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We present a computational investigation of free-standing graphene bilayer edge �BLE� structures, aka
“fractional nanotubes.” We demonstrate that these curved carbon nanostructures possess a number of interest-
ing properties, electronic in origin. The BLEs, quite atypical of elemental carbon, have large permanent electric
dipoles of 0.87 and 1.14 debye /Å for zigzag and armchair inclinations, respectively. An unusual, weak AA
interlayer coupling leads to a twinned double-cone dispersion of the electronic states near the Dirac points.
This entails a type of quantum Hall behavior markedly different from what has been observed in graphene-
based materials, characterized by a magnetic field-dependent resonance in the Hall conductivity.
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Free-standing graphene monolayers �GMLs� �Ref. 1� have
attracted tremendous interest owing to a variety of exotic
electronic properties, including in particular integer quantum
Hall effects �QHEs�, as a consenquence of a Berry phase of
�.1–5 An ideal infinite GML’s pzpz� energy spectrum is char-
acterized by being gapless, with a cone-shaped dispersion
around the Fermi level, at the vertices �K and K�, often re-
ferred to as Dirac points for graphene� of the first Brillouin
zone �1BZ�. This linear dispersion leads to a Fermi velocity
of vF�106 m /s and a vanishingly small effective mass for
low-energy excitations. Graphene bilayers with AB stacking
have also been prepared. Graphene and AB-stacked graphene
bilayer show two types quantum Hall conductivity stairs.6 In
the AB bilayer, there is a 2� Berry phase and zero-level
anomaly in QHE conductivity6,7 because of a weak interlayer
interaction.6,8 The zero-level anomaly is not seen in the
GMLs.

A novel form of graphene nanostructure was recently
discovered,9 which can be viewed as two flat graphene layers
continuously connected by a curved bilayer edge �BLE, see
Fig. 1�. Geometrically, a BLE can be considered a “fractional
nanotube.”10,11 Detailed transmission electron microscopy
�TEM� revealed that in these BLE structures the flat bilayer
regions are forced into AA stacking,10 a geometry that is not
usually seen. Lammert et al.12 have studied theoretically the
electronic structure of “squashed nanotubes,” where the elec-
tronic structure is sensitive to the interlayer coupling. Here
we investigate the geometric and electronic structures of
graphene BLEs using a combination of density-functional
theory13 �DFT� and tight-binding �TB� methods. We show
that these BLE structures have extensive permanent electric
dipoles. Our analysis of the electronic structure also indicates
that the BLE structures will show a type of QHE, character-
ized by magnetic field-dependent anomalous resonance be-
tween two separate QHE sequences as the doping level is
continuously varied, which is markedly different from QHE
previously observed in graphene.6

In situ TEM observations of Joule-heated few-layer
graphene reveal that graphene monolayer edges �MLEs� are
atomically rough and not strongly faceted
crystallographically.11,14 In contrast, when two MLEs react to
form a more stable BLE, the newly formed BLE tends to be
atomically sharp and strongly faceted into zigzag and arm-

chair inclinations.11,14 This suggests that in the Wulff plot15

of edge energy versus inclination angle, zigzag and armchair
inclinations are strongly favored in the BLE Wulff plot,
whereas it is not the case in the MLE Wulff plot. Conse-
quently, we propose that there is a geometrical reason for this
strong preference of zigzag and armchair inclined BLEs. Un-
like rolling carbon nanotubes which involves 360° rotation
of graphene, rolling graphene into a BLE requires 180° ro-
tation only �see Fig. 1�. Generally speaking the lattice orien-
tation of the top and bottom graphene layers can differ, like
what happens when one folds a piece of ruled writing-pad
paper along an arbitrary crease line. Yet, there is an orienta-
tion constraint, enforced through the common preparation
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FIG. 1. The atomic structures of bilayer edges from DFT-LDA
optimization. �a� and �b� show sideviews �normal projections along
the edge direction� of the zigzag and armchair bilayer edges, re-
spectively. �c� and �d� are closeup perspective views of the zigzag
and armchair bilayer edges. We call these BLEs zigzag or armchair
based on the orientation of C6 hexagon along the edge. As we see in
�c�, in zigzag BLE a hexagon has two sides perpendicular to the
edge direction while in armchair BLE in �d� a hexagon has two
sides parallel to the edge. Both BLEs shown lead to AA stacking of
the two graphene layers in the flat regions.

PHYSICAL REVIEW B 80, 165407 �2009�

1098-0121/2009/80�16�/165407�7� ©2009 The American Physical Society165407-1

http://dx.doi.org/10.1103/PhysRevB.80.165407


procedures of BLEs,10,11 that the top and bottom graphene
sheets must have identical or symmetry-operation equivalent
lattice orientations. The only ways this orientation constraint
can be satisfied without disrupting the hexagonal C-C bond-
ing network are by folding along one of the six mirror axes
�or the C2� and C2� axes of the D6h point group� of the
graphene lattice: the three armchair or the three zigzag incli-
nations. Creating BLEs along any other inclinations under
the common orientation constraint would require two simul-
taneous processes. First one is the elastic folding of the
graphene, which is a low-energy process. The other process
is the introduction of high-energy topological defects such as
pentagon and/or heptagon that would disrupt the covalent
bonding network.14 �Pentagons/heptagons are needed to
compensate for the orientation change due to elastic folding,
like dislocations in a grain boundary.16�

Thus, the BLE Wulff plot must have very deep energy
cusps for zigzag and armchair inclinations under the com-
mon orientation constraint while the MLE Wulff plot should
be more isotropic.14 In this sense, the inclination preference
of BLEs are quite different from carbon nanotubes, which
admit all kinds of chiral folding angles in a low-energy elas-
tic folding process. In addition, one should be aware of the
terminology that because we use graphene inclination rather
than axial direction to label BLEs, a zigzag BLE is really a
“fractional armchair nanotube” �Figs. 1�a� and 1�c�� and an
armchair BLE is a “fractional zigzag nanotube” �Figs. 1�b�
and 1�d��. In this paper, we will focus on only the zigzag and
armchair BLEs under the common orientation constraint.

In contrast to MLEs which even after reconstruction have
dangling bonds and/or pentagons or heptagons,17 zigzag and
armchair BLEs have exceptional energetic stability similar to
carbon nanotubes due to low-energy folding. But unlike cir-
cular carbon nanotubes which admits a range of elastic fold-
ing radius, the BLEs are highly monodisperse atomic struc-
tures, with folding curvature controlled by a competition/
compromise between van der Waals adhesion and elastic
bending energy. The bending energy Ebending=��ds�R�s�−2

�� / R̄ �where � is the bending modulus�, which is positive,

favors a large radius of curvature R̄; whereas van der Waals
adhesion energy between the top and bottom layers, which is

negative, favors a small radius of curvature R̄, in order to
maximize the stabilizing adhesion in the flat area. As shown
in Fig. 1, this competition results in an optimal radius of
curvature for zigzag and armchair BLE, respectively.

There is also a “rolling tank tread” degree of freedom
with zigzag and armchair BLEs. This corresponds to a mo-
tion in which the top and bottom sheets translate in opposite
directions �perpendicularly to the edge� by d /2 in plane
without changing lattice orientations.12 The change in edge
energy in reference to the AA state, EBLE�d�−EBLE�AA�, is
expected to be rather small for such perpendicular d shifts,
corresponding to soft “tank treading” degree of freedom. If
however the in-plane shift d is parallel to the edge, one
expects EBLE�d�−EBLE�AA� to increase dramatically because
in-plane shearing of the C-C bonding network would be re-
quired. It is then easy to see that while AB stacking is com-
patible with zigzag BLE �because AB-zigzag BLE can be
produced from AA-zigzag BLE by soft tank treading�, AB

stacking is geometrically incompatible with armchair BLE,
with Earmchair BLE�AB��Earmchair BLE�AA�. This may explain
why in the experiment, AA instead of AB stacking was
found10 because although AB stacking leads to reasonably
low zigzag BLE energy, it leads to too high armchair BLE
energy. AA stacking leads to reasonably low edge energy for
both zigzag and armchair BLEs, having the highest symme-
try among all d translations. Armchair BLEs were indeed
found in Liu et al.’s10 high-resolution TEM experiment.

The relative stability of a bilayer graphene flake that is AB
stacked versus AA stacked is therefore modeled as �Etotal
= �EBLE�AB�−EBLE�AA��l+ ���AB�−��AA��A, where l is the
flake circumference, A is the flake area, ��AB� and ��AA� are
the adhesion energy per unit area for AB- and AA-stacked flat
bilayer graphene, respectively. We know the first term is
positive from our calculations and the second term is nega-
tive since a large enough bilayer flake would prefer AB
stacking.6 Thus, the model predicts there is a critical size,
above which AB stacking is preferred in the center region of
the flake, below which AA stacking is preferred throughout.
In the present work we will focus on analyzing AA-stacked
zigzag and armchair BLEs.10

Current implementation of DFT generally cannot accu-
rately capture the long-range electron correlations respon-
sible for van der Waals adhesion. In the case of graphite and
related structures, however, the local-density approximation
�LDA� �Refs. 13 and 18� can yield an adequate level of ac-
curacy describing the equilibrium interaction potential be-
tween graphite layers.19 We therefore employ the DFT-LDA
method with a plane-wave basis set as implemented in Vi-
enna ab initio simulation package.20 Only the four outer elec-
trons of carbon enter the self-consistent fields in the optimi-
zation of electronic degrees of freedom while the nuclei and
1s electrons are embedded in the ultrasoft pseudopotential21

constructed with the projector augmented-wave method.22,23

It is noted that in the LDA-optimized zigzag BLE �Fig. 1�,
the maximum top-bottom separation in the edge region is
around 0.52 nm. In the flat region the layer separation is
around 0.36 nm, close to the van der Waals separation be-
tween adjacent layers in graphite. For armchair BLE the
separation in the edge region is around 0.72 nm and that of
the flat region is 0.37 nm. We see that the interlayer spacing
outside the edge region is within the attractive regime of the
van der Waals potential.19 This supports the idea that the
binding force in the flat region is important for the special
geometry of the BLEs. The thicknesses at the edge of a BLE
is connected to the bending modulus �flexural rigidity� of the
graphene sheet. The fact that this value is significantly dif-
ferent for zigzag and armchair configurations reflects the an-
isotropy in large bending of graphene sheet.24 Therefore, the
armchair BLE forms larger bulge to lower overall radius of
curvature, given the bending energy Ebending=��ds�R�s�−2

�where � is the bending modulus�. The C-C bond lengths, b,
in the LDA-optimized geometry generally increase from
1.41 Å in the flat region to 1.42 Å into the edge region.

One may intuitively view BLE as a fractional nanotube.11

It has been pointed out that in conventional circular carbon
nanotubes, even though the overall dipole moment is absent
for symmetry reasons, there is still curvature-induced polar-
ization on individual atoms,25 which cancels out when all
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atoms are summed. But since a fractional nanotube obvi-
ously lacks left-right and/or rotational symmetry, a net per-
manent dipole moment P��	d3x
�x�x is admissible, which
can be obtained from the DFT charge densities �Figs. 2�b�
and 2�c��. To estimate the sign and magnitude of BLE elec-
tric dipole P, we devise a simple “triple-arc” geometrical

model, Fig. 2�d�, to facilitate a back-of-envelope prediction.
In this model the positive charges are distributed uniformly
along a central arc to mimic the positively charged ions. The
negative charges from the � electrons are assumed to be
uniformly distributed along two �outer and inner� arcs sand-
wiching and at equal distances a from the central arc. This
cartoon is motivated by the observation that pzpz� density
has node at the center and is maximized at a finite distance
��a� away from the center on top �outer arc� and bottom
�inner arc�, respectively. For flat graphene, the outer, central,
and inner arcs are equally long and the negative charge is
equally split between the outer and inner arcs, which leads to
zero dipole. However, when graphene is bent to form BLE,
the outer arc becomes longer than the inner arc. We further
assume that the negative charge density �charge per arc
length� 
s stays equal between the outer and inner arcs, upon
bending. This assumption has been roughly validated by in-
specting the DFT charge densities �Figs. 2�b� and 2�c��. If the
negative charge per arc length is equal, but the outer arc is
longer than the inner arc, there must be a net transfer of
electron from the inside to the outside of BLE, i.e., there is a
net displacement of negative charge center toward the out-
side, establishing a net dipole moment P pointing inward,
shown in Fig. 2�d�. For a rough estimate, we assume the
negative charge transfer comes entirely from the distal end of
the edge subtended by angle �, shown in Fig. 2�d�. We also
ignore contributions from the rest of the system: �Q=e�R
+a��
s−e�R−a��
s=2ea�
s, where R is the radius of cur-
vature. 
s�
s

0, the � electron density per arc length for flat
graphene since to leading order in bending curvature the sum
of outer and inner arc lengths equals twice the central arc
length, unchanged from the flat state. 
s can thus be esti-
mated, given there is one pz electron per atom. And then P
= sin��/2�

�/2 �Qa=4ea2
s sin�� /2�. Taking a=0.7 Å �half C-C
bond length� and �=� /2, we obtain an estimate of BLE
dipole to be �1.3 debye /Å.

To unambiguously determine the dipole moment of the
BLEs from DFT ground-state density, we calculated the local
dipoles of electrically neutral sections of the model structure,
as shown in Fig. 2�a�. To obtain the electrically neutral sec-
tions of the model structure, we begin with a plane outside
the distal end of the BLE and search for the location of the
next parallel plane, such that the two planes sandwich a re-
gion where the charges of valence electrons and ion cores in
this region cancel. Successive neutral sections are similarly
located. Subsequently, the dipole moment of each individual
neutral section was computed. Because the planes found by
this algorithm are so densely packed close to the edge, their
spacing is on the order of the real-space Fourier grid spacing.
For this reason, a few neutral sections close to the edge are
grouped into one large section and the total dipole moment is
calculated and the location of the grouped large section is
taken to be 0 �i.e., right at the edge�.

We see that in the flat regions, the local dipole moment is
very small with minor spatial fluctuations, for both armchair
and zigzag BLEs. But as we move into the BLE region, the
dipole moment attains considerable magnitude and is re-
markably sensitive to local curvature. When a graphene sheet
is bent, we expect the unrelaxed electronic density to have a
higher Hartree energy density along the side toward the cen-
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FIG. 2. �Color online� Extensive dipolar BLEs. �a� Dipole mo-
ments of electrically neutral slices of the BLEs. Each half of the
unit cell �left or right� is electrically neutral. We subsequently find
successive vertical planes, between which electrical neutrality is
satisfied. The local dipole moment density �averaged over the width
of the unit cell along the longitudinal direction�, �P �debye /Å�, is
calculated for each of the neutral slices. Valence electron density of
�b� armchair and �c� zigzag bilayer edges, respectively. The values
plotted are the integration along the longitudinal �out-of-plane� di-
rection in a unit cell. Scale bar units: e /Å2. �d� A simple triple-arc
model describing the charge distribution in the BLE. Blue and red
lines represent the continuous distribution of negative and positive
charges, respectively. Overall charge neutrality is maintained in this
model.
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ter of the curvature and lower on the opposite side. Conse-
quently, a local dipole develops as soon as there is an appre-
ciable curvature in the armchair BLE �point B in Figs. 1 and
2�, as the electron density relaxes across the central arc to the
roomier side. Then the local dipole moment changes sign at
the inflection point at C and does so again when the curve
goes through maximum at D. In the case of zigzag BLE, the
curvature remains small until �2.5 Å from the edge. The
overall dipole moment densities along the edges, attributable
to the bilayer edges, for armchair and zigzag BLEs are cal-
culated to be 1.14 and 0.87 debye /Å, respectively, on par
with the rough estimate based on our qualitative model.
These extensive spontaneous polarizations, atypical of el-
emental carbon, can potentially modify the intercalation
chemistry and intercalant/adsorbate diffusion kinetics inside
the continuous bilayer edges for polar molecules.
1.14 debye /Å �armchair� and 0.87 debye /Å �zigzag� are in
fact exceptionally large dipoles. For comparison, H2O mol-

ecule has dipole moment 1.85 debye and CO molecule has
dipole moment 0.122 debye.

Many of the most interesting properties of graphene-
related materials are derived from their electronic structures.
A GML consists of two interpenetrating two-dimensional
�2D� triangular sublattices, designated A and B �see Fig.
3�a��. Following the standard TB formulation,3,5,8,26–29 there
can be two viewpoints regarding the electronic structure of
bilayer graphene: one infinite sized and the other finite sized,
BLE nanoribbon. In the first viewpoint �VP1�, we focus only
on the interlayer hopping interaction �with a hopping inte-
gral, t�=0.4 eV� of two infinite graphene layers with AA
stacking. As we show in Fig. 3�b�, an atom site of the top

layer A �B� is coupled with Ã �B̃� of the bottom layer. We

designate the graphene lattice sites as A and B and Ã and B̃
for the top and bottom layers, respectively �Fig. 3�a��. As
there are four basis atoms per unit cell. We can represent the
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FIG. 3. �Color online� Tight-binding formulation of the electronic structure of graphene and BLE structures. �a� In a single layer
graphene, there are two sublattices, designated A �green� and B �yellow�. In each of the sublattices, all carbon atoms are related by walks
prescribed by the translational symmetry of the underlying hexagonal lattice. �b� The model described in our VP1 �see text�. The vertical
dotted lines represent the interlayer hopping with AA stacking. �c� The model described by our VP2 �see text�. The bent honeycomb net of
continuous bilayer edge is shown by black lines. �d� The dispersion near the Dirac point calculated from the tight-binding formulation
according to our VP1. �e� The DFT-LDA band structure calculated for an extended graphene bilayer with AA stacking. �f� A schematic
illustration of the quantum Hall effect in AA-stacked bilayer, including the DOS of Landau levels �with an arbitrary width� and expected Hall
conductivity, for an applied magnetic field with flux density of 21 T �along the z direction�. The degeneracy factor, g, accounts for intervalley
and spin symmetries. �g� Landau levels between −t� /2 and t� /2 eV as functions of B up to n=10, given by LLn= � t� /2
0.0362	nB �in
eV if B is in teslas�. The levels belonging to the lower double cone are labeled.

FENG et al. PHYSICAL REVIEW B 80, 165407 �2009�

165407-4



energy by these 4�4 blocks because the off-diagonal matrix

elements between 
A,kq� and 
Ã ,k�q��,

�A,kq
H
Ã,k�q�� =
t�

2
�k�k�q�q �1�

vanishes, except for k=k� and q=q�. The Hamiltonian is thus

block diagonalizable. Similar relation holds for B and B̃ sub-
lattices. Arranging the basis as



A,kq� , 
B,kq� , 
B̃ ,kq� , 
Ã ,kq��, we have

Hkq =�
0 vFp 0 ��

vFp� 0 �� 0

0 ��
� 0 vFp�

��
� 0 vFp 0

� , �2�

where p=��k+ iq� and ��= t� /2. The four 2�2 blocks of
Hamiltonian �2� have clear meanings. The two blocks along
the principal diagonal describe the bonding within each of
the initially isolated graphene layers while the off-diagonal
blocks introduce the perturbation of interlayer coupling. Di-
agonalizing Eq. �2� we obtain the eigen spectrum

�k = � t�/2 � �vF
	k2 + q2. �3�

VP1 gives the infinite-area �bulk� limit of AA-stacked bi-
layer graphene without specifying where the BLEs are. Gen-
erally speaking, many single BLEs can connect up and form
an arbitrary BLE polygon, with AA-stacked bilayer graphene
inside or outside of the polygon. Using multiple BLEs, one
can get very complex architectures, sometimes resembling a
sprawling one-storey building or even more complex
topologies.10,11 The more complex BLE architectures how-
ever do not facilitate easy understanding of the contribution
due to an individual BLE, in reference to the bulk electronic
structure �VP1�. In order to study the elementary properties
of an individual BLE, we construct a BLE nanoribbon, i.e.,
two parallel BLEs of the same type separated by a flat bi-
layer region of width W, shown in Fig. 4�a�. The BLE nan-
oribbon is the simplest among all possible BLE architectures
that would allow us to extract the elementary properties of a
single BLE. All our DFT calculations are actually performed
on BLE nanoribbons, illustrated in Fig. 4�a�. In our second
viewpoint �VP2�, then, we try to account for the topological
continuity of the honeycomb network around the closed bi-
layer edges, by starting with a finite BLE nanoribbon, and
turn on the interlayer hopping for a subset of A or B sites that
correspond to the flat regions in the BLE structures �Fig.
3�c��. The transverse wave vector, q, is now topologically
wrapped around the bilayer edge as one travels from the top
layer to the bottom layer. Suppose there are Ny A atoms
along the y direction. Then the jth A atom is paired with
�Ny +1− j�th A atom, for 1� j�Nc,y �where Nc,y is the num-
ber of A or B pairs along the y direction�. The matrix ele-
ments related to the interlayer bonding can then be written,
for the A sublattice,

�A;kq
H
A;k�q�� =
t�

Ny
�k�ke

i��q�,Ny� �
yn�pairs

exp�− i�q + q��yn� ,

�4�

where ��q� ,Ny�= �Ny +1�q�hy �where hy is the separation of
neighboring atoms along the y direction�. Similar relation
holds for interlayer interactions within the B sublattice.

The Hamiltonian derived from Eq. �4� is not strictly block
diagonalizable. But the structure of Eq. �4� enables us to
make some sensible approximation. The first observation we
make is that when q=−q�, we have

t’ ~ 0.4 eV

(b)
Armchair BLE nanoribbon Zigzag BLE nanoribbon

k

q

q

k

(a) W

x k,
y q,

FIG. 4. �Color online� Electronic structure of finite-sized BLE
ribbons. �a� The level discretization due to finite size of armchair
and zigzag BLE ribbons. The green hexagons are the 1BZ of an
extended graphene bilayer. Dashed lines are the loci in the 2D k
space along which the cuts of the 2D band structures are made. �b�
The DFT DOS near the Fermi level of infinite graphene bilayer with
AA stacking and of the armchair and zigzag BLE nanoribbons, cor-
responding to our VP1 and VP2, respectively. Aatom�3	3b2 /4 is
the area per carbon atom on a monolayer graphene, where b is the
C-C bond length.
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�A;kq
H
A;k��− q�� =
Nct�

N
�k�ke

i�, �5�

which are independent of q ,q�, where Nc is the total number
pairs coupled through t� and N is the total number of atoms
in the system. On the other hand, when q�−q�, the magni-
tude of the sum in Eq. �4� becomes

1

Ny
� �

yn�pairs
exp�− i�q + q��yn�� = � sin�Nc,yhy�q + q��/2�

Ny sin�hy�q + q��/2�
� .

�6�

For experimentally observed BLEs,10,11 Nc,y �1. We observe
then from Eq. �6� that the magnitude of an off-diagonal ele-
ment for q�−q� decays rapidly with 
q+q�
 from 
q+q�

=0 and is appreciable for 
q+q�
�2� /Nc,yhy. These obser-
vations lead to our assumption that the Hamiltonian of VP2
is quasiblock diagonalizable and the only important blocks
of the Hamiltonian are those which embed the coupling be-
tween q and −q waves. Arranging the basis as


A,q� , 
B,q� , 
B,−q� , 
A,−q��, we then have

Hkq =�
V vFp 0 �N

vFp� V �N 0

0 �N
� V vFp�

�N
� 0 vFp V

� , �7�

which leads to the eigen energy spectrum

�k = V � t�Nc/N � �vF
	k2 + q2. �8�

It can be shown that the diagonal terms V�1 /N, which pro-
duces a negligible shift of all bands. When the system is
infinitely large along the y direction �and Nc /N→1 /2�, Eq.
�8� converges to the dispersion of the model in VP1.

The dispersion derived from VP1 �V=0 and Nc /N=1 /2 in
Eq. �3�� immediately reveals interesting electronic features of
these bilayer graphene with AA stacking. The dispersion at
the Dirac points in this limit is depicted in Fig. 3�d�. The
initially double-cone dispersion of a GML is split into a pair,
symmetrical about the Fermi level, with an energy offset t�.
The intersection of these double cones is a contour, which is
a Fermi circle for the neutral system centered at K. When the
system is doped,7 the Fermi level will be shifted away from
the band center by an energy �F. Consequently, the Fermi-
surface bifurcates into double circles. We also note that the
linearized tight-binding dispersion near K compares quite
well with that from DFT-LDA calculation �see Figs. 3�d� and
3�e��. Notable differences are the trigonal warping30 and ab-
sence of electron-hole symmetry in the DFT spectrum, which
are not expected to be captured by the nearest-neighbor-only
TB model.

The twinned double-cone spectrum leads to interesting
QHE for these bilayers. When we impose the Onsager-
Lifshitz quantization31,32 on the k-space area of the cyclotron
orbits, we have

An = Ao�n + �� , �9�

where �=1 /2−�B /2� �where �B is the Berry phase�. The
area quantum is Ao=2�eB /�, where B is the magnetic-flux

density. Here, each of the double cones preserves the Berry
phase �which can be readily calculated from the eigenvectors
of Hamiltonian �2��, �B= ��, of a GML, entailing each a
QHE sequence, . . . ,−2 ,−1 ,0 ,1 ,2 , . . ..

Experimentally, the key variable is the number of charge
carriers per unit area of graphene, C=2t��F /��2vF

2, for a
small amount of chemical or field doping such that 
�F

� t� /2, where degeneracy of K and K� is considered. This
linear dependence of C on �F is starkly different from GML
�Ref. 1� or AB bilayer6 but reminiscent of the 2D electron
gas with quadratic band edges in a semiconductor. On the
other hand, the semiclassical cyclotron orbit area, A depends
linearly on ��F� t� /2�2. As a result of the different scaling of
C and An with �F, there is a variable effective energy shift
between the two QHE sequences that depends on both �F and
B.

Such nonalignment of the QHE sequences with varying
energy shifts then represents an interesting case for the QHE
experiment. As we show in Fig. 3�f�, the locations of quan-
tized orbits of the two QHE sequences in general do not
overlap as the dopant concentration varies. Therefore, gen-
eral quantized increment of the Hall conductivity ��xy� is by
and large preserved. However, there can be “accidental” near
degeneracy of the Landau orbits �see Fig. 3�f��. The anoma-
lous resonance between the Landau levels from the two
double cones will then lead to double steps in the �xy, such
as the �1,−2� and �2,−1� pairs in Fig. 3�f�. Evidently, the
location of these resonance steps can be tuned by changing
the magnetic field that determines the area quantum of cy-
clotron. As we show in Fig. 3�g�. We see that with certain
magnetic field strengths the resonance happens between an
even-numbered Landau level and an odd-numbered Landau
level from the two double-cone spectra, which leads to two
resonance Hall conductivity steps at nonzero doping. On the
other hand, with some magnetic field strengths, the Landau
levels intersect at zero Fermi level, which should lead to a
single resonance Hall conductivity step at the zero level.

When the system is finite, the continuity at the BLE must
be taken into account by adopting our VP2. In addition, the
band dispersion becomes discrete due to the finite-size effect,
in the same way as in graphene nanoribbons.28 The continu-
ous cone surfaces of VP1 are now sectioned into “noodles”
along equispaced lines in the 2D k space in VP2 �see Fig.
4�a��. It is clear from Eq. �8� that details of electronic struc-
ture is tunable by virtue of changing the extent of the flat
region of the BLE structures, when the size of a BLE struc-
ture is finite as described by our VP2.

In Fig. 4�b� we show the DFT density of states �DOS, on
a per atom basis� of infinite graphene bilayer with AA stack-
ing and of the armchair and zigzag BLE ribbons �two iden-
tical BLEs sandwiching a flat graphene bilayer region of
width W�, highlighting further the difference between our
VP1 and VP2. The DOS of an infinite bilayer is flat in the
energy window between �t� /2 from the Fermi level, as ex-
pected. Outside this range, the DOS is roughly linear in �
with a finite slope. For the finite armchair BLE ribbon, the
DOS in the vicinity of Fermi level is again flat but is smaller
than the former since only a subset of the states on the cone
are now populated here. Outside this window, the DOS of
armchair BLE shows roughly overall trend as the infinite
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bilayer but it also shows sharp peaks, which are one-
dimensional van Hove singularities. These singular peaks
arise from the smooth band edges of the noodles sectioned
from the cone off its principal axes. The finite zigzag BLE
nanoribbon, however, has features in the DFT DOS �Fig.
4�b�� not accounted for by the approximate TB model; i.e.,
the dispersion near the Fermi level has quadratic branches,
both with small gaps, resulting in a small overall gap in the
DOS. By numerically solving the full TB Hamiltonian, we
can obtain the gap for zigzag nanoribbons as in DFT calcu-
lations. The appearance of gap is interesting for logic appli-
cations due to the possibility of gated switching.

In closing, we note that the magnetic length of magneto-
oscillation is lB=	� /eB=5.6 nm for B=21 T �well in the
range of fields applied in typical QHE experiments�. The
largest experimentally prepared BLEs may have a �folded�
width of �20 nm,10 which is comfortably larger than the
magnetic length mentioned. As the proposed resonance be-

tween the two QHE sequences can be straightforwardly con-
trolled by adjusting the applied magnetic field, this property
will also offer extra tunability of the electronic characteris-
tics of the BLE based devices, which is not possible at all in
graphene monolayer or graphene bilayer with AB stacking.
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