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A working definition of molecular dynamics (MD) simulation is technique
by which one generates the atomic trajectories of a system of N particles
by numerical integration of Newton’s equation of motion, for a specific
interatomic potential, with certain initial condition (IC) and boundary
condition (BC).

Consider, for example (see Fig. 1), a system with N atoms in a volume Q.
We can define its internal energy: £ = K + U, where K is the kinetic energy,
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and U is the potential energy,
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x*N(¢) denotes the collective of 3 D coordinates x;(¢), X>(¢), . .., Xy (?).
Note that E should be a conserved quantity, i.e., a constant of time, if the
system 1is truly isolated.

One can often treat a MD simulation like an experiment. Below is a
common flowchart of an ordinary MD run:

[system setup] [equilibration] [simulation run] [output]
sample selection ~—  sample preparation —  property average —> data analysis
(pot., N, IC, BC) (achieve T, P) (run L steps) (property calc.)

in which we fine-tune the system until it reaches the desired condition (here,
temperature 7 and pressure P), and then perform property averages, for
instance calculating the radial distribution function g(r) [1] or thermal con-
ductivity [2]. One may also perform a non-equilibrium MD calculation, during
which the system is subjected to perturbational or large external driving forces,
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N particles

Figure 1. 1lustration of the MD simulation system.

and we analyze its non-equilibrium response, such as in many mechanical
deformation simulations.

There are five key ingredients to a MD simulation, which are boundary
condition, initial condition, force calculation, integrator/ensemble, and prop-
erty calculation. A brief overview of them is given below, followed by more
specific discussions.

Boundary condition. There are two major types of boundary conditions:
isolated boundary condition (IBC) and periodic boundary condition (PBC).
IBC is ideally suited for studying clusters and molecules, while PBC is suited
for studying bulk liquids and solids. There could also be mixed boundary con-
ditions such as slab or wire configurations for which the system is assumed to
be periodic in some directions but not in the others.

In IBC, the N-particle system is surrounded by vacuum; these particles
interact among themselves, but are presumed to be so far away from every-
thing else in the universe that no interactions with the outside occur except
perhaps responding to some well-defined “external forcing.” In PBC, one expl-
icitly keeps track of the motion of N particles in the so-called supercell, but
the supercell is surrounded by infinitely replicated, periodic images of itself.
Therefore a particle may interact not only with particles in the same supercell
but also with particles in adjacent image supercells (Fig. 2).

While several polyhedron shapes (such as hexagonal prism and rhombic
dodecahedron from Wigner—Seitz construction) can be used as the space-filling
unit and thus can serve as the PBC supercell, the simplest and most often used
supercell shape is a parallelepiped, specified by its three edge vectors hy, h;
and hjs. It should be noted that IBC can often be well mimicked by a large
enough PBC supercell so the images do not interact.

Initial condition. Since Newton’s equations of motion are second-order
ordinary differential equations (ODE), IC basically means x*" (¢ = 0) and
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Figure 2. Illustration of periodic boundary condition (PBC). We explicitly keep track of
trajectories of only the atoms in the center cell called the supercell (defined by edge vectors
hi, hy and h3), which is infinitely replicated in all three directions (image supercells). An
atom in the supercell may interact with other atoms in the supercell as well as atoms in the
surrounding image supercells. r¢ is a cut-off distance of the interatomic potential, beyond which
interaction may be safely ignored.

x*N (¢ = 0), the initial particle positions and velocities. Generating the IC for
crystalline solids is usually quite easy, but IC for liquids needs some work,
and even more so for amorphous solids. A common strategy to create a proper
liquid configuration is to melt a crystalline solid. And if one wants to
obtain an amorphous configuration, a strategy is to quench the liquid during a
MD run.

Let us focus on IC for crystalline solids. For instance, x>V (¢t = 0) can be
a fcc perfect crystal (assuming PBC), or an interface between two crystalline
phases. For most MD simulations, one needs to write an initial structure gen-
eration subroutine. Before feeding the initial configuration thus created into a
MD run, it is a good idea to visualize it first, checking bond lengths and coor-
dination numbers, etc. [3]. A frequent cause of MD simulation breakdown is
pathological initial condition, as the atoms are too close to each other initially,
leading to huge forces.

According to the equipartition theorem [4], each independent degree of
freedom should possess kg7 /2 kinetic energy. So, one should draw each
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component of the 3N-dimensional x*" (t=0) vector from a Gaussian-Maxwell
normal distribution N (0, kg T'/m;). After that, it is a good idea to eliminate the
center of mass velocity, and for clusters, the net angular momentum as well.

Force calculation. Before moving into the details of force calculation, it
should be mentioned that two approximations underly the use of the classical
equation of motion

dZXi (f ) oU
m; e e

dr aX,'

to describe the atoms. The first is the Born—Oppenheimer approximation [5]
which assumes the electronic state couples adiabatically to nuclei motion. The
second is that the nucleus motion is far removed from the Heisenberg uncer-
tainty lower bound: AEAt > h/2. If we plug in AE = kg7 /2, the kinetic
energy, and Ar = 1/w, where o is a characteristic vibrational frequency, we
obtain kg7 /hiew >> 1. In solids, this means the temperature should be signifi-
cantly greater than the Debye temperature, which is actually quite a stringent
requirement. Indeed, large deviations from experimental heat capacities are
seen in classical MD simulations of crystalline solids [2]. A variety of schemes
exist to correct this error [1], for instance the Wigner—Kirkwood expansion [6]

and path integral molecular dynamics [7].

The evaluation of the right-hand side of Eq. (3) is the key step that usu-
ally consumes most of the computational time in a MD simulation, so its
efficiency is crucial. For long-range Coulomb interactions, special algorithms
exist to break them up into two contributions: a short-ranged interaction, plus
a smooth, field-like interaction, both of which can be computed efficiently in
separate ways [8]. In this article we focus on issues concerning short-range
interactions only. There is a section about the Lennard—Jones potential and its
trunction schemes, followed by a section about how to construct and main-
tain an atom-atom neighborlist with O(/N) computational effort per timestep.
Finally, see Chap. 2.2-2.6 for the development of interatomic potential
functions.

Integrator/ensemble. Equation (3) is a set of second-order ODEs, which
can be strongly nonlinear. By converting them to first-order ODEs in the 6 /N-
dimensional space of {Xy, Xy}, general numerical algorithms for solving ODEs
such as the Runge—Kutta method [9] can be applied. However, these gen-
eral methods are rarely used in MD, because the existence of a Hamilto-
nian allows for more accurate integration algorithms, prominent among which
are the family of predictor-corrector integrators [10] and the family of sym-
plectic integrators [8, 11]. A section in this article gives a brief overview of
integrators.

Ensembles such as the micro-canonical, canonical, and grand-canonical are
concepts in statistical physics that refer to the distribution of initial conditions.
A system, once drawn from a certain ensemble, is supposed to follow strictly

i=1,...,N 3)
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the Hamiltonian equation of motion Eq. (3), with E conserved. However,
ensemble and integrator are often grouped together because there exists a class
of methods that generates the desired ensemble distribution via time integra-
tion [12, 13]. Equation (3) is modified in these methods to create a special
dynamics whose trajectory over time forms a cloud in phase space that has
the desired distribution density. Thus, the time-average of a single-point oper-
ator in one such trajectory approaches the thermodynamic average. However,
one should be careful in using it to calculate two-point correlation function
averages. See Chap. 2.9 for detailed description of these methods.

Property calculation. A great value of MD simulation is that it is “omn-
ipotent” at the level of classical atoms. All properties that are well-posed in
classical mechanics and statistical mechanics can in principle be computed.
The issues remaining are accuracy (the error comes from the interatomic
potential) and computational efficiency. The properties can be roughly grouped
into four categories:

1. Structural characterization. Examples include radial distribution func-
tion, dynamic structure factor, etc.

2. Equation of state. Examples include free-energy functions, phase dia-
grams, static response functions like thermal expansion coefficient, etc.

3. Transport. Examples include viscosity, thermal conductivity (electronic
contribution excluded), correlation functions, diffusivity, etc.

4. Non-equilibrium response. Examples include plastic deformation, pat-
tern formation, etc.

1. The Lennard-Jones Potential

The solid and liquid states of rare-gas elements Ne, Ar, Kr, Xe are better
understood than other elements because their closed-shell electron configura-
tions do not allow them to participate in covalent or metallic bonding with
neighbors, which are strong and complex, but only to interact via weak van
der Waals bonds, which are perturbational in nature in these elements and
therefore mostly additive, leading to the pair-potential model:

N
U™y =3 VAxaD, X =x;—xi, )
Jj>i
where we assert that the total potential energy can be decomposed into the dir-
ect sum of individual “pair-interactions.” If there is to be rotational invariance
in U(x*"), V can only depend on r ji = |X;i|. In particular, the Lennard—Jones
potential

w2 2]
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is a widely used form for V (r), that depends on just two parameters: a basic
energy-scale parameter €, and a basic length-scale parameter o . The potential
is plotted in Fig. 3.

There are a few noteworthy features about the Lennard—Jones potential:

e V(r =0) =0, at which point the potential is still repulsive, meaning
V'(r =0) < 0and two atoms would repel each other if separated at this
distance.

e The potential minimum occurs at ryj, = 2166, and Viin = —€. When
r > rmin the potential switches from being repulsive to being attractive.

e Asr — oo, V(r) is attractive and decays as r~°, which is the correct
asymptote for dispersion (London) forces between closed-shell atoms.
To get a feel for how fast V (r) decays, note that V (r=2.5¢)=—0.0163¢,
V(r=30)=-0.00548¢, and V (r =3.50) = —0.00217¢.

e Asr — 0, V(r) is repulsive as r~'. In fact, »~'2 blows up so quickly
that an atom seldom is able to penetrate r < 0.90, so the Lennard—
Jones potential can be considered as having a “hard core.” There is no
conceptual basis for the »~'? form, and it may be unsuitable as a model
for certain materials, so it is sometimes replaced by a “soft core” of the
form exp(—kr), which combined with the = attractive part is called
the Buckingham exponential-6 potential. If the attractive part is also of
an exponential form exp(—kr/2), then it is called a Morse potential.

1.5 2 2.5
r/'c

Figure 3. The Lennard—Jones potential.



Basic molecular dynamics 571

For definiteness, ¢ = 3.405 A and € = 119.8 kg = 0.01032 eV for Ar. The
mass can be taken to be the isotopic average, 39.948 a.m.u.

1.1. Reduced Units

Unit systems are constructed to make physical laws look simple and nu-
merical calculations easy. Take Newton’s law: f =ma. In the SI unit system,
it means that if an object of mass x (kg) is undergoing an acceleration of
y (m/s?), the force on the object must be xy (N).

However, there is nothing intrinsically special about the SI unit system.
One (kg) is simply the mass of a platinum—iridium prototype in a vacuum
chamber in Paris. If one wishes, one can define his or her own mass unit —
(kg), which say is 1/7 of the mass of the Paris prototype: 1 (kg) =7 (kg).

If (kg) is one’s choice of the mass unit, how about the unit system? One
really has to make a decision here, which is either keeping all the other units
unchanged and only making the (kg) — (kg) transition, or, changing some
other units along with the (kg) — (kg) transition.

Imagine making the first choice, that is, keeping all the other units of the SI
system unchanged, including the force unit (N), and only changes the mass unit
from (kg) to (l~<g). That is all right, except in the new unit system the Newton’s
law must be rewritten as F = ma/7, because if an object of mass 7x (l~<g) is
undergoing an acceleration of y (m/s?), the force on the object is xy (N).

There is nothing wrong with the F' =ma/7 formula, which is just a recipe
for computation — a correct one for the newly chosen unit system. Fundamen-
tally, F =ma/7 and F = ma describe the same physical law.

But it is true that F' = ma/7 is less elegant than F' = ma. No one likes to
memorize extra constants if they can be reduced to unity by a sensible choice
of units. The SI unit system is sensible, because (N) is picked to work with
other SI units to satisfy F =ma.

How can we have a sensible unit system but with (l~<g) as the mass unit?
Simple, just define (N )=(N)/7 as the new force unit. The (m)—(s)—(f(g)—(N)—
unit system is sensible because the simplest form of F =ma is preserved. Thus
we see that when a certain unit in a sensible unit system is altered, other units
must also be altered correspondingly in order to constitute a new sensible unit
system, which keeps the algebraic forms of all fundamental physical laws un-
altered. (A notable exception is the conversion between SI and Gaussian unit
systems in electrodynamics, during which a non-trivial factor of 47 comes up.)

In science people have formed deep-rooted conventions about the simplest
algebraic forms of physical laws, such as F=ma, K =mv?/2, E=K + U,
PQ=pRT,etc. Although nothing forbids one from modifying the constant coe-
fficients in front of each expression, one is better off not to. Fortunately, as long
as one uses a sensible unit system, these algebraic expressions stay invariant.
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Now, imagine we derive a certain composite law from a set of simple laws.
On one side, we start with and consistently use a sensible unit system A. On
the other side, we start with and consistently use another sensible unit sys-
tem B. Since the two sides use exactly the same algebraic forms, the resultant
algebraic expression must also be the same, even though for a given physical
instance, a variable takes on two different numerical values on the two sides as
different unit systems are adopted. This means that the final algebraic expres-
sion describing the physical phenomena must satisfy certain concerted scaling
invariance with respect to its dependent variables, corresponding to any fea-
sible transformation between sensible unit systems. This strongly limits the
form of possible algebraic expressions describing physical phenomena, which
is the basis of dimensional analysis.

As mentioned, once certain units are altered, other units must be altered
correspondingly to make the algebraic expressions of physical laws look in-
variant. For example, for a single-element Lennard—Jones system, one can
define new energy unit ) =€ (), new length unit () = ¢ (m), and new
mass unit (l~<g) =m, (kg) which is the atomic mass, where ¢, ¢ and m, are pure
numbers. In the (j)—(rh)—(f(g) unit system, the potential energy function is,

V(r)=40"" =1, (6)

and the mass of an atom is m = 1. Additionally, the forms of all physical laws
should be preserved. For example, K = mv?/2 in the SI system, and it should
still hold in the (j)—(ﬁl)—(ﬁg) unit system. This can only be achieved if the
derived time unit (also called reduced time unit), (S) = z(s), satisfies,

m,o?

€ =maaz/r2, or 7=

(7

€

To see this, note that m = 1 (Eg), v =1 (M)/(3), and K =1/2 (J) is a solution
to K =mv?/2 in the (j)—(rh)—(f(g) unit system, but must also be a solution to
K =muv?/2 in the SI system.

For Ar, 7 turns out to be 2.156 x 10~!2, thus the reduced time unit (§) =
2.156 (ps). This is roughly the timescale of one atomic vibration period in Ar.

1.2. Force Calculation
For pair potential of the form (4), there is,
oV (ri) oV (r) .
fi=- - = - ij
2 ox; 2 ( r Ny, ) 7

J#

10V (r)
= - ijs 8
LTS o
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where X;; is the unit vector,
A~ X _
Xijj = —, Xij =X; —Xj. (9)
I",'j

One can define force on i due to atom j,

£, = (_laV(r) )x,.j, (10)

/ r or

and so there is,

£=3"1,. (11
J#

It is easy to see that,
f,'j =_fji~ (12)

MD programs tend to take advantage of symmetries like the above to save
computations.

1.3. Truncation Schemes

Consider the single-element Lennard—Jones potential in (5). Practically
we can only carry out the potential summation up to a certain cutoff radius.
There are many ways to truncate, the simplest of which is to modify the
interaction as

Vo(r)z{ (‘)/’(r) - Vi), o (13)

However, Vy(r) is discontinuous in the first derivative at r =r., which
causes large numerical error in time integration (especially with high-order
algorithms and large time steps) if an atom crosses r., and is detrimental to cal-
culating correlation functions over long time. Another commonly used scheme

Vl(}")={ (\)/;(r)—V(rc)—V’(rc)(r—rc), :;:: (14)

makes the force continuous at r = r., but also makes the potential well too
shallow (see Fig. 4). It is also slightly more expensive because we have to
compute the square root of |x;; |? in order to get r.

An alternative is to define

¥ _ V(”)CXP(’”s/(V—Vc))a r<re
vo={ o

r=re
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LJ6-12 potential and its truncated forms
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Figure4. Lennard—Jones potential and its modified forms with cutoff r¢ =2.37343 ¢ . Vertical
lines indicate positions of neighbors in a single-element fcc crystal at 0 K.

which has all orders of derivative continuous at r =r.. However, this truncation
scheme requires another tunable parameter ;.
The following truncation scheme,

el -G (C) - )
B B AT T |

0, r>re

is a better alternative. W(r), V(r), Vo(r) and V,(r) are plotted in Fig. 4 for
comparison. r. is chosen to be 2.37343¢, which falls exactly at the 2/3 interval
between the fourth and fifth neighbors at equilibrated fcc lattice of 0 K.

There is clearly a tradeoff in picking r.. If r. is large, the effect of the
artificial truncation is small. On the other hand, maintaining and summing
over a large neighbor list (size o ) costs more. For a properly written O(N)
MD code, the cost versus neighbor number relation is almost linear.

Let us see what is the minimal r. for a fcc solid. Figure 5 shows the neigh-
boring atom shells and their multiplicity. Also drawn are the three glide planes.
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fcc neighboring shells

Figure 5. FCC neighboring shells. For example, label “6g. g¢” means there are eight sixth
nearest neighbors of the type shown in figure, which adds up to 86 neighbors with equal or less
distance.

With (15), once the number of interacting neighbor shells are determined, we
can evaluate the equilibrium volume and bulk modulus of the crystal in closed
form. The total potential energy of each atom is

1 rj,' <rc
e == Z W(Vj,'). (16)
2 4
J#

For fcc crystal, we can extract scale-independent coefficients from the
above summation and differentiate with respect to the lattice constant a — the
minima of which yields the equilibrium lattice constant ay. If we demand r
to fall into an exact position between the highest included shell and the lowest
excluded shell, we can iterate the process until mutual consistency is achieved.
We then plug ap into (16) to calculate the binding energy per atom, ey; the
atomic volume

3

a
Q= IO’ (17)
and the bulk modulus
dP a} d’e 4 d’e
B=-— = — =—— (for fcc). (18)
dlog Q a 9Q da? w0 9ay da? w0
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Table 1. FCC neighboring shells included in Eq. (15) vs. properties

n N relo] aglo] Qlo] ele] Bleo ]
1 12 1.44262944953 1.59871357076 1.02153204121 —2.03039845846 39.39360127902
2 18 1.81318453769 1.57691543349 0.98031403353 —4.95151157088 52.02448553061
3 42 2.11067974132  1.56224291246 0.95320365252 —6.12016548816 58.94148705580
4 54 237343077641 1.55584092331 0.94153307381 —6.84316556834 64.19738627468
5 78 2.61027143673 1.55211914976 0.93479241591 —7.27254778301 66.65093979162
6 86 2.82850677530 1.55023249772 0.93138774467 —7.55413237921 68.53093399765
7 134 3.03017270367 1.54842162594 0.92812761235 —7.74344974981 69.33961787572
8 140 3.21969263257 1.54727436382 0.92606612556 —7.88758411490 70.63452119577
9 176 3.39877500485 1.54643096926 0.92455259927 —7.99488847415 71.18713376234
10 200 3.56892997792 1.54577565469 0.92337773387 —8.07848627384 71.76659559499

The self-consistent results for r, ratio 2/3 are shown in Table 1. That is, r,
is exactly at 2/3 the distance between the nth interacting shell and the (n+1)th
non-interacting shell. The reason for 2/3(> 1/2) is that we expect thermal
expansion at finite temperature.

If one is after converged Lennard—Jones potential results, then r, = 40 is
recommended. However, it is about five times more expensive per atom than
the minimum-cutoff calculation with . =2.373430¢ .

2. Integrators

An integrator advances the trajectory over small time increments Af:

V(o) = XNty + A1) = XN (tp + 2A1) = - > XN (ty + LAY)

where L is usually ~10* — 107. Here we give a brief overview of some pop-
ular algorithms: central difference (Verlet, leap-frog, velocity Verlet, Beeman
algorithm) [1, 14], predictor-corrector [10], and symplectic integrators 8, 11].

2.1. Verlet Algorithm

Assuming x*M (¢) trajectory is smooth, perform Taylor expansion

X (to + A1) + X;(tg — A1) =2x;(tg) + X; (1) (A1)* + O((AD)*Y).  (19)

Since X, (fy) =f; (t)/m; can be evaluated given the atomic positions x*" (1)
att =19, x> (ty + At) in turn may be approximated by,

%ifo + A1) = —x; (1o — At) +2%;(0) + (

fi (1)

1

) (A)* + O((AD)Y).

(20)
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By throwing out the O((At)*) term, we obtain a recursion formula to com-
pute x>V (o + At), x> (ty + 2At), ... successively, which is the Verlet [15]
algorithm. The velocities do not participate in the recursion but are needed for
property calculations. They can be approximated by

1
vilto) = %i(10) = o [Xi (1o + A7) = X (1o — AD)] + O((A®). @D

To what degree does the outcome of the above recursion mimic the real
trajectory x>V (#)? Notice that in (20), assuming x;(fy) and x;(fy — At) are
exact, and assuming we have a perfect computer with no machine error storing
the numbers or carrying out floating-point operations, the computed x; (fp+ At)
would still be off from the real x,(fy + At) by O((At)*), which is defined as
the local truncation error (LTE). LTE is an intrinsic error of the algorithm.
Clearly, as At — 0, LTE — 0, but that does not guarantee the algorithm
works, because what we want is x>V (ty + t') for a given ¢/, not x; (ty + At).
To obtain x*" (¢) + t'), we must integrate L =t'/ At steps, and the difference
between the computed x*" (ty +¢') and the real x> (t + ') is called the global
error. An algorithm can be useful only if when At — 0, the global error — 0.
Usually (but with exceptions), if LTE in position is ~ (At)**!, the global error
in position should be ~ (At)¥, in which case we call the algorithm a k-th order
method.

This is only half the story because the order of an algorithm only charac-
terizes its performance when At — 0. To save computational cost, most often
one must adopt a quite large Ar. Higher-order algorithms do not necessarily
perform better than lower-order algorithms at practical A¢’s. In fact, they could
be much worse by diverging spuriously (causing overflow and NaN), while a
more robust method would just give a finite but manageable error for the same
At. This is the concept of the stability of a numerical algorithm. In linear
ODE:s, the global error e of a certain normal mode &k can always be written as
e(wp At, T/ At) by dimensional analysis, where @y is the mode’s angular fre-
quency. One then can define the stability domain of an algorithm in the wA¢
complex plane as the border where e(w;At, T/ At) starts to grow exponen-
tially as a function of 7'/ At. To rephrase, a higher-order algorithm may have a
much smaller stability domain than the lower-order algorithm even though its
e decays faster near the origin. Since e is usually larger for larger |w; At|, the
overall quality of an integration should be characterized by e(wm. At, T/ At)
where wp,x is the maximum intrinsic frequency of the molecular dynamics
system that we explicitly integrate. The main reason behind developing con-
straint MD [1, 8] for some molecules is so that we do not have to integrate
their stiff intra-molecular vibrational modes, allowing one to take a larger At,
so one can follow longer the “softer modes” that we are more interested in.
This is also the rationale behind developing multiple time step integrators like
r-RESPA [11].
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In addition to LTE, there is round-off error due to the computer’s finite
precision. The effect of round-off error can be better understood in the stability
domain: (1) In most applications, the round-off error <« LTE, but it behaves
like white noise which has a very wide frequency spectrum, and so for the
algorithm to be stable at all, its stability domain must include the entire real
w At axis. However, as long as we ensure non-positive gain for all real w At
modes, the overall error should still be characterized by e(w; At, T/ At), since
the white noise has negligible amplitude. (2) Some applications, especially
those involving high-order algorithms, do push the machine precision limit. In
those cases, equating LTE ~ € where € is the machine’s relative accuracy,
provides a practical lower bound to Af, since by reducing Af one can no
longer reduce (and indeed would increase) the global error. For single-precision
arithmetics (4 bytes to store one real number), € ~ 10~%; for double-precision
arithmetics (8 bytes to store one real number), € ~2.2 x 10~!°; for quadruple-
precision arithmetics (16 bytes to store one real number), € ~ 10732,

2.2. Leap-frog Algorithm

Here we start out with v*V (fy — Az/2) and x*" (¢), then,

At At f; (1
v (lo + —) v, (lo - —) + ( (0)) At 22)
2 2 m;
followed by,
At
% (1o + A1) =% (10) + v, (to + 7) AL, 23)

and we have advanced by one step.
The velocity at time #, can be approximated by,

vl =3 [vi (0= 5) 4w (0 + 5) |+ ocan (24)

2
2.3. Velocity Verlet Algorithm

We start out with x*" (#) and v3" (1), then,

() any, 25)

i

1
X; (to + A1) =x;(t9) + v; (to) At + 3

evaluate V(1) + At), and then,

v; (to + At) =v;(ty) + % [fi(tO) n f; (to + A1)

] At, (26)

m; m;
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and we have advanced by one step. Since we can have x>V (fy) and v*" (#,)
simultaneously, it is popular.

2.4. Beeman Algorithm

It is similar to the velocity Verlet algorithm. We start out with x*" (1),
B3V (ty — A1), £V (1) and v3V (1), then,

af; (1) — £ (tg — A1) (A1)?
Xi(to—l-Af)=Xi(to)+Vi(f0)Af+[ () mFO )} ( 6) , @
evaluate £V (ty + At), and then,
2f: (tg + At) + 55, (1) — £, (1 — A1) At
V; (f0+At)=Vi(t0)+ |: (0 ) m(O) (0 ):| ?, (28)

and we have advanced by one step. Note that just like the leap-frog and veloc-
ity Verlet algorithms, the Beeman algorithm gives identical trajectory as the
Verlet algorithm [1,14] in the absence of machine error, with 4th-order LTE
in position. However, it gives better velocity estimate (3rd-order LTE) than
the leap-frog or velocity Verlet (2nd-order LTE). The best velocity estimate
(4th-order LTE) can be achieved by the so-called velocity-corrected Verlet
algorithm [14], but it requires knowing the next two steps’ positions.

2.5. Predictor-corrector Algorithm

Let us take the often used 6-value predictor-corrector algorithm [10] as
an example. We start out with 6 x 3N storage: x>N O (z,), x3¥ D (1y), x*3N®
(%), ..., x*NO) (1), where x*N®)(¢) is defined by,

dk (f) A k
x® (1) = (d—’t‘k> <( k’!) ) (29)

The iteration consists of prediction, evaluation, and correction steps:

2.5.1. Prediction step

©) ©) + Xl(l) +Xl(2) +Xl(3) + Xl(4) + Xl(5)’

fl) + 2x§2) + 3x§3) + 4x§4) + SXES),
@+ 3x? +6xY + 10x7,
D+ ax® + 10x

@ =x® 4 5x0. (30)

1 1

X, =X
x§1)=x
xl@):x
X, =X
X, =X

3
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The general formula for the above is

W _~~[ K ®)
N g0, M -2,
X kz=k [(k/—k)!k!} %

J. Li

€1y

with M = 6 here. The evaluation must proceed from 0 to M — 2 sequentially.

2.5.2.  Evaluation step
Evaluate force f*V using the newly obtained x>V,
2.5.3. Correction step

Define the error eV as,

o = X,Q) _ (rfl_zl) ((Azt!)2>.

Then apply corrections,

Xl(k):Xl(k)_CMkeis k:(),...,M_l,

where C)y are constants listed in Table 2.

(32)

(33)

It is clear that the LTE for x>V is O((At)™) after the prediction step. But
one can show that the LTE is reduced to O((At)™+!) after the correction step
if £*¥ depends on x*" only, and not on the velocity. And so the global error

would be O((A)M).

2.6. Symplectic Integrators

In the absence of round-off error, certain numerical integrators rigorously
maintain the phase-space volume conservation property (Liouville’s theorem)
of Hamiltonian dynamics, which are then called symplectic integrators. This

Table 2. Gear predictor-corrector coefficients

Cux k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
M=4 1/6 5/6 1 1/3

M=5 19/120 3/4 1 1/2 1/12

M=6  3/20 251/360 1 1118 1/6  1/60

M=7 863/6048  665/1008 1 25/36 35/144 1/24  1/360
M=8 1925/14112 19087/30240 1  137/180 5/16 17/240 1/120 1/2520




Basic molecular dynamics 581

Integration of 100 periods of Kepler orbitals with eccentricity 0.5

1i final (p,q) error II,
1i final (p,q) error I,

20 20 40 50 600’ 700 800 900 1000 5 20 300 400 500 600 700 800 9001000 1200 1400 16001600 2000
number of force evaluations per period number of force evaluations per period

Figure 6. (a) Phase error after integrating 100 periods of Kepler orbitals. (b) Phase error after
integrating 1000 periods of Kepler orbitals.

property severely limits the possibilities of mapping from initial to final states,
and for this reason symplectic integrators tend to have much better total energy
conservation in the long run. The velocity Verlet algorithm is in fact symplec-
tic, followed by higher-order extensions [16, 17].

We have benchmarked the two families of integrators (Fig. 6) by numeri-
cally solving the two-body Kepler’s problem (eccentricity 0.5) which is non-
linear and periodic, and comparing with the exact analytical solution. The two
families have different global error versus time characteristics: non-symplectic
integrators tend to have linear energy error (A E o<t) and quadratic phase error
(|AT'| o t%), while symplectic integrators tend to have constant (fluctuating)
energy error (A E t°) and linear phase error (|AT'| oxt), with respect to time.
Therefore the long-term performance of a symplectic tends to be asymptoti-
cally superior to that of a non-symplectic integrator. But, it is found that for a
reasonable integration duration, say 100 Kepler periods, high-order predictor-
corrector integrators can have a better performance than the best of the current
symplectic integrators at large integration timestep (small number of force
evaluations per period). This is important, because it means that in a real
condensed-matter system if one does not care about the correlation of a mode
beyond 100 oscillation periods, then high-order predictor-corrector algorithms
can achieve the desired accuracy at a lower computational cost.

3. Order-N MD Simulation With Short-Range
Potential

We outline here a linked-bin algorithm that allows one to perform MD
simulation in a PBC supercell with O(N) computational effort per timestep,
where N is the number of atoms in the supercell (Fig. 7). Such approach
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Figure 7. There are N atoms in the supercell. (a) The circle around a particular atom with
radius r¢ indicates the range of its interaction with other atoms. (b) The supercell is divided
into a number of bins, which have dimensions such that an atom can only possibly interact
with atoms in adjacent 27 bins in 3D (9 in 2D). (c) This shows that an atom—atom list is still
necessary because on average there are only 16% of the atoms in 3D in adjacent bins that
interact with the particular atom.

is found to outperform the brute-force Verlet neighbor-list update algorithm,
which is O(N?), when N exceeds a few thousand atoms. The algorithm to be
introduced here allows for arbitrary supercell deformation during a simulation,
and is implemented in large-scale MD and conjugate gradient relaxation
programs as well as a visualization program [3].

Denote the three edges of a supercell in Cartesian frame by row vectors hy,
h,, h3, which stack together to form a 3 x 3 matrix H. The inverse of the H
matrix B = H™! satisfies

I1=HB =BH. (34)

If we define row vectors

b = (Bi1, Bai, B31), by = (B2, B, By), bz = (B3, By, B33),

(35)
then (34) is equivalent to
h; -b; =hib! =5;. (36)
Since by is perpendicular to both h, and hj, it must be collinear with the
normal direction n of the plane spanned by h; and h; : b; = |b;|n. And so
by (36),

I1=h;-b;=h; - (|bi|n) = |by|(h; - n). (37)
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But |h; - n| is nothing other than the thickness of the supercell along the h;
edge. Therefore, the thicknesses (distances between two parallel surfaces) of
the supercell are,

1 J 1 4 1
= —7 2 = —7 3 = T
[b1] b | [bs|
The position of atom i is specified by a row vector, s; = (s;1, Si2, $;3), wWith
s, satisfying

0<siu<lu=1,...,3, (39)

d (38)

and the Cartesian coordinate of this atom, X;, also a row vector, is
X; =sithy + siphy + s;3hs = s;H, (40)

where s;, has the geometrical interpretation of the fraction of the uth edge
in order to construct x;. We will simulate particle systems that interact via
short-range potentials of cutoff radius r. (see previous section for potential
truncation schemes). In the case of multi-component system, r. is generalized
to a matrix r%#, where o = c(i), # = c(j) are the chemical types of atom
i and j, respectively. We then define
A Xji
Xji =X; —X, rj,-z|xji|, inEL. (41)
r ji
The design of the program should allow for arbitrary changes in H that
include strain and rotational components (see Chap. 2.19). One should use
the Lagrangian strain 1), a true rank-2 tensor under coordinate frame transfor-
mation, to measure the deformation of a supercell. To define 77, one needs a
reference Hy of a previous time, with xy = sHy and dx, = (ds)Hy, and imagine
that with s fixed, dx is transformed to dx = (ds)H, under Hy — H = HyJ.
The Lagrangian strain is defined by the change in the differential line
length,

di* = dxdx" = dxo(I + 2n)dx;, (42)
where by plugging in dx = (ds)H = (dxo)H; 'H = (dx)J, 17 is seen to be
n=4(H7'HH'H;" - 1) = 1(1)7 - 1), 3)

Because 7 is a symmetric matrix, it always has three mutually orthogo-
nal eigen-directions X;1 = X171, Xo1) = X2, X317 = X3#3. Along those direc-
tions, the line lengths are changed by factors /1 + 271, /1 + 212, /1 + 273,
which achieve extrema among all line directions. Thus, as long as 7, 7, and 73
oscillate between [—#bound> fbound] fOr some chosen 7yound, any line segment at

Hj can be scaled by no more than /1 4 2#poung and no less than /1 — 2#p0und-
That is, if we define length measure

L(As,H) = ~ AsHHT AsT, (44)
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then so long as 71, #2, 13 oscillate between [#yin, #max ], there is

V' 1+ 2nmin L(As, Hy) < L(As,H) < /1 4+ 25jmax L(As, Hp). 45)

One can use the above result to define a strain session, which begins with
H, = H and during which no line segment is allowed to shrink by less than a
threshold f. < 1, compared to its length at Hy. This is equivalent to requiring
that,

f=V1+2(min(yp, 2, 13)) < fe (46)

Whenever the above condition is violated, the session terminates and a new
session starts with the present H as the new Hy, and triggers a repartitioning
of the supercell into equally-sized bins, which is called a strain-induced bin
repartitioning.

The purpose of bin partition (see Fig. 7) is the following: it can be a very
demanding task to determine if atoms i, j are within r. or not, for all possible
ij combinations. Formally, this requires checking

rii = L(ASJ',',H) <r. 47)

Because s;, s; and H are in general all moving — they differ from step to
step, it appears that we have to check this at each step. This would indeed be
the case but for the observation that, in most MD, MC and static minimization
procedures, s;’s of most atoms and H often change only slightly from the pre-
vious step. Therefore, once we ensured that (47) held at some previous step,
we can devise a sufficient condition to test if (47) still must hold now, at a much
smaller cost. Only when this sufficient condition breaks down do we resort to
a more complicated search and check in the fashion of (47).

As a side note, it is often more efficient to count interaction pairs if the
potential function allows for easy use of such half-lists, such as pair- or EAM
potentials, which achieves 50% saving in memory. In these scenarios we pick a
unique ‘“host” atom among i and j to store the information about the
ij-pair, that is, a particle’s list only keeps possible pairs that are under its
own care. For load-balancing it is best if the responsibilities are distributed
evenly among particles. We use a pseudo-random choice of: if i + j is odd
and i > j, or if i 4+ j is even and i < j, then i is the host; otherwise it is j.
As i > j is “uncorrelated” with whether i + j is even or odd, significant load
imbalance is unlikely to occur even if the indices correlate strongly with the
atoms’ positions.

The step-to-step small change is exploited as follows: one associates each
s; with a semi-mobile reduced coordinate s{ called atom i’s anchor (Fig. 8).
At each step, one checks if L(s; —s¢, H), that is, the current distance between
i and its anchor, is greater than a certain ragg > 70, or not. If it is not, then s

does not change; if it is, then one redefines s¢ = s; at this step, which is called
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atom trajectory

anchor trajectory S
o Usually,
o d=0.05r,

Figure 8. This illustrates the concepts of an anchor, which is the relative immbobile part of
an atom’s trajectory. Using an anchor—anchor list, we can derive a “flash” condition that locally
updates an atom’s neighbor-list when the atom drifts sufficiently far away from its anchor.

atom i’s flash incident. At atom i’s flash, it is required to update records of all
atoms (part of the records may be stored in j’s list, if 50%-saving is used and
J happens to be the host of the ij pair) whose anchors satisfy

0
re + 2y
fe

Note that the distance is between anchors instead of atoms (s{ =s;, though),
and the length is measured by Hy, not the current H. (48) nominally takes
O(N) work per flash, but we may reduce it to O(1) work per flash by parti-
tioning the supercell into m x m, x m3 bins at the start of the session, whose
thicknesses by Hy (see (38)) are required to be greater than or equal to ry:

di(Hy) dr(Hp) d3(Hp)

mi %) ms

L(s¢ —s¢. Ho) < ri = (48)

2 TNist- (49)

The bins deform with H and remains commensurate with it, that is, its
s-width 1/m, 1/m,, 1/ms remains fixed during a strain session. Each bin
keeps an updated list of all anchors inside. When atom i flashes, it also updates
the bin-anchor list if necessary. Then, if at the time of i’s flash two anchors are
separated by more than one bin, there would be

di(Hp) dr(Hp) d3(Hy)
mi ’ mp ’ ns

L(S? —s?,Hp) > = Tists (50)
and they cannot possibly satisfy (48). Therefore we only need to test (48) for
anchors within adjacent 27 bins. To synchronize, all atoms flash at the start of a
strain session. From then on, atoms flash individually whenever L (s; —s{, H) >
rafe- If two anchors flash at the same step in a loop, the first flash may get it
wrong — that is, missing the second anchor, but the second flash will correct
the mistake. The important thing here is not to /ose an interaction. We see
that to maintain anchor lists that captures all solutions to (48) among the latest
anchors, it takes only O(N) work per step, and the pre-factor of which is also
small because flash events happen quite infrequently for a tolerably large 7.
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The central claim of the scheme is that if j is not in i’s anchor records
(suppose i’s last flash is more recent than j’s), which was created some time
ago in the strain session, then r;; > r.. The reason is that the current separation
between the anchor i and anchor j, L(s] — s{, H), is greater than r. + 2rd..,
since by (45), (46) and (48),

a a a a re + 2rc(i)rift
L(Sj —SiaH)Zf : L(Sj _Si>H0)>f 'Vnsthc : rlislzfc : f
C
(51)
So we see that r;; > r. maintains if neither i or j currently drifts more than

Farin = f”fr >0 (52)
from respective anchors. Put it another way, when we design rj; in (48), we
take into consideration both atom drifts and H shrinkage which both may bring
ij closer than r., but since the current H shrinkage has not yet reached the
designed critical value, we can convert it to more leeway for the atom drifts.

For multi-component systems, we define

af 0
ap _ 1"+ Warig
Mist = I ’
C
where both f. and rJ.; are species-independent constants, and rJ.; can be

thought of as putting a lower bound on 7, so flash events cannot occur too
frequently. At each bin repartitioning, we would require

hH) bH) EH) -
s b = list*
a.p

(53)

mi my nis
And during the strain session, f > f., we have

ap af pa po
L AT r < Fig r
i’grift in in f list C , in f list c , (55)
B 2 B 2

a time- and species-dependent atom drift bound that controls whether an atom
of species a needs to flash.

4. Molecular Dynamics Codes

At present there are several high-quality molecular dynamics programs in
the public domain, such as LAMMPS [18], DL_POLY [19, 20], Moldy [21],
IMD [22, 23], and some codes with biomolecular focus, such as NAMD [24,
25] and Gromacs [26, 27]. CHARMM [28] and AMBER [29] are not free but
are standard and extremely powerful codes in biology.
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