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A minimal basis set of localized quasiatomic orbitals for Mo is constructed using the fully converged
eigenstates from first-principles calculations with a large basis set. The orbitals, although similar in shape to
those of a free atom, are slightly deformed such that it can reproduce all the occupied-state electronic proper-
ties of the system. They are very useful for analyzing chemical bonding by calculating the Mulliken overlap
population and bond order index between atoms. In addition, the transferability of tight-binding parametriza-
tions can be evaluated, for example, the effect of the two-center approximation.
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I. INTRODUCTION

The electronic structures of periodic systems in solid-state
physics are usually formulated in the reciprocal space. While
it is technically elegant and simple to implement computa-
tionally, the formalism lacks in providing an easy connection
to traditional chemical concepts with an intuitive picture
about the bonding properties of crystal in real space. Hence,
a representation using localized orbitals is appealing and also
important for modern theories of electron correlations1 and
electron polarization.2,3 Moreover, localized orbitals play a
key role in the development of O�N� methods,4–8 where the
computational effort of electronic structure calculations
scales linearly with the system size.

Wannier functions �WFs�, introduced by Wannier in
1937,9 are the most widely used functions to describe the
electronic structures of crystals in real space. Since WFs are
constructed by a unitary transformation of the canonical
electronic eigenstates of the crystal, they cover the same
space as that spanned by the eigenstates from which the WFs
are constructed. However, well-localized WFs exist only in
large-gap insulators but not in metallic systems.10,11 A lot of
effort has been focused on obtaining maximally localized
generalized WFs.12–16 In particular, Souza et al. have shown
that it is possible to generate atomiclike Wannier orbitals by
including a suitable number of unoccupied bands in addition
to the occupied bands.16 Recently, we proposed a new
scheme to construct highly localized quasiatomic minimal
basis orbitals �QUAMBOs�17 for both insulating and metallic
systems, using the electronic eigenstates obtained from first-
principles calculations. Our scheme selects a relevant subset
of antibonding states from a large unoccupied subspace. The
antibonding states are chosen to maximize the localization of
the resulting QUAMBOs. The QUAMBOs contain the adap-
tation of the minimal basis to the environment and reproduce
exactly the first-principles electronic structures of the occu-
pied states. Previously, we have successfully constructed
QUAMBOs for Si and Al in diamond and fcc structures re-
sulting in highly localized s- and p-like orbitals. In this pa-
per, we will demonstrate that the algorithm can be applied to
transition metals as well. bcc-Mo is chosen as our prototype

system in this study. QUAMBOs of fcc-Mo are also calcu-
lated to compare the bonding between bcc and fcc structures.
We will also use the QUAMBOs to examine the transferabil-
ity of tight-binding models based on the two-center approxi-
mation and find out whether electronic structures can be ac-
curately reproduced under such tight-binding scheme. The
construction of QUAMBOs can be done under the scheme of
Vanderbilt’s ultrasoft pseudopotentials18 or Blochl’s projec-
tor augmented-wave19 method and will be described
elsewhere.20

II. FORMALISM AND ALGORITHM FOR QUASIATOMIC
MINIMAL BASIS ORBITAL CONSTRUCTION

Given a set of Bloch eigenstates �k,��r� obtained from
first-principles calculations using a large basis set, with the
eigenstates being labeled by the wave vector k in the Bril-
louin zone and the band number �, we want to construct a
set of quasiatomic orbitals A��r−Ri� ��A��Ri�� in bra-ket no-
tation� for each atom i at position Ri in the unit cell and for
each orbital type � �s , px , py , pz, etc.� by linear combinations
of the Bloch eigenstates. For each wave vector k, a total of
ntot bands are calculated, with nocc�k� of them being occupied
and the rest nvir�k� are unoccupied. However, only a sub-
space of the unoccupied bands is needed and this subspace
should be optimized in order to enhance the localization of
the QUAMBOs when combined coherently with the occu-
pied bands. This optimal subset of virtual bands �k,p�r� is
obtained by a linear transformation,

�k,p�r� = �
�=nocc+1

ntot

T�p�k��k,��r�, p = 1,2, . . . ,np�k�

� nvir�k� , �1�

where T is a rectangular matrix to be determined later, which
satisfies T ·T†= I since �k,p�r� is an orthogonal set. The qua-
siatomic orbitals can be constructed by a linear combination
of the occupied bands and the optimized virtual bands,
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A��r − Ri� = �
k
��

�=1

nocc

a���k,Ri��k,��r�

+ �
p=1

np

bp��k,Ri��k,p�r�	 . �2�

We require each A� to be as close as possible to its cor-
responding free-atom orbital A�

0 . The minimization of the
mean square deviation 
A�−A�

0 �A�−A�
0� under the norm-

conserving constraint 
A� �A��=1 yields

A��r − Ri� = Di�
−1/2��

k
��

�=1

nocc


�k,��A�
0�Ri���k,��r�

+ �
p=1

np


�k,p�A�
0�Ri���k,p�r�	� , �3�

where

Di��Ri� = �
k
��

�=1

nocc

�
�k,��A�
0�Ri���2 + �

p=1

np

�
�k,p�A�
0�Ri���2	

�4�

and is related to the root-mean-square deviation of the opti-
mized A� from the corresponding free atom A�

0 by

�i� = 
A� − A�
0 �A� − A�

0�1/2 = �2�1 − Di�
1/2��1/2. �5�

Equation �5� suggests that the key step to obtaining qua-
siatomic localized orbitals is to select a virtual band subset
�k,p�r� that maximizes the sum �i,�Di�, i.e., maximizing the
overall overlap between the virtual bands and the free-atom
orbitals. With the subset of virtual bands chosen according to
this criteria �details to be given below�, QUAMBOs can be
constructed through Eq. �3�. The step-by-step algorithm for
constructing the QUAMBOs for Mo is described as follows.

A. Calculation of Bloch eigenstates from first-principles
calculations

First, the electronic eigenstates of Mo in bcc structure are
calculated using first-principles density functional theory un-
der local density approximation �LDA�.21 The Kohn-Sham
equations are solved self-consistently using
pseudopotential22 with a mixed basis of plane waves and
Gaussian functions23 to enable adequate convergence for the
localized d-like orbitals. The cutoff energy is set to be 40 Ry
and a Monkhorst-Pack grid24 of 16�16�16 is used for the
Brillouin zone integration. A total of 70 bands are calculated
for each k point in our grid.

B. Projection of Bloch eigenstates onto free-atom orbitals

In our QUAMBO construction, we need to project the
Bloch eigenstates obtained from previous ab initio calcula-
tions onto the free-atom orbitals �see Eqs. �3� and �4��. We
choose the 5s and 4d pseudo-wave-functions as our free-
atom orbitals A�

0 . The pseudo-wave-functions are constrained
to match the corresponding ground state wave functions of a

free Mo atom exactly outside a core radius and reproduce the
atomic energy levels at the same time. The radial part of
the pseudo-wave-functions is designed to be nodeless inside
the core radius that joins smoothly to the wave function out-
side the core, and the integrated charge of the pseudo-
wave-functions is required to be normalized. Six
QUAMBOs per Mo atom will be generated to maximize the
overlap with these six free-atom orbitals A�

0��
=s ,dxy ,dyz ,dzx ,dx2−y2 ,d3z2−r2�. In order to calculate the pro-
jection 
�k,� �A�

0�Ri��, the Bloch eigenstates �k,��r� origi-
nally given by a mixed basis of plane waves and Gaussian
functions are now reexpressed using plane waves with a cut-
off energy of 80 Ry; this is because integration involving
plane waves is computationally simpler. We checked that the
plane wave set is large enough that our study following the
QUAMBO construction, for example, bonding analysis in
the following sections, is converged. It should be noted that
p orbitals are not included in the construction. We found that
six s- and d-like QUAMBOs are sufficient to serve as a
minimal basis set that reproduces the properties of Mo in a
bcc crystal.

C. Determination of the virtual subspace

By virtue of Eq. �4� and the orthonormality of the virtual
subset, the optimization of the virtual bands can be done by
diagonalizing the matrix

B���
k = �

i,�

�k,��A�

0�Ri��
A�
0�Ri���k,��� , �6�

for each k point, where � and �� run over all the unoccupied
states obtained in our first-principles calculation. The subset
of eigenvectors of the B matrix defines the transformation
matrix T in Eq. �1� for optimizing the virtual bands. The
eigenvalues and eigenvectors are ranked in descending order
with the largest eigenvalues being the first one. Hence, after
the transformation, the virtual space for each k point will
have the first virtual state giving the largest overlap with the
free-atom orbitals A�

0 , and the second virtual state having the
second largest overlap and so on.

A Bloch wave function for the QUAMBOs can be ob-
tained by

Ãk,��r − Ri� = Di�
−1/2��

�=1

nocc


�k,��A�
0�Ri���k,��r�

+ �
p=1

np


�k,p�A�
0�Ri���k,p�r�	 , �7�

analogous to Eq. �3�. The size of the virtual subspace np�k� is
chosen such that the sum nocc�k�+np�k� is equal to the num-
ber of desired QUAMBOs. For Mo in bcc structure, there are
only one atom in a unit cell and six QUAMBOs are being
sought for this atom; hence, np�k�=6−nocc�k�. The first np

states from the virtual space will be chosen. Since the virtual
states are ranked according to the amount of overlap with the
free-atom orbitals, the chosen virtual subspace of size np
provides the best “antibonding” states to combine with the
occupied states to produce localized quasiatomic orbitals. In
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this scheme, the transformation of occupied and virtual states

to Ãk,� has to be invertible and numerically stable. We found
that if three additional p-like QUAMBOs are included, giv-
ing a total of nine QUAMBOs, the transformations become
singular or badly conditioned no matter how the virtual sub-
space is being chosen. The matrices corresponding to the
transformations from the nine occupied and virtual states to

nine Ãk,� are singular when there are rows in the matrices
that are linearly dependent. This happens when the nine
states do not span a nine dimensional space after projection
onto the free-atom orbitals. This indicates that the six s- and
d-like QUAMBOs already constitute a sufficient basis set to
describe the system; extra QUAMBOs are redundant leading
to singular transformations.25 Since the transformation is re-
quired to be invertible, our QUAMBOs reproduce all the
occupied eigenstates and eigenvalues of the system. How-
ever, for a metallic system such as Mo, it is preferable to
preserve the electronic properties not only below the Fermi
level but also slightly above the Fermi level as well. Hence,
additional eigenstates up to 1 eV above the Fermi level are
included into nocc, with the construction of the virtual sub-
space obtained by higher unoccupied states rather than unoc-
cupied states immediately above the Fermi level.

D. Construction of orthogonalized quasiatomic minimal basis
orbitals

Once the set of Ãk,��r−Ri� has been determined through
Eq. �7�, the QUAMBOs can be constructed by summing up

all the Ãk,��r−Ri� over the first Brillouin zone,

A��r − Ri� = �
k

Ãk,��r − Ri� . �8�

Although, in general, the QUAMBOs are not an orthogonal
set by such a construction, the QUAMBOs belonging to the
same atom can be orthogonalized by symmetric orthogonal-
ization,

Â��r − Ri� = �
��

A��r − Ri��S−1/2����, �9�

where S���= 
A��Ri� �A���Ri��.

III. RESULTS AND DISCUSSIONS

A. Properties of the quasiatomic minimal basis orbitals

By following the recipe described above, the s- and d-like
QUAMBOs for Mo in bcc structure are obtained and the
results are displayed in Fig. 1. The corresponding contour
plots are shown in Fig. 2 together with the s- and d-like
QUAMBOs for fcc-Mo and the free-atom orbitals for com-

parison. Due to symmetry, Âdxy
and Âdzx

are not shown in the

contour plots since they are the same as Âdyz
when projected

onto the appropriate atomic plane. From Fig. 2, we can see
that the bcc QUAMBOs are very similar to the correspond-
ing orbitals in the free atom. The root-mean-square devia-
tions ��i�� between the bcc QUAMBOs and the correspond-
ing free-atom orbitals are 16.4% for s-, 7.5% for dxy ,dyz ,dzx-,

and 7.0% for dx2−y2, d3z2−r2-like QUAMBOs, respectively.
The deformation of the QUAMBOs is more pronounced
along the bonds between the atoms. The QUAMBOs for
fcc-Mo are also quite similar to the free-atom orbitals. Their
deformation is different from the bcc QUAMBOs with de-
viations of 16.5% for s-, 7.2% for dxy ,dyz ,dzx-, and 6.5% for
dx2−y2, d3z2−r2-like QUAMBOs, respectively.

As explained above, the QUAMBOs are constructed
such that they can reproduce the occupied-state electronic
properties obtained from a first-principles calculation

��

���� �������������	�

��	����	

FIG. 1. Three-dimensional plots for the six QUAMBOs of Mo
in bcc structure. A cubic unit cell of the bcc structure is also shown
in the same scale as in the QUAMBO plot.

FIG. 2. Contour plot of the QUAMBOs of Mo in bcc structure
shown in Fig. 1: �a� s-like, �b� dyz-like, �c� dx2−y2-like, and �d�
d3z2−r2-like QUAMBOs with their corresponding QUAMBOs of
Mo in fcc structure and free-atom orbitals for comparison. �a�, �b�,
and �d� are plotted in the �100� plane and �c� is plotted in the �001�
plane. The solid and dotted contour lines have opposite sign. The
outermost contour line has the value of 0.02 Å−3/2. The contour step
is 0.02 Å−3/2 for �a� and 0.04 Å−3/2 for �b�–�d�. The two perpendicu-
lar lines passing through the center of the QUAMBOs indicate the
directions of the nearest-neighbor atoms. If the nearest neighbors
are out of the plane, the lines are drawn as dashed. The corners of
the square indicate the positions of the second nearest neighbors.
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using a large basis set. This can be demonstrated explicitly
by comparing the band structure and density of states
of bcc-Mo calculated using QUAMBOs as bases with
those obtained from our original LDA calculation. The
matrix element of the Hamiltonian under QUAMBOs is

H����k�= 
Ãk,��Ri��H�Ãk,���Ri���, where Ãk,��r−Ri�
= 1


N
�Rn

eik·RnÂ��r−Ri−Rn� is the Bloch sum of the

QUAMBO Â��r−Ri�, k is an arbitrary k point in the Bril-
louin zone not restricted to those in the k-point grid from our
first-principles calculation, and Rn are the lattice vectors of
the bcc crystal structure. The total Hamiltonian H
=�k���=1

ntot ��k�,��Ek�,�
�k�,�� when expressed using the
eigenstates of the system. Here, k� runs over the k-point grid
chosen for the Brillouin zone integration in our first-
principles calculation. It is straightforward to show that

H����k� = �
Rn


Â��Ri��H�Â,���Ri� + Rn��eik·Rn

= �
Rn

�
k�

H����k��ei�k−k��·Rn. �10�

Using Eq. �10�, the Hamiltonian can be calculated at any k
point with the QUAMBOs as bases. Since the QUAMBOs
do not form an orthogonal set, the band structure is obtained
by solving a generalized eigenvalue problem. The band
structure along the symmetry directions of the Brillouin zone
is shown in Fig. 3. When compared with the original LDA
calculation, we can see that the eigenvalues are exactly re-
produced at the k-point grid used in the first-principles cal-
culation up to 1 eV above the Fermi level. Outside of the
k-point grid, slight discrepancy in the band structure can be
found between the first-principles results and that from
QUAMBOs. This discrepancy can be minimized by using a
finer k-point grid in the first-principles calculation to con-
struct the QUAMBOs.

The result for the density of states is shown in Fig. 4�a�.
The density of states is well reproduced up to 1 eV above the
Fermi level. It should be noted that the same method of
constructing QUAMBOs for Al resulted in an energy gap
opening up immediately at the energy where the forced re-

production of the eigenstates terminates,17 but this situation
does not occur for Mo, as shown in Fig. 4. This probably
implies that the QUAMBOs for Mo are not too bad a repre-
sentation for the space even beyond 1 eV above the Fermi
level, although it will not be exact. In addition, the projected
density of states into s and d contribution is shown in Fig.
4�b�. When compared to the usual method by projecting the
eigenstates onto spherical harmonics in atomic spheres cen-
tered at the respective ions’ positions, QUAMBOs produce
the same result qualitatively. However, QUAMBOs do not
rely on an ad hoc definition of atomic spheres that either
cannot fill the whole space, resulting in a loss of electron, or
overlap, leading to double counting from the overlapping
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FIG. 3. Electronic band structure for bcc-Mo along symmetry
directions calculated using a mixed-basis first-principles LDA
method �solid line� and using QUAMBOs as a basis set �dotted
line�.
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FIG. 4. �Color online� �a� Electronic density of states of bcc-Mo
obtained by using QUAMBOs as a basis set, compared with those
from the original mixed-basis first-principles LDA calculations. �b�
Projected density of states into s and d components by using QUA-
MBOs as a basis set and by simple projection �projecting the eigen-
states onto spherical harmonics in atomic spheres�. �c� Projected
density of states using QUAMBOs illustrating the s and d contri-
bution add up to the total density of states.
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regions. Since the occupied eigenstates can be exactly de-
composed into Bloch functions of QUAMBOs localized on
different atoms and angular momentum channels as dis-
cussed in the previous session, the s and d contribution of the
density of states can indeed add up to give the total density
of states, as depicted in Fig. 4�c�.

B. Chemical bonding analysis based on the quasiatomic
minimal basis orbitals

The occupied eigenstates �k,��r� from our first-principles
calculations can be expressed in terms of Bloch sums of

QUAMBOs Ãk,� as �k,�=�i,�c�,��k ,Ri�Ãk,��r−Ri�. The
Mulliken overlap population matrix26 between the ith atom
of the origin cell and the jth atom of cell Rn is then defined
as

Mi0,jn = N−1 �
k,�,�

P�,�
i,j �k�S�,�

jn,i0�k� , �11�

where P�,�
i,j �k�=��

nocc2c�,��k ,Ri�c�,�
* �k ,R j� and S�,�

jn,i0�k�
= 
Â��R j +Rn� � Â��Ri��eik·Rn. Mi0,jn is the partial trace of a
density matrix �PS�, which is expressed under a nonorthogo-
nal basis set �because QUAMBOs between different atoms
are not orthogonalized� in reciprocal space. The trace sums
over all the orbitals of the ith atom of the origin cell and the
jth atom of cell Rn. In a similar way, the bond order index27

for a system without spin polarization can be expressed as

BOi0,jn = �
��i0,��jn

�PS���
i0,jn�PS���

jn,i0, �12�

where �PS���
i0,jn=N−1�k�P�k� ·S�k����e−ik·Rn with S��

j,i �k�
= 
Ãk,� � Ãk,��=�mS�,�

jm,i0�k�. The bond order between the two
atoms is the trace of the square of the density matrix with the
trace summing over the orbitals of the two atoms.

Based on Eqs. �11� and �12�, we compared the matrix
elements Mi0,jn and the bond order indices BOi0,jn for
bcc-Mo and fcc-Mo in Fig. 5. The Mulliken overlap popula-
tions are two times Mi0,jn. The overlap population and bond
order are concentrated on the first and second neighbors.
Both Mi0,jn and BOi0,jn have higher magnitudes for Mo in
bcc structure than in fcc; this is because each atom in the fcc
structure has 12 nearest neighbors compared to 8 in bcc;
hence, each individual bond is weaker in fcc. To further our
understanding of the nature of bonding in Mo crystal, we
decompose the matrix elements Mi0,jn into contribution from
the overlap between different orbitals. The decomposed ma-
trix elements between the origin atom and an atom in the first
neighbor ��1 /2,1 /2,−1 /2�a for bcc and �1 /2,0 ,1 /2�a for
fcc, where a is the lattice constant� M0,1 are shown in Table
I; the indices i and j are omitted for clarity because there is
only one atom in the primitive unit cell for both bcc and fcc
structures. For bcc-Mo, we can see that the ss-	 bond ac-
counts for nearly 20% of M0,1. On the other hand, dzxdzx
−	 and −
 bonds account for more than 25% of M0,1 in the

fcc structure. This difference can be understood by the close-
packed nature of the fcc structure, which promotes bonding
between the localized d electrons in Mo, while the ss-	
bonding is more convenient for a slightly more open struc-
ture as in bcc. For the matrix element between the origin
atom and the second neighbors, the ss-	 antibonding domi-
nates M0,2 for both fcc and bcc structures. The ss-	 bond
contributes 80% and 70% to M0,2 in bcc and fcc structures,
respectively.

In Fig. 6, our results for Mi0,jn as a function of the inter-
atomic distances of bcc-Mo are plotted together with those of
diamond-Si and fcc-Al structures from our previous study17

for comparison. The overlap populations of both Si and Mo
extend only up to the second neighbors, while the overlap
populations of fcc-Al are smaller for the first neighbor but
extend up to the fifth neighbors, reflecting the diffuse nature
of the bonding in Al.

C. Analysis of tight-binding hopping and overlap matrix
elements

Tight-binding electronic calculations under the Slater-
Koster scheme28 have been widely employed to provide in-
teratomic forces for the molecular dynamics simulation of
materials. In this scheme, a fixed minimal basis set and two-
center approximation are used to simplify the quantum me-

FIG. 5. The matrix elements Mi0,jn �top� and bond order index
BOi0,jn �bottom� between the origin atom and its various neighbors
for Mo in bcc and fcc structures.
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chanical calculations. A fixed minimal basis set means that
the basis is not allowed to vary according to the bonding
environment. The two-center approximation assumes that the
potentials from the atoms other than the pair of atoms for
which the Hamiltonian matrix elements are evaluated can be
neglected. There is a question of whether such simplifica-
tions will affect the transferability of the tight-binding poten-
tials, hence limiting their accuracy in predicting electronic
structures under different bonding environments. As illus-
trated above, QUAMBOs as a minimal basis set must deform
to adapt to the changes of the bonding environment in order
to reproduce all the occupied electronic state properties. In
this subsection, we will evaluate the validity of the two-
center approximation for Mo and provide insights on im-
proving the parametrization of the tight-binding models.

In tight-binding models, the electronic structures are ob-
tained by solving the following generalized eigenvalue prob-
lem:

H��k,n� = �k,nS��k,n� , �13�

in which ��k,n� is a linear combination of the Bloch
wave function of atomiclike orbitals localized at atomic
position Ri with angular momentum �, i.e., ��k,n�
=�i,�Ck,n,i,�N−1/2�Ri

A��r−Ri�eik·Ri. Hence, the Hamiltonian
and overlap matrix elements in the QUAMBO representation
can be obtained by evaluating the hopping integrals

A��Ri��H�A���Ri��� and the overlap integrals S�i,��i�
= 
A��Ri� �A���Ri��� between different orbitals used in the ba-
sis set. Under the Slater-Koster scheme, the Hamiltonian and
overlap matrix elements can be further decomposed into dif-
ferent angular momentum components using the two-center
approximation. For Mo with s and d orbitals, the hopping
and overlap integrals can be decomposed into ss	-, sd	-,
dd	-, dd�-, and dd
-like components. By using the QUA-
MBOs constructed above as our basis set, we calculated the
overlap and hopping matrix elements for different crystal
structures as a function of interatomic distance and decom-
pose them into the two-center Slater-Koster hopping and
overlap integrals. The extraction of ss	-, sd	-, dd	-, dd�-,
and dd
-like components is not unique; it depends on which
neighboring atom and which Hamiltonian matrix elements
we use. This is an evidence that the two-center approxima-
tion is not adequate. Nevertheless, the Slater-Koster integrals
are obtained using least-squares fitting, and the standard de-
viation of the data points in the hopping integrals is found to
be less than 0.05 eV. The results are plotted in Figs. 7 and 8.

Since the QUAMBOs are deformed according to different
bonding environments, it is expected that the overlap inte-
grals can vary for different crystal structures. However, from
Fig. 7, the overlap integrals corresponding to different struc-
tures fall onto the same curve very nicely. On the contrary,
the hopping integrals in Fig. 8 are obviously not just a func-
tion of interatomic distance but also depend on the bonding

TABLE I. The first-neighbor overlap population matrix elements for bcc- and fcc-Mo decomposed into
overlaps between different orbitals. The matrix elements are calculated between the atom at the origin and an
atom in the first neighbor: �1 /2,1 /2,−1 /2�a for bcc and �1 /2,0 ,1 /2�a for fcc. Only the diagonal and upper
triangle are shown because the array is symmetric.

M0,1 s dxy dyz dzx dx2−y2 d3z2−r2

bcc

s 0.02114 −0.00105 −0.00105 −0.00105 0 0

dxy 0.00278 0.00451 0.00451 0 0.00827

dyz 0.00278 0.00451 0.0062 0.00207

dzx 0.00278 0.0062 0.00207

dx2−y2 0.00846 0

d3z2−r2 0.00846

fcc

s 0.00287 0 0 0.00352 0.00191 0.00064

dxy 0.00084 0.00685 0 0 0

dyz 0.00084 0 0 0

dzx 0.01940 0.00237 0.00079

dx2−y2 0.00053 0.00795

d3z2−r2 0.00584

2 4 6 8 10
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4 Al
Si
Mo

M
i0

,j
n

r (Å )

FIG. 6. The matrix elements Mi0,jn between the origin atom and
its various neighbors for diamond-Si, fcc-Al, and bcc-Mo.
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FIG. 7. Overlap integrals as a function of interatomic distance for Mo in the bcc, fcc, and sc structures decomposed under the
Slater-Koster tight-binding scheme.

FIG. 8. Nonorthogonal hopping integrals for Mo as a function of interatomic distance in the bcc, fcc, and sc structures decomposed under
the Slater-Koster tight-binding scheme. The black �gray� data points correspond to hopping integrals extracted from nearest �second nearest�
neighbors, while the unshaded points correspond to third and further neighbors.
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environment. Specifically, the hopping integrals calculated
from simple cubic �sc�, fcc, and bcc crystal structures are all
different even if the distance between the pair of atoms is the
same. In addition, there are discontinuities in the curves
when the hopping integrals are extracted from the next-
nearest-neighbor atoms as the interatomic distance increases.
For example, the hopping integrals extracted from the second
nearest neighbors in a compressed crystal structure are dif-
ferent from that of the nearest neighbors at the same inter-
atomic distance. This is due to the screening from the nearest
neighbors modifying the hopping to the second neighbors.
We can also observe that the spread of hopping integrals due
to different crystal structures is much larger for ss	 and sd	
than dd	, dd�, and dd
. As we can see from Fig. 2, the
deformation of the s-like QUAMBO from the free atomic
orbital is more significant than the localized d-like QUAM-
BOs. Hence, the hopping integrals between the d orbitals are
less prone to changes in the bonding environment due to
their localized nature. Deviations of the hopping integrals
from the two-center form are also observed in our previous
study of Si.29

D. Orthogonal quasiatomic minimal basis orbitals

The QUAMBOs that we have constructed are only intra-
atom orthogonal, i.e., the orbitals corresponding to the same
atom are orthogonal, but orbitals corresponding to different
atoms are not. The QUAMBOs can be constructed to be
interatom orthogonal as well, and the effect of orthogonal-
ization on the hopping integrals can be studied. By applying
the symmetrical orthogonalization method, the Bloch wave
function of each QUAMBO of all the atoms in the same unit
cell can be made orthogonal to each other at a given k,

Ãk,�
ortho�r − Ri� = �

��i�

Ãk,��r − Ri��S�k�−1/2��i,��i�, �14�

where S�k��i,��i�= 
Ãk,��Ri� � Ãk,���Ri��� and Ãk,��r−Ri� is the
Bloch wave function of the QUAMBO that we obtained in
Eq. �7�. Since the Bloch wave functions of the QUAMBOs
are orthogonal to each other at each k point in the Brillouin
zone, the QUAMBOs obtained by

A�
ortho�r − Ri� = �

k
Ãk,�

ortho�r − Ri� �15�

will be orthogonal not only to orbitals localized on the same
atom but also to all the orbitals localized on atoms in other
unit cells as well. The resultant orthogonal QUAMBOs are
plotted in Figs. 9 and 10 for Mo in bcc and fcc structures,
respectively. Except for the bcc s and dyz QUAMBOs, all the
other orthogonal QUAMBOs have part of their wave func-
tions being pushed to neighboring atoms due to the imposed
orthogonalization requirement. When compared to the QUA-
MBOs in Fig. 2, the orthogonal QUAMBOs appear tighter in
general. However, the orthogonal QUAMBOs have consid-
erable amplitude on neighboring atom sites and hence they
are not necessarily more localized than the nonorthogonal

ones. We calculated the Slater-Koster hopping integrals for
the orthogonal QUAMBOs and the results are plotted in Fig.
11. It can be noticed that the magnitude of the ss	-, sd	-,
and dd	-like hopping integrals are higher than that of the
nonorthogonal QUAMBOs initially, but they decay faster as
the interatomic distance increases, which is due to the more
localized nature of the orthogonal QUAMBOs. Except for
the dd�, there are sign changes in the orthogonal hopping
integrals which can be attributed to some of the orthogonal
orbital wave functions being pushed to neighboring atomic
sites. In addition, since the orthogonal d-like QUAMBOs are
now more deformed from the free atomic orbitals, there are
more spread in the dd	-, dd�-, and dd
-like hopping inte-
grals when compared to Fig. 8.

According to Andersen’s canonical band theory,30,31 the
hopping integrals for dd	, dd�, and dd
 at the same inter-
atomic distance should have a ratio of −6:4 :−1. However,
our results indicate that this canonical rule is not satisfied,
although the relative signs are correct. We believe that this is
due to the atomic sphere approximation being used by
Andersen in which each atom is approximated by a spheri-
cally symmetric potential. From Figs. 2, 9, and 10, the de-
formation of the QUAMBOs indicates that the charge den-

FIG. 9. Contour plot of the �a� s-like, �b� dyz-like, �c� dx2−y2-like,
and �d� d3z2−r2-like orthogonal QUAMBOs in bcc structure at equi-
librium lattice constant. The values of the contour lines and indica-
tions of the neighbors’ atomic positions are the same as in Fig. 2.

FIG. 10. Contour plot of the �a� s-like, �b� dyz-like, �c�
dx2−y2-like, and �d� d3z2−r2-like orthogonal QUAMBOs in fcc struc-
ture at equilibrium lattice constant. The values of the contour lines
and indications of the neighbors’ atomic positions are the same as in
Fig. 2.
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sity and the self-consistent potential is not spherically
symmetric, resulting in deviations from the canonical theory.

IV. CONCLUSIONS

As a conclusion, we have constructed a minimal basis set
of localized quasiatomic orbitals �QUAMBOs� for Mo in the
bcc crystal structure by using the converged self-consistent
eigenstates from first-principles calculations as input. The
construction follows the procedure in Ref. 17, indicating that
our method works for transition metals with localized d elec-
trons in addition to the insulators and simple metals demon-
strated in Ref. 17. The Mo QUAMBO basis reproduces all
the occupied-state electronic properties of bcc-Mo. More-
over, population and bonding analysis can be made that pro-
vides interpretation based on chemical bonding, and we com-
pared the Mulliken overlap population and bond order

indices between bcc-Mo and fcc-Mo and between bcc-Mo,
diamond-Si, and fcc-Al. The transferability of the two-center
tight-binding models is also studied by using QUAMBO as a
basis set; our results show that the two-center approximation
is not adequate in describing the tight-binding hopping inte-
grals.
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