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Based on the phase-field total free energy functional and free-end nudged elastic band (NEB)
algorithm, a new methodology is developed for finding the saddle-point nucleus in solid-state
transformations. Using cubic fi tetragonal transformations in both two and three dimensions
as examples, we show that the activation energy and critical nucleus configuration along the
minimum energy path (MEP) can be determined accurately and efficiently using this new
approach. When the elastic energy contribution is dominant, the nucleation process is found to
be collective with the critical nucleus consisting of two twin-related variants. When the elastic
energy contribution is relatively weak, the critical nucleus consists of a single variant, and the
polytwinned structure develops during growth through a stress-induced autocatalytic process. A
nontrivial two-variant critical nucleus configuration is observed at an intermediate level of the
elastic energy contribution. This general method is applicable to any thermally activated process
in anisotropic media, including nucleation of stacking faults and dislocation loops, voids and
microcracks, and ferroelectric and ferromagnetic domains. It is able to treat nucleation events
involving simultaneously displacive and diffusional components, and heterogeneous nucleation
near pre-existing lattice defects.
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I. INTRODUCTION

NUCLEATION during solid-state reactions (e.g.,
phase transformations, plastic deformation, fracture,
etc.) is by far one of the most difficult problems to deal
with in materials research, irrespective of the method of
study, i.e., experimental, analytical, or numerical. This is
because the actual nucleation process is a rare event and
the saddle-point configuration only exists transiently.
The existing nucleation models, both classical and
nonclassical, assume only a limited number of degrees
of freedom for the nucleus and do not provide a
complete sampling over all possible structural and
compositional configurations.

The nonclassical nucleation theory of Cahn and
Hilliard[1] based on the gradient thermodynamics of
nonuniform systems[2] provides a general framework for
treating nucleation. Rather than assuming a particular
geometry for a critical nucleus that has bulk properties
of the equilibrium product phase and is separated from
the parent phase by a sharp interface, it characterizes the
nucleus as composition nonuniformity by using a
concentration field, and the critical nucleus is deter-
mined by the saddle point of the total free energy
functional. It was demonstrated[1] that in the limit of

small supersaturation, the nonclassical theory repro-
duces all features predicted by the classical nucleation
theory. The theory can be extended to nucleation of
structural nonuniformities as well.[3–6]

Since the microstructural features developed during
solid-state reactions are often influenced by elastic strain
fields that are in general functions of size, shape, spatial
orientation, and mutual arrangement of the existing
compositional and structural nonuniformities,[7] a rig-
orous treatment of nucleation in solids requires a self-
consistent description of the interactions between the
nucleus and the pre-existing microstructure without any
a priori assumptions. Based on gradient thermodynam-
ics[2] and microelasticity theory,[7] the phase field
approach is a superset of the Cahn–Hilliard description
of chemical inhomogeneities and the Peierls (cohesive
zone) description of displacive inhomogeneities[8] and
therefore can treat nucleation of various types of
extended defects produced by both displacive and
diffusional processes (for recent reviews, see References
9–13). However, the difficulty in this approach is to
locate the exact saddle point in a configuration space of
very high dimensions. Analytical approaches, though
undoubtedly useful in theoretical analysis, are limited to
a few simple systems. The numerical approaches[14,15]

are generally expensive and less stable because the
saddle point is an unstable stationary point.
In this article, we develop an effective approach for

determining accurately the critical nucleus configuration
and the minimum energy path (MEP) of a thermally
activated process by combining phase-field energetics
with the nudged elastic band (NEB) method.[16] The
approach takes advantage of the generality of the phase-
field total free energy functional (in particular, its ability
to describe arbitrary nonuniformities in the presence of
long-range interactions), the ability of the free-end NEB
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(FE-NEB) method to search for the optimal reaction
coordinate without any a prior assumptions, and the
Langevin force approach that provides the initial free-end
configuration for the FE-NEB method. The NEB calcu-
lations require only the total free energy and its first-order
derivatives (variations), which are straightforward and
inexpensive to obtain from a phase-field model. This
approach has been implemented previously for disloca-
tion-level plasticity studies.[17] In Section II, we outline a
general procedure of integrated phase-field total free
energy functional + FE-NEB + Langevin dynamics
(for end configuration generation) approach for studying
various activation processes in microstructure evolution
during solid-state reactions. In Section III, the new
approach is demonstrated by its application to a cubic fi
tetragonal transformation. Discussion and summary are
presented, respectively, in Sections IV and V.

II. METHOD

The phase-field total free energy functional defines a
hypersurface in an M · P-dimensional phase-field con-
figuration space, where M is the number of real-space
grid points and P the number of phase fields (order-
parameter fields that could be chemical or structural). On
the surface located are microstructural configurations
that correspond to stable and metastable states and
saddle points, connected by MEPs. According to tran-
sition state theory,[18] the highest saddle point along the
MEP defines the critical nucleus configuration and the
activation energy that determines the rate of a reac-
tion.[18] The saddle points are the solutions of vanishing
variation of the total free energy functional subject to
external constraints. Because they are unstable station-
ary points, the conventional phase-field dynamic equa-
tions governed by total free energy minimization are
incapable of obtaining the exact solution, even with the
use of Langevin force terms. Finding saddle points,
however, is a well-studied subject in theoretical chemistry
and condensed matter physics. The NEB method[19–21]

has been shown as a reliable approach to find the MEP
that passes the saddle point. With the climb-image NEB
(CI-NEB) technique,[16,22] the exact saddle configuration
and energy can be identified.

Originally, finding the saddle point in NEB calcula-
tions must start with two fixed end configurations such
as a completely transformed product phase and a
completely untransformed parent phase matrix. This
choice, however, often results in a poor resolution of the
activation energy barrier, because the barrier is usually
very small as compared to the change in the total free
energy as the entire matrix is transformed. The FE-NEB
method developed recently[23,24] can resolve this prob-
lem by taking a partially transformed matrix as one end
configuration. This FE configuration can be chosen not
far beyond the saddle point. Since it is required to be
only roughly along the MEP, such a configuration is not
difficult to produce in the conventional phase-field
method using Langevin fluctuations.

Consider a generic phase field model with a set of
P-phase fields, / � f/aðxÞ : a ¼ 1; . . . ;Pg; that describe

a given microstructure. The term x is the spatial
coordinate. The total free energy of the system is
formulated as a functional of the phase fields

G¼G½f/ag� ¼
Z
½fðf/aðxÞgÞþ

X
a;b

jabr/aðxÞr/bðxÞ�dx

þ
Z X

a;b

BabðkÞ~/aðkÞ~/�bðkÞ
dk

ð2pÞ3

�
Z

rext(xÞeðf/aðxÞgÞdx

½1�
which contains contributions from local energy density
f, spatial gradient of the fields (in the first integral),
long-range interactions (e.g., elastic, electrostatic or
magnetostatic interactions) that are formulated in the
reciprocal (k) space, and interaction with external fields,
rext. The gradient coefficient jab can be formulated to
reflect interfacial energy anisotropy,[25] and Bab is an
anisotropic elasticity matrix based on the Green func-
tion solution.[7] The term ~/a is the Fourier transform of
/a; and the asterisk stands for complex conjugate. A
necessary condition for a saddle point is given by a
vanishing functional variation

dU ¼ 0 ½2�

where U � G� kC, C ¼ C½f/ag� stands for additional
physical constraints on the phase fields, and k is the
Lagrange multiplier. An example of the constraint is a
mass conservation condition: C �

R
/ðxÞdx ¼ const,

where the phase field / is a concentration field. In this
case, k becomes the chemical potential of the reservoir,
and U becomes the grand potential.
To search for the solution to Eq. [2], the NEB method

generates a chain of replicas (nodes) of microstructural
configurations that approximately pass the saddle point.
The ‘‘force’’ on node i (i = 0..N, i = 0 is the initial
metastable energy minimum and the first NEB node,
i = N is the last NEB node) is evaluated as[16]

Fi ¼ Fs
i jk þ F

p
i j? ½3�

It is a sum of a spring-type force Fs
i determined by the

relative distance between adjacent nodes and a potential
force F

p
i � dU=d/i (/i represents the node i microstruc-

tural configuration, a MP-dimensional vector which is
the numerically discretized version of / � f/aðxÞ :
a ¼ 1; . . . ;Pg) determined by the total energy surface.
The subscripts k and ? stand, respectively, for the
parallel and perpendicular component of the forces
resolved on the local tangent of the node, which is
evaluated from the energy ðUÞ of the node and its
immediate neighbors along the chain.[16] Each node,
except for the two fixed ends, is relaxed iteratively
subject to the force Fi, which is simultaneously updated,
until the chain converges to the MEP.
For problems of stress-driven nucleation and nucle-

ation in phase transformations, the original NEB
method was found to be inefficient, because the final
minima could be very far from the saddle point and too
many nodes were required to describe the downhill
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portion of the MEP. A so-called ‘‘free-end’’ modification
to the NEB method greatly improves the efficiency,[23,24]

by allowing the last node N not to be a minimum, which
furthermore moves to ‘‘swing’’ the band to improve its
posture. The force on node N is

FN ¼ Fs
N;N�1 �

Fs
N;N�1 � F

p
N

F
p
N � F

p
N

F
p
N ½4�

where Fs
N;N�1 is the spring force between node N-1 and

node N. It can be seen that when node N moves along
FN, its energy is unchanged; thus, node N is constrained
to move on an energy contour (isosurface) and would
neither be ‘‘pulled up’’ on the band nor ‘‘drop down’’ to
the minimum far away, thus maintaining the node
density around the saddle point. In practice, there is a
numerical truncation error in the dynamics, so we may
also run a quasi-Newton step after Eq. [4]:

D/N ¼
jðUN � Udesired

N Þ
F
p
N � F

p
N

F
p
N ½5�

where 0 < j £ 1, and Udesired
N is the desired potential.

One can, for instance, set Udesired
N ¼ U0 � 0:1 eV; i.e., the

free-end configuration is constrained to have -0.1 eV
lower energy than the initial metastable configuration,
separated by the activation energy barrier. It can be
proven that when the algorithm converges, node N will
swing to be exactly sitting on the MEP.

III. CRITICAL NUCLEUS IN CUBIC fi
TETRAGONAL TRANSFORMATION

With the NEB method, the critical nucleus can be
accurately searched on a high-dimensional phase-field
total free energy landscape that includes various crystal-
line effects such as interfacial energy anisotropy, misfit
elastic strain, etc., as well as interactions with existing
matrix defects (such as surfaces and grain boundaries,
dislocations, inclusions, etc.). In what follows, a study of
critical nucleus of a tetragonal phase in a cubic phase
matrix is used to demonstrate the validity of this

approach. In particular, the effect of misfit strain level
on the configuration and energy of critical nucleus is
examined. We first provide a two-dimensional (2-D)
analogue of the transformation to make a direct com-
parison to the nucleus generated by the Langevin
dynamics. In both 2-D and three-dimensional cases, the
chemical free energy is constructed as a 2-4-6 polynomial

fðf/agÞ ¼

Df0
A1

2

X
a

/2
aðxÞ �

A2

4

X
a

/4
aðxÞ þ

A3

6

X
a

/2
aðxÞ

 !3
2
4

3
5

½6�

with coefficients A1 = 0.2, A2 = 12.8, and A3 = 12.6
that gives the cubic phase at / ¼ 0, the tetragonal phase
at / ¼ �1, and the energy difference between the cubic
and tetragonal phases equal to Df0 (Figure 1). The index
a labels the orientational variant. Note that the example
considered here is a congruent transformation, and
hence, only a nonconserved field is used. It may
represent either a cubic fi tetragonal ordering or a
cubic fi tetragonal martensitic transformation.

A. Critical Nucleus in Two Dimensions

In a 2-D analogue, the tetragonal precipitates form
two orientation variants in the cubic phase matrix.
Without considering dilatational components, one can
formulate the stress-free transformation strains (SFTSs)
of the two variants as

eTij ð1Þ ¼ e0
1 0
0 �1

� �
; eTij ð2Þ ¼ e0

�1 0
0 1

� �
½7�

where e0 is a constant. A relatively large ratio of elastic
energy to chemical energy: n � le20=Df0 ¼ 1 (l is the
shear modulus) is assumed. This results in a strong
spatial correlation among the precipitating tetragonal
domains in a partially developed microstructure, as
shown in Figure 2(a). The simulation grid is 256 · 256.
The grid size, l0, characterizes the length unit and is
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Fig. 1—The chemical free energy density plotted (a) in /1 � /2 plane and (b) along /1 (with /2 = 0). A shallow metastable cubic phase is at
/1 ¼ /2 ¼ 0. The tetragonal phase is at /1 ¼ 1 or /2 ¼ 1.
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determined by material parameters (Df0 and interface
energy r) when the model is applied to a particular
system. The microstructure is obtained from an initially
homogeneous cubic phase matrix with constantly
applied thermal fluctuations via the Langevin force.
Even with a very shallow potential energy well at the
metastable cubic phase (Figure 1(b)), the nucleation free
energy barrier is significant. An artificially large ampli-
tude of the Langevin force fluctuations has to be applied
in order to observe any nucleation event within a
computationally affordable simulation time, similar to
the first step in temperature-accelerated molecular
dynamics simulations.[26]

In the FE-NEB calculations, one of the configurations
(Figure 2(b)) generated by the conventional phase field
dynamics with Langevin fluctuations is used as the
initial chain-of-state end configuration. It is a supercrit-
ical configuration because it would continue to grow
even if the Langevin force terms were turned off. The
activation energy barrier then optimized with the FE-
NEB method is given in Figure 2(e). The profiles shown
in the inset indicate that the critical nucleus has a single-
variant configuration, although the fully developed
microstructure is a two-variant polytwinned microstruc-
ture. This indicates that the highly spatially correlated
polytwinned domain structure is formed by strain-
induced correlated nucleation and autocatalytic effect
rather than by a collective process observed in the
martensitic nucleation.[27] The order parameter in the
nucleus is found to be considerably smaller than its
equilibrium value for a bulk phase ð/ ¼ 1Þ, which
indicates nonclassical nucleation. Further relaxation of

the saddle-point configuration with the conventional
phase-field dynamic equation did not show noticeable
change (neither growth nor shrinkage) over a lengthy
period of time, indicating we have indeed found a
stationary point. For comparison, we examined the
nucleus produced in the Langevin dynamics by tracing
the configuration in Figure 2(b) back to the moment
when it becomes barely stable (shown in Figure 2(c)).
The configuration is found in qualitative resemblance to
the critical nucleus identified by the NEB method
(Figure 2(d)). However, the former should not be
identified as a critical nucleus, and the corresponding
energy is much higher than the actual activation energy
barrier because of the artificially large Langevin fluctu-
ations over the entire matrix.

B. Critical Nucleus in Three Dimensions

Similar to the 2-D case, if we consider a pure shear
transformation, the SFTSs of the three orientation
variants of the tetragonal phase can be described by

eTij ð1Þ ¼ e0

2 0 0

0 �1 0

0 0 �1

0
B@

1
CA; eTij ð2Þ ¼ e0

�1 0 0

0 2 0

0 0 �1

0
B@

1
CA;

eTij ð3Þ ¼ e0

�1 0 0

0 �1 0

0 0 2

0
B@

1
CA ½8�

Figure 3(a) shows a polytwin structure consisting of
alternating layers of two tetragonal variants. The
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Fig. 2—(a) through (c) Microstructural evolution during a cubic fi tetragonal transformation in 2-D simulated by Langevin dynamics of phase
field method. (b) A supercritical configuration at an earlier moment of (a). Use this as the end configuration in the NEB calculation gives (e) the
nucleation barrier and the critical nucleus configuration (in the dashed circle in (d)), which is compared to a near-critical configuration (c) that is
traced back from (b) in the Langevin dynamics. The energy is normalized by Df0l20, where l0 is the grid size.
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simulation is performed in a 64 · 64 · 64 cubic cell. In
some layers, two domains (represented by different
colors or different shades of gray within the same layer)
in antiphase relation (corresponding to plus and minus
sign in /) are observed. The microstructure is produced
by Langevin fluctuations applied constantly to an
initially homogeneous cubic phase with n � le20=
Df0 ¼ 0:5. The establishment of the first stable fluctua-
tion (nucleus) takes much longer time than the sub-
sequent growth. As in the 2-D case, a partially
transformed configuration (Figure 3(b)) is taken as the
free end of NEB, while the other end node of NEB is
fixed at the homogeneous cubic phase. The nucleation
barrier is shown in Figure 3(c). The critical nucleus is
found to be a single-variant particle. A close examina-

tion shows that it has an ellipsoidal shape with the
‘‘broad’’ face normal parallel to <100> directions
owing to the elastic energy. The sequence of configura-
tions along the down-hill side of the MEP is shown in
Figure 4. Along the MEP, the single-variant nucleus
grows while maintaining its ellipsoidal shape (Fig-
ure 4(b)), until a second variant is formed spontane-
ously (Figure 4(c)) with the interface normal rotating
simultaneously to <110> twin boundary orientation.
The subsequent growth takes a much faster pace via
strain-induced formation of alternate tetragonal vari-
ants.
As the ratio of elastic energy to chemical energy

increases the critical nucleus changes from a single-
variant ellipsoid (n = 0.5) to a two-variant twinned
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Fig. 3—(a) A polytwin structure consisting of two orientational variants of the tetragonal phase generated by phase-field dynamics with Lange-
vin fluctuations. (b) The microstructure at an earlier moment used as the FE configuration in the NEB calculation for the MEP shown in (c).
The energy is normalized by Df0l30, where l0 is the grid size.

Fig. 4—(a) through (d) Configuration sequence of a tetragonal precipitate along the MEP showing emerging of the second variant and
simultaneous rotation of the interface. (a) Critical nucleus consisting of a single variant.
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structure (n = 1.0), while an intermediate two-variant
configuration is obtained at n = 0.8 (Figure 5(a)
through (c)). Since the chemical driving force is fixed
in all these cases, this effect is solely determined by the
competition between the interfacial energy and the
elastic energy of the nucleus: at a relatively small elastic
energy contribution, the interfacial energy minimization
dominates the nucleation process. Nevertheless, the
elastic energy still plays a role in producing the
ellipsoidal shape of the nucleus. As the elastic energy
contribution becomes larger, reduction in elastic energy
by adopting an internally twinned two-variant configu-
ration finally exceeds the increase in interfacial energy
associated with the formation of the twin boundaries.
Obviously, martensitic transformations belong to the
latter category. It is seen in Figure 5(d) that the
nucleation barrier and the size of the critical nucleus
increase with increasing elastic energy contribution.

IV. DISCUSSION

Nucleation in solids is often complicated by crystal
lattice mismatch between the parent and product phases,
the anisotropies of nucleus-matrix interfaces and elastic
moduli, and the presence of other lattice defects that
carry either short-range or long-range interactions with
the nucleus.[28–31] These complications have been treated
rather routinely in the past by the phase field approach
where nucleation has been treated by the use of

Langevin force terms in the stochastic phase field
equations.[27,32–35] In principle, such a stochastic dy-
namic approach can perform statistical sampling of the
entire configurational space and hence allows for quan-
titative description of the nucleation process. Since the
long-range elastic, electrostatic, and magnetostatic
interactions are included in the total phase field free
energy functional, their effects on nucleation are
included automatically. However, the Langevin force
approach was found extremely inefficient in searching
for saddle configurations.[36] Additionally, if one at-
tempts to describe nucleation solely by the Langevin
force approach in a quantitative manner, both length
and time scales are limited by the microscopic degrees of
freedom.[37] Currently, the use of the Langevin approach
to nucleation in phase field simulations of microstruc-
tural evolution is qualitative in nature, and its applica-

tions are limited to site-saturation conditions.[27,32,33,35]

As an alternative, an explicit nucleation algorithm was
developed, which stochastically seeds nuclei in an
evolving microstructure according to the nucleation
rates evaluated as a function of local concentration,
structure, and temperature[38] following the classical
nucleation theory (in principle, the nonclassical nucle-
ation theory as well). The coherency strain energy
associated with the formation of a nucleus in an
arbitrary pre-existing coherent microstructure in elasti-
cally anisotropic media can be incorporated into the
activation energy of nucleation in the explicit algo-
rithm.[39,40] This provides an efficient approach to
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Fig. 5—Transition of morphology of the critical nucleus from a single variant to a two-variant configuration with increasing lattice misfit: (a)
n = 0.5, (b) 0.8, and (c) 1.0. The corresponding nucleation barriers are shown in (d). Here, (a) is the same as Fig. 4(a) but from a different view
angle.
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modeling coherent nucleation in an evolving mesoscale
microstructure with quantitative agreement with the
Langevin force approach. However, this approach
requires the activation energy and critical nucleus
configuration as essential input rather than output.

The activation energy of nucleation and critical
nucleus configuration are essential kinetics properties
of many solid-state processes including first-order phase
transformations, formation of voids, cracks, and stack-
ing faults, ferroelectric and ferromagnetic domains, etc.
To find the critical nucleus and the activation energy, we
have developed a new approach within the framework
of the nonclassical nucleation theory and the phase field
method. Instead of using exclusively the phase field
method to drive Langevin fluctuation-dissipation kinet-
ics, we combined the energetic part of the phase field
method with the NEB method to find the critical nucleus
and the associated MEP. Using the conventional
Langevin approach to nucleation in phase field simula-
tions to generate end configurations and the newly
developed FE-NEB technique, we show that this
approach can be used as an efficient and reliable tool
to study nucleation in solids. Since the only inputs
required by the NEB calculation are the total energy
functional and its first variational derivatives, the
physical nature of nucleation is solely dependent on
the phase field energetics. This approach can be
extended to any thermally activated processes that can
be modeled by phase field energetics, including nucle-
ation of stacking faults and dislocation loops, voids and
microcracks, and ferroelectric and ferromagnetic do-
mains. The consideration of heterogeneous nucleation at
pre-existing crystalline defects in the model is straight-
forward. An example of such is the study of dislocation
shearing of c¢ precipitates in Ni-base alloys, where
superlattice stacking faults are formed either homoge-
neously or heterogeneously in the c¢ particles under
external load through an activation process.[17]

Physically, the end configurations generated by the
Langevin fluctuations represent the precipitate configu-
rations that are approximately on an MEP and thus are
the energetically more probable ones in the transforma-
tion. The fluctuation-dissipation process provides a
statistical sampling in the configurational space that
often yields a physically more reasonable configuration
than one designed by hands. With the FE-NEB, the end
configurations are not required to be strictly on the
MEP—deviations due to dynamic effects may be relaxed
by the treatment on the free end. Furthermore, in a
complex transformation, where multiple low-energy
configurations exist, multiple Langevin sampling may
be performed, each to map out an MEP in a global
energy landscape. The true saddle point for nucleation is
then identified from the lowest one among them. By this
means, the artifact in the design of the NEB end
configuration may be eliminated.

For the cubic fi tetragonal transformations consid-
ered in the current study, the ratio of the elastic energy
to the chemical free energy is shown to play an
important role in determining both the morphology
and the energy of a critical nucleus. Relatively large
elastic energy contribution results in a collective nucle-

ation that produces directly a twin-related multivariant
nucleus, while relatively small elastic energy contribu-
tion results in a sequential nucleation where the critical
nucleus is a single-variant particle and the polytwinned
structure develops at later stages through stress-induced
autocatalytic events. This is because when the elastic
energy contribution is dominant, coupling of two
variants reduces the per-volume elastic energy even at
a cost of extra twin boundary energy, and is more
beneficial to the overall nucleation energy as compared
to the formation energy of a single variant configura-
tion. When the elastic energy contribution is relatively
small, it is energetically more favorable to form a single-
variant nucleus without generating the twin boundaries.
When the particle grows bigger, the elastic energy
gradually becomes dominant over the twin boundary
energy and the particle adopts a polytwinned structure.
An interesting nontrivial critical nucleus configuration
(Figure 5(b)) has been identified at an intermediate
value of the elastic energy to chemical free energy ratio.

V. SUMMARY

To take advantage of the generality of the phase field
total free energy functional that is formulated based on
gradient thermodynamics and microelasticity theory, a
new approach is developed for finding critical nucleus
configuration and calculating activation energy in solid-
state processes with least constraints on the transfor-
mation pathway. With the traditional Langevin force
approach in the phase field method providing initial end
configurations, a modified FE-NEB method is used to
efficiently explore the phase field total free energy
landscape and to locate the saddle points. For the cubic
fi tetragonal transformation considered, even though
the final microstructures are all multilayer polytwins, the
critical nucleus configuration and activation energy are
found to be strong functions of the ratio of elastic
energy to chemical free energy. This new approach
provides an efficient and completely general way to
investigate the effect of various crystalline defects and
external fields on nucleation in many solid-state pro-
cesses.
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