
ramics lie midway between directionally-bonded metals and
covalent solids, whilea− and b−Si3N4, being more ionic
than SiC, are also in this range.17 However in unrelaxed
shear, these solids manifest abnormally large ideal shear
strainssm

u and stressessm
u , which are attributed to the bare

Coulomb repulsion between like-charge ions as in a simple
Madelung sum model. In an atomic environment like a crack
tip, the surrounding medium would not allow for either fully
relaxed or fully unrelaxed local shear. This implies that ionic

materials could be either less or much more brittle than co-
valent materials, depending on the subsidiary deformation
constraints present, a situation that is analogous to the dis-
tinction of plane-stress vs plane-strain loading conditions in
the fracture of metals.

Another noteworthy feature of Fig. 1 is the approximately
universal linear scaling betweensm andsm/G across a range
of crystal structures, nature of bonding, and slip systems. The
original Frenkel mode,1 containing a single parameterG, is
well-known and widely used3–5,33 in an empirical fashion. It

TABLE II. Shear moduliGr (relaxed), Gu (unrelaxed), ideal shear strainssm
r (relaxed), sm

u (unrelaxed) and stressessm
r (relaxed), sm

u

(unrelaxed) in common slip systems.

Expt. fGPag a G/B fGPag a Calc. fGPag Relaxed Unrelaxedb

Material Slip system Gr Gu Gr /B Gu/B Gr Gu sm
r sm

r fGPag sm
r /Gr sm

u sm
u fGPag sm

u /Gu

C h111jk110l 506.8 511.1 1.14 1.15 514.1 519.2 0.325 113.32 0.220 0.374 146.03 0.281

Si h111jk110l 57.9 60.4 0.585 0.610 55.2 58.2 0.275 9.62 0.174 0.262 11.13 0.191

b-SiC h111jk110l 149.7 168.0 0.666 0.748 158.2 173.4 0.350 31.74 0.201 0.348 43.12 0.249

a-Si3N4 h112̄0jk0001l 127.3 128.4 0.259 23.72 0.186 0.295 26.48 0.206

b-Si3N4 h101̄0jk0001l 108.0 108.0 0.417 0.417 101.0 102.0 0.232 19.00 0.188 0.244 21.00 0.206

NaCl h110jk11̄0l 22.8 22.8 0.855 0.855 29.4 29.4 0.221 3.69 0.126 0.658 25.55 0.869

KBr h110jk11̄0l 19.1 19.1 1.09 1.09 23.2 23.2 0.211 2.62 0.113 0.610 15.41 0.666

MgO h110jk11̄0l 106.5 106.5 0.649 0.649 109.5 109.5 0.270 17.09 0.156 0.629 74.34 0.679

CaO h110jk11̄0l 71.5 71.5 0.624 0.624 101.3 101.3 0.277 16.18 0.160 0.664 72.35 0.714

Mo h110jk1̄11l 138.7 142.8 0.525 0.541 126.5 134.5 0.190 15.18 0.120 0.192 16.52 0.123

Mo h211jk1̄11l 138.7 142.8 0.525 0.541 126.8 134.1 0.175 14.84 0.117 0.177 15.99 0.119

Mo h321jk1̄11l 138.7 142.8 0.525 0.541 126.8 134.2 0.176 14.87 0.117 0.175 15.93 0.119

W h110jk1̄11l 164.0 164.0 0.521 0.521 153.7 155.3 0.179 17.52 0.114 0.196 17.63 0.113

W h211jk1̄11l 164.0 164.0 0.521 0.521 154.0 155.8 0.176 17.37 0.113 0.175 17.28 0.111

W h321jk1̄11l 164.0 164.0 0.521 0.521 153.9 155.7 0.176 17.33 0.113 0.175 17.27 0.111

Fec h110jk1̄11l 64.8 75.7 0.375 0.438 76.6 80.6 0.178 8.14 0.106 0.234 11.43 0.142

Fec h211jk1̄11l 64.8 75.7 0.375 0.438 75.6 79.9 0.184 7.51 0.099 0.236 9.95 0.124

Fec h321jk1̄11l 64.8 75.7 0.375 0.438 75.7 80.0 0.181 7.57 0.100 0.197 9.43 0.118

Tie h11̄00jk112̄0l 44.6 44.6 0.406 0.406 47.6 47.8 0.099 2.82 0.059 0.144 4.92 0.103

Mg h0001jk112̄0l 18.4 18.4 0.499 0.499 19.2 19.2 0.152 1.84 0.096 0.157 2.04 0.106

Zn h0001jk112̄0l 46.0 46.0 0.708 0.708 36.6 36.6 0.132 2.12 0.058 0.136 2.33 0.064

TiAl h111jk112̄l 58.5 61.6 0.524 0.552 50.0 56.4 0.218 5.54 0.111 0.217 6.25 0.111

Ti3Al h11̄00jk112̄0l 47.1 47.1 0.416 0.416 50.0 50.8 0.127 5.51 0.110 0.139 5.79 0.114

Al h111jk112̄l 27.4 27.6 0.345 0.348 25.4 25.4 0.200 2.84 0.110 0.210 3.73 0.147

Nic h111jk112̄l 68.8 81.0 0.366 0.431 60.1 79.6 0.140 5.05 0.084 0.160 6.29 0.079

Nid h111jk112̄l 48.8 60.5 0.169 3.17 0.065 0.162 4.70 0.078

Ag h111jk112̄l 22.4 28.7 0.206 0.264 25.0 32.3 0.145 1.65 0.066 0.156 2.57 0.079

Au h111jk112̄l 20.9 26.1 0.116 0.145 17.9 22.9 0.105 0.85 0.048 0.142 1.42 0.062

Cu h111jk112̄l 33.3 44.4 0.235 0.313 31.0 40.9 0.137 2.16 0.070 0.157 3.45 0.084

aComputed analytically from expt. elastic constants of Table I.
bSubsidiary stress components are unrelaxed, but internal degrees of freedom are relaxed.
cFerromagnetic.
dParamagnetic.
ep-valence.
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has been pointed out, based on physical intuition, that a more
realistic description is to treat the peak position ofsssd as an
adjustable parameter6,7 rather than as a fixed value atb/4d0.
What we have shown here, on the basis ofab initio results, is
that a two-parameter representation

s =
2Gsm

p
sinS ps

2sm
D, 0 , s, sm, sm =

2Gsm

p
s1d

with the shear modulusG and the shearabilitysm as funda-
mental materials parameters, provides a satisfactory descrip-
tion of simple metals and ceramics. As can be seen in Fig. 1
the slope of 2/p, implied by our proposed extension of the

Frenkel model, Eq.(1), indeed represents the data well.
Looking at this correlation in another way, we suggest that
the fundamental constitutive behavior for shear deformation
can be captured in a master curve in terms of normalized
stresss̃;s /Gsm and strains̃;s/sm, as shown in Fig. 3. In
this rescaling all curves have initial unit slope and reach
maximum ats̃=1. The behavior labeled as Frenkel(renor-
malized) reflects a universal shear-softening response, for
s,sm.

It is worth emphasizing that this new, “renormalized Fren-
kel” model is the shear counterpart to the Universal Binding
Energy Relation2 which also has two parameters and has
been quantitatively checked againstab initio calculations.

FIG. 1. (Color) DFT calculation results of 22
materials(metallic: blue, ionic: green, covalent:
red). (a) Relaxed, and(b) unrelaxed ideal shear
stresses(normalized) and shear strains. The solid
line indicates a unit slope, while the dashed line
corresponds to a slope of 2/p. The ionic solids
are far out of range in(b) and are shown in the
inset.
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Taken together they allow materials design and performance
criteria to be formulated in which tensile and shear dissipa-
tion modes compete.5,7,33–35For example, the “brittleness pa-
rameter” of Rice5 that compares the unstable stacking energy
gus to the surface energygs, may be very crudely estimated
as

b ;
gus

gs
~

Gsm
2

Btm
2 = SG

B
D · ssm

2 d/stm
2 d s2d

by scaling arguments.G/B (see Table II) is accessible ex-
perimentally and has been used as a performance predictor in

TABLE III. Ideal volumetric tensile straintm and stress −Pm. B
is the bulk modulus computed from DFT.

Material BfGPag tm −PmfGPag −Pm/B

C 433.8 0.623 88.54 0.204

Si 90.16 0.510 15.43 0.171

b-SiC 213.4 0.571 40.59 0.190

a-Si3N4 213.9 0.488 41.49 0.194

b-Si3N4 226.9 0.594 45.97 0.202

NaCl 28.4 0.527 5.06 0.178

KBr 18.8 0.517 3.08 0.163

MgO 152.0 0.662 31.00 0.204

CaO 104.2 0.670 22.62 0.217

Mo 243.9 0.525 43.17 0.177

W 281.3 0.535 50.17 0.178

Fea 186.5 0.576 28.45 0.153

Tib 107.7 0.618 21.48 0.200

Mg 33.3 0.515 6.01 0.180

Zn 72.5 0.384 9.54 0.132

TiAl 103.2 0.563 19.84 0.192

Ti3Al 106.9 0.512 20.78 0.194

Al 67.5 0.507 11.15 0.165

Nia 184.0 0.500 29.24 0.159

Ag 114.3 0.514 17.62 0.154

Au 167.9 0.401 23.45 0.140

Cu 130.9 0.478 20.37 0.156

aFerromagnetic.
bp-valence.

FIG. 2. (Color) Valence charge densityrsxd isosurface plots of
(a) FCC Ag, (b) FCC Al, (c) BCC Mo, (d) diamond cubic Si, at
their stress-free states.V0 is the atomic volume.

FIG. 3. (Color) Relaxed shear stress-strain
curves of 22 materials, rescaled such that all have
unit slope initially and reach maximum at 1. The
renormalized Frenkel model Eq.(1) is shown for
comparison.
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alloy design, for instance to predict the best compromise
between ductility and corrosion resistance in stainless
steels.35 But sm and tm, while easy to obtain inab initio
calculations,10 are unavailable experimentally and therefore
have never been used in a practical manner, despite having
been theoretically established to be important.6,7 Our results,
along with other DFT calculations,8–12,17–19indicate that a
wide gap inb exists between metals and ceramics because

G/B and sm are governed not only by the crystal structure,
but also by the nature of bonding(e.g.,sm

r =0.105 in FCC Au
vs sm

r =0.200 in FCC Al) and the loading condition(e.g.,
sm

r =0.221 vssm
u =0.658 in B1 NaCl). On the other hand, the

relative variation oftm is less sensitive thansm, and it has no
spectral gap(see Table III and Fig. 4). Besides controlling
dislocation nucleation5,7 via Eq. (2), sm also control disloca-
tion mobility. Based on the model of Foremanet al.,6 it can

FIG. 4. (Color) Ideal tensile strengths and ten-
sibilities (volumetric) of 22 materials. Note the
narrower range of data compared to Fig. 1.

FIG. 5. (Color) Schematic map of material ideal strengths, showing stability boundaries(dashed curves) of the affine strain energy
landscapes for metals and ceramics, beyond which bonds break spontaneously in a perfect crystal(Ref. 34). sm andtm indicate the maximum
stable engineering shear and volumetric tensile strains of a perfect crystal, respectively. Ceramics tend to have larger shearabilitysm than
metals, withsm depending not only on the crystal structure(reference value isb/4d0), but also on the nature of bonding(e.g., 0.105 in
FCC Au vs 0.200 in FCC Al), and the loading condition(e.g., 0.221 in relaxed vs 0.658 in unrelaxed shear, in NaCl). In contrast, the relative
variation of tensibilitytm of solids in more limited(0.38–0.67 in the 22 materials studied). As in the Universal Binding Energy Relation
(UBER) (Ref. 2) for tension, a two-parameter model for shear can be established by modifying the empirical formula of Frenkel(Ref. 1).
Based on Figs. 1, 3, and 4 and elastic moduli for shear and tension, a simple scaling relation Eq.(2) suggests it is much more difficult to
break bonds in ceramic solids in shear than in metals, relative to in tension. Electronic-structure features such as valence charge localization
and anisotropy are found to correlate strongly with mechanical-response features during deformation[see Fig. 2 and Supplementary Material
(Ref. 22)], such as the shearability.
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be shown that increasing the “skewness”sm/ sb/4d0d of sssd
while keepingG fixed leads to sharply increased Peierls
stresses.3,4

Our finding is summarized in Fig. 5. We believe there is
sufficient basis, in terms of theoretical formulation1,5–7 and
ab initio property data,8–12,17–19to propose that the shearabil-
ity sm of a perfect crystal is an important character of the
material. Like the elastic constants, it is a material-specific
property that can be determined by first-principles calcula-
tions and used in materials design and selection at the mac-

roscopic level. Unlike the elastic constants which pertain to
the solid at equilibrium, it reflects quantitatively the elec-
tronic and atomic response of the solid at the point of bond
breaking.
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