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Nonlinear nonreciprocal photocurrents under phonon dressing

Haowei Xu,1 Hua Wang,1 and Ju Li 1,2,*

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 22 February 2022; revised 22 May 2022; accepted 10 June 2022; published 1 July 2022)

Nonlinear optical (NLO) effects have attracted great interest recently. However, most of the computational
studies on NLO use the independent particle approximation and ignore many-body effects. Here we develop
a generic Green’s function framework to calculate the NLO response functions, which can incorporate various
many-body interactions. We focus on the electron-phonon coupling and reveal that phonon dressing can make
significant impacts on nonlinear photocurrent, such as the bulk photovoltaic (BPV) and bulk spin photovoltaic
(BSPV) currents. BPV and BSPV should be zero for centrosymmetric crystals, but when phonons are driven out
of equilibrium by, for example, a temperature gradient ∇T , the optical selection rules are altered and phonon-
pumped BPV and BSPV currents can be nonzero in nominally centrosymmetric crystal. Moreover, we show that
such NLO responses under nonequilibrium phonon dressing can be nonreciprocal, as the direction of the current
does not necessarily get reversed when the direction of the temperature gradient is reversed.
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I. INTRODUCTION

Light is a valuable tool for characterizing diverse material
properties, including topological quantities such as the Berry
curvature [1–8]. Light can also drive electronic, phononic,
and nuclear-spin excitations [9,10] and even trigger ionic
[11–13] and electronic [14–16] phase transitions. On the
other hand, light-matter interactions can be used to detect
and generate light. For example, the spontaneous parametric
down-conversion in nonlinear optical (NLO) materials can
be applied to create entangled photon pairs used in quantum
information technologies [17].

To better understand and harness light-matter interactions,
it is crucial to obtain the response functions from first prin-
ciples. Most works hitherto have relied on the independent
particle approximation (IPA), which assumes that electrons
are (nearly) free particles and ignores many-body interactions.
This is unsatisfactory since many-body interactions can play
a central role in quantum materials [18]. For example, exci-
tonic effects can remarkably enhance NLO responses [19–21].
Even for conventional materials, it is indispensable to include
many-body interactions such as electron-phonon (e-ph) cou-
pling [22], if one aims to accurately calculate the response
functions. Therefore, it is highly desirable to have a theoretical
framework to systematically incorporate many-body interac-
tions when calculating the response functions.

In this work, we formulate a generic Green’s function
framework, which can be used to deal with various many-
body interactions. We use e-ph coupling as an example to
demonstrate that many-body interactions can make quantita-
tive and even qualitative impacts on light-matter interactions.
We will focus on nonlinear photocurrents [23–25] such as the
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bulk photovoltaic (BPV) and bulk spin photovoltaic (BSPV)
effect. The methodologies in this work also apply to other
NLO responses, including higher-order NLO effects. We start
with the temperature-gradient effect on BPV responses. If
the phonons are at equilibrium, the IPA can give reasonably
good results compared with the many-body formalism. In con-
trast, when phonons are out of equilibrium, rich physics can
arise, which cannot be captured if e-ph couplings are ignored.
Using a two-temperature model, we illustrate that phonon
dressing can effectively break the original spatial symmetries
and consequently alter the optical selection rules. We provide
a geometrical interpretation for this effect. We also reveal
that the nonlinear photocurrent under phonon dressing can
be nonreciprocal, in that for nominally non-centrosymmetric
crystals, the direction of the current does not necessarily
get reversed when the direction of the temperature gradient
is reversed. We also introduce a symmetry-breaking vector,
which quantifies and unifies the symmetry breaking from both
atomic structures (intrinsic) and phonon dressings (extrinsic).

II. GREEN’S FUNCTION FRAMEWORK

First, we briefly introduce the Green’s function framework
and demonstrate how many-body interactions can be incorpo-
rated. The BPV effect can be described as

ja = σ a
bc(ω)Eb(ω)Ec(−ω). (1)

Here E(ω) is the alternating electric field with frequency ω.
ja is the DC charge current. a and b or c denote the directions
of the current and the electric field, respectively. σ a

bc(ω) is the
BPV conductivity and can be expressed as

σ a
bc(ω) = − ie3

ω2

∫
dk

(2π )d

∫
dE

2π
Tr

{
vaG̃

<

bc(E )
}
, (2)
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(a)

(b)

FIG. 1. (a) Feynman diagram of the BPV process. (b) Elec-
tron propagator under phonon dressing. Thick (thin) solid arrow:
dressed (undressed) electron propagator. Wavy line: photon propaga-
tor. Dashed arrow: phonon propagator. Double arrow: charge current
output.

where

G̃
<

bc(E ) = Gr (E )vbGr (E + ω)vcG<(E )

+ Gr (E )vbG<(E + ω)vcGa(E )

+ G<(E )vbGa(E + ω)vcGa(E )

+ (b ↔ c, + ω ↔ −ω).

The Feynman diagram for the process above is shown in
Fig. 1. For simplicity, we did not include terms that may arise
from higher-order band dispersions in a tight-binding model.
See the Supplemental Material [26] and Refs. [6,27] for de-
tailed discussions (also see [28–38]). (b ↔ c, + ω ↔ −ω)
indicates simultaneous exchange between b, c and +ω,−ω.
e is the electron charge, d is the dimension of the system, and v

is the electron velocity. G̃ and G denote Green’s functions with
and without light illumination, while the superscripts r, a, and
< denote retarded, advanced, and lesser Green’s functions,
respectively. Both v and G/G̃ are functions of the k point in
the first Brillouin zone, and the k arguments are occasionally
omitted for simplicity. E is a frequency/energy argument (the
Planck constant h̄ is occasionally set as 1 in the following).
The many-body interactions are incorporated into the Green’s
function G, which can be obtained perturbatively with, e.g.,
Feynman diagrams or nonperturbatively with other methods
[28].

The Migdal electron self-energy due to e-ph coupling can
be expressed as [28–30,39]

�nn′ (E , k)

=
∑
m,qν

g∗
mnν (k, q)gmn′ν (k, q)

×
[

nqν + 1 − fm,k+q

E − εm,k+q − ωqν + iδp
+ nqν + fm,k+q

E − εm,k+q + ωqν + iδp

]
,

(3)

where gmnν (k, q) ≡ ( h̄
2m0ωqν

)
1
2 〈ψm,k+q|∂qνV |ψnk〉 is the

electron-phonon coupling matrix, with m, n as electron
band indices; ψ as the electron wave function; V as the
self-consistent potential; q, ν, and ωqν as the phonon wave

vector, branch, and frequencies, respectively. εnk is the
electronic band energy. fnk and nqν are electron and phonon
occupation numbers. m0 is a mass parameter that makes �

have the unit of energy. Here we adopt the convention in the
EPW [29,30,39] package and take m0 as the proton mass. Note
that if one sticks to the same m0 throughout the calculation
process, then the final results would be the same (independent
of m0). δp corresponds to phonon lifetime and is set as 50
meV. Varying δp would not change the essence of our general
results (see Fig. S6 in Ref. [26]). Here we do not include the
static Debye-Waller term in the electron self-energy, whose
contributions to the BPV conductivities are small according
to our tests. The electron Green’s function can be obtained
from the Dyson’s equation [28],

G−1(E , k) = G−1
0 (E , k) − �(E , k), (4)

where G0(E , k) = 1
E−Hk+iδe

is the noninteracting Green’s
function, with Hk as the electron single-particle Hamilto-
nian. δe represents electron self-energy due to interactions
with defects, other electrons, etc. (excluding interactions with
phonons). δe is taken as 20 meV (corresponding to relaxation
time ∼0.2 ps), based on recent experimental results [40,41].

In the following, we will use monolayer WSe2 as an
example to illustrate the phonon dressing effects on BPV.
We use monolayer WSe2 because some concepts can be
easily demonstrated and visualized in two-dimensional (2D)
materials. The main conclusions in this work apply to three-
dimensional (3D) materials as well. As an example, we
studied 3D silicon, which has inversion symmetry. It is shown
that temperature difference can effectively break the inversion
symmetry and produce a DC photocurrent in silicon (Fig. S5
in Ref. [26]). We will focus on the BPV charge photocur-
rents under linearly polarized light, while similar conclusions
should also carry over to circularly polarized light, and spin
current as well [31].

III. TEMPERATURE EFFECT ON BPV:
PHONONS IN EQUILIBRIUM

First, we consider a phonon ensemble with equilibrium
occupation nqν = nBE(ωqv, T ), with nBE as the Bose-Einstein
distribution and T as the temperature. The BPV conductiv-
ities σ a

bc(ω, T ) are a function of T , due to the temperature
dependence of electron self-energies in Eq. (3). σ

y
yy(ω, T ) of

WSe2 at several temperatures are shown in Fig. 2(a). One can
see that at elevated temperatures, some resonance peaks in
the σ

y
yy(ω, T ) vs ω spectrum disappear, and the magnitude

of σ
y
yy(ω, T ) decreases with T in a sublinear fashion [Fig.

2(b)]. This is because phonon populations increase with tem-
perature, leading to faster e-ph scatterings and thus shorter
electron lifetimes. The distributions of the imaginary and real
part of the phonon self-energy at band energies �nn(εnk, k) are
shown in Figs. 2(c) and 2(d) (filled areas), respectively. Gener-
ally, �nn(εnk, k) has larger absolute values and wider distribu-
tions at higher temperatures. The mean electron self-energies
defined as 〈�〉 ≡ 1

N

∑
nk �nn(εnk, k) with N as the number of

total electron modes, are shown as black curves in Figs. 2(c)
and 2(d). Im[〈�〉] grows linearly with T for T >∼ 100 K, while
Re[〈�〉] is close to 0 and is almost independent of T .
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(a) (b)
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FIG. 2. Phonons in equilibrium. (a) σ y
yy(ω, T ) of monolayer WSe2 at selected temperatures. Colored solid curves are from many-body

formalism while the black dashed curve is from IPA. (b) σ y
yy(ω, T ) as a function of T for selected ω. (c) Imaginary and (d) real part of electron

self-energy due to e-ph coupling. The colored areas represent the distribution of self-energy at selected temperatures (labeled on the x axis),
while the black curve is the mean electron self-energy.

The calculations above use the many-body formalism and
explicitly incorporate e-ph coupling. The BPV conductivities
can also be calculated using IPA. In this case, the e-ph cou-
pling effect can be approximated with a mode-independent
relaxation time 〈τ 〉 = h̄

Im[〈�〉] . Here we take h̄/〈τ 〉 = 26 meV,
corresponding to the mean self-energy at T = 0 [Fig. 2(c)].
σ

y
yy(ω) based on IPA is shown as the black dashed curve in

Fig. 2(a), which in general agrees with the σ
y
yy(ω, T = 0 K)

from the many-body formalism. We also find similar agree-
ments for other components of the σ a

bc tensor at other
temperatures. This indicates that when phonons are in thermal
equilibrium, IPA with mode-independent relaxation time can
give reasonably good results. However, this is not the case
when phonons are out of equilibrium, as we will show below.

IV. SYMMETRY BREAKING FROM TEMPERATURE
DIFFERENCE

In the previous section, we considered an equilib-
rium phonon distribution under uniform temperature. Richer
physics can arise when the phonons are out of equilibrium,
driven by the boundary condition or volumetric pumping by,
e.g., another photon source. Typically, phonons are out of
equilibrium when there is a temperature difference—if the
temperature at the left boundary T1 is higher than that at the
right boundary T2, there will be more phonons traveling to
the right. Here we adopt a simplified two-temperature model

to describe nonequilibrium phonons—phonons with veloci-
ties vqν · x̂ > 0 have occupation number n1

qν = nBE(ωqν, T1),
while those with vqν · x̂ < 0 have n2

qν = nBE(ωqν, T2). vqν is
the group velocity of the phonon and x̂ is the unit vector
along the transport x direction [Fig. 3(c)]. The phonon oc-
cupations n1

qν and n2
qν are inserted into Eq. (3), yielding

the electron self-energy, which is in turn used to calculate
the BPV conductivities σ a

bc(ω, T1, T2). Here we have made
two approximations: (A) The phonon occupations obey an
ideal two-temperature model, and (B) we extend the Migdal
self-energy to nonequilibrium systems. These two approxi-
mations are reasonable when the system is slightly out of
equilibrium (|T1 − T2| 
 T1). However, to reduce numerical
noise, |T1 − T2| ∼ T1 is used. The essence of the results should
be qualitatively valid. Quantitatively, the phonon dressing
effects can be weaker in reality, since the phonon distribu-
tions tend to thermalize and should be less extreme than the
two-temperature model described above. To rigorously cal-
culate the BPV responses under a continuous temperature
gradient, one may solve the Boltzmann transport equation
that couples the electron and phonon distributions, but this
would greatly complicate both theoretical and computational
analyses; we would like to leave this for future works.

A prominent effect of the temperature gradient is sym-
metry breaking. Due to mirror symmetry Mx [Fig. 3(b)] of
monolayer WSe2, some elements of the BPV tensors, such
as σ x

xx, are forbidden. When phonons are in equilibrium, Mx
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FIG. 3. Two-temperature model. (a) σ x
xx (ω, T1, T2) of monolayer WSe2 in the two-temperature model with T1 = 300 K and varied T2. (b)

Atomic structure of monolayer WSe2 with Mx symmetry labeled by the dashed line. (c) Illustration of the two-temperature model. Wavy
arrows denote phonons. (d) σ x

xx (ω, T1, T2) as a function of T2 with selected ω and T1 = 300 K. (e), (f), (g) Electron self-energy Im[�nn(E , k)]
with selected T1 and T2. n corresponds to the lowest conduction band, and E is 0.2 eV higher than the conduction band minimum. The black
hexagons denote the first Brillouin zone. The color bars are in units of eV.

will be preserved even if e-ph couplings are considered. How-
ever, when more phonons are traveling to the right [T1 > T2,
Fig. 3(c)], +x and −x will be inequivalent for phonons.
The Mx symmetry breaking can be transmitted to the elec-
tronic system due to asymmetry scatterings with asymmetric
phonons, leading to nonzero σ x

xx. This effect is illustrated in
Figs. 3(a) and 3(d), where we fix T1 = 300 K and vary T2. One
can see that when T2 = T1 = 300 K, σ x

xx is unanimously zero
for all light frequencies. In contrast, when T2 �= T1, σ x

xx can
be nonzero, and the sign of σ x

xx is opposite for T2 > T1 and
T1 > T2. This is different from coherently exciting phonons
via THz irradiation [42], which triggers transient symmetry
breaking from equilibrium.

The Mx symmetry breaking in the electron system can be
directly visualized in the Migdal self-energy. Here we plot
Im[�nn(E , k)] as a function of k, with n corresponding to the
lowest conduction band, and E fixed as 0.2 eV higher than
the conduction band minimum. When T1 = T2 = 300 K, the
Mx symmetry in Im[�nn(E , k)] is preserved [Fig. 3(f)]. This
corroborates that Mx symmetry in the electron system cannot
be broken by phonons in equilibrium. On the other hand,
when T1 �= T2, the Mx symmetry in Im[�nn(E , k)] disappears
[Figs. 3(e) and 3(g)]. In other words, electrons with wave
vector k are scattered by phonons at different rates than those
with Mxk (Mx �̂ denotes the mirror-x image of �̂). Under light
illumination, contributions from electrons at k and Mxk would
not cancel, resulting in nonzero σ x

xx.

The symmetry breaking due to phonon dressings can be in-
terpreted geometrically as well. Electrons can be represented
by the localized Wannier functions |mR〉, where m and R
label the orbital and the unit cell, respectively. The rate of
phonon-assisted electron jumping in real space is pmR→m′R′ ∝
nqν |〈m′R′|∂qνV |mR〉|2. Due to Mx symmetry, one has
|〈m′R′|∂qνV |mR〉|2 = |〈m′,MxR′|∂Mxq,νV |m,MxR〉|2. When
phonons are in equilibrium, one has nqν = nMxq,ν , and
thus pmR→m′R′ = pm,MxR→m′, MxR′ . However, if nqν �= nMxq,ν ,
then pmR→m′R′ �= pm,MxR→m′,MxR′ , indicating that scatterings
between +x and −x are asymmetrical, and that electrons
have tendencies to move in a certain direction (either +x
or −x). Consequently, the free carriers generated by light
would have an overall displacement in real space, lead-
ing to a net charge current. This geometrical interpretation
is similar to that of the shift current [43], where the
asymmetrical scatterings come from asymmetrical atomic
potentials.

V. NONRECIPROCAL PHONON DRESSING

One interesting observation from Figs. 2 and 3 is the
large magnitude of σ x

xx in the two-temperature model. When
|T1 − T2| = 200 K, the differences between the self-energies
of electrons at k and Mxk are on the order of 0.01 eV
[Figs. 3(e) and 3(g)]. This is rather small compared with
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FIG. 4. Nonreciprocal phonon dressing. (a), (b) k-resolved contributions to the BPV conductivities for (a) σ x
xx and (b) σ y

yy at ω = 2 eV and
T1 = T2 = 300 K. The black hexagon is the first Brillouin zone. The color bars are in units of Å3 A/V2. (c) σ x

xx (ω, T1, T2) as a function of θ with
ω = 3 eV, T1 = 300 K. Pink and green curves correspond to T2 = 100 and 300 K, respectively. The green curve is zero for all θ . (d) Similar
to (c), but for σ y

yy. The insets in (c) [respectively, (d)] are σ x
xx (σ y

yy) vs θ plotted with polar axes. (e) An illustration of the symmetry-breaking
vector.

the typical energy scales involved in NLO responses, such
as the electron band energies and the light frequency, both
of which are ∼1 eV. Remarkably, the small asymmetry in
electron self-energies leads to quite a large σ x

xx. Compar-
ing Figs. 3(a) and 2(a), one can see that the magnitude of
σ x

xx(ω, T1 = 100 K, T2 = 300 K) can reach ∼30% of that of
σ

y
yy(ω, T = 100 or 300 K). Note that σ

y
yy in Fig. 2(a) comes

from the intrinsic asymmetry in the atomic structure of WSe2.
To understand this phenomenon, one can look at the k-
resolved contributions to the total BPV conductivities, defined
as Ia

bc(k) ≡ − ie3

ω2 ∫ dE
2π

Tr{vaG̃
<

bc(E )}. Here we fix ω = 2 eV and
T1 = T2 = 300 K. Ix

xx(k) for σ x
xx and Iy

yy(k) for σ
y
yy are plotted in

Figs 4(a) and 4(b), respectively. Due to the Mx symmetry, one
has Ix

xx(k) = −Ix
xx(Mxk). In contrast, mirror-y My symmetry is

broken in WSe2, and hence Iy
yy(k) �= −Iy

yy(Myk). However, the
difference between Iy

yy(k) and −Iy
yy(Myk) is barely noticeable

in Fig. 4(b). Quantitatively, integrating the absolute value of
Iy
yy(k) gives |∫ dk

(2π )2 Iy
yy(k)| ∼ 0.01 × ∫ dk

(2π )2 |Iy
yy(k)|. This sug-

gests that the My symmetry breaking in Iy
yy(k) is only ∼1%,

and that most contributions from k are canceled by those from
Myk. As a result, the magnitude of σ

y
yy is limited.

To further quantify the symmetry-break strength, we in-
troduce a symmetry-breaking vector s. Note that s is a
macroscopic quantity. Each electron mk may have its own
symmetry condition (e.g., k can be a low-symmetry point
in the Brillouin zone), and s corresponds to the “aver-

age” or “global” symmetry condition of all electrons. The
intrinsic asymmetry in the atomic structure of monolayer
WSe2 leads to sint = (0, a0, 0) with a0 as a constant, which
breaks My and preserves Mx. The temperature difference
described above leads to an extrinsic symmetry breaking.
Here we generalize the temperature difference to an arbi-
trary direction. Assuming that the temperature difference is
along n̂ = (cos θ, sin θ, 0), then phonons with vqν · n̂ > 0
and vqν · n̂ < 0 have temperature T1 and T2, respectively.
The macroscopic symmetry-breaking vector s�T induced by
asymmetric phonon dressing should be parallel to n̂; hence
s�T = (b cos θ, b sin θ, 0) with b = b(T1, T2) as a function
of both T1 and T2. The total symmetry-breaking vector is
[Fig. 4(e)]

s = sint + s�T = (b cos θ, a0 + b sin θ, 0). (5)

The BPV conductivities σ a
bc should be a function of s.

Here we fix ω = 3 eV. When T1 = T2, one has b = 0 and
s = (0, a0, 0); hence both σ x

xx and σ
y
yy are independent of θ

[green curves in Figs. 4(c) and 4(d)]. When T1 �= T2 (T1 =
300 K, T2 = 100 K here), one has b �= 0, then σ x

xx and σ
y
yy

would be θ dependent [pink curves in Figs. 4(c) and 4(d)].
For σ x

xx, sx = b cos θ is relevant, and one has σ x
xx ≈ 7.1 ×

cos θ [nm μA/V2]. As for σ
y
yy, sy = a0 + b sin θ is relevant,

and again one has the sinusoidal relationship σ
y
yy ≈ −12.3 +

6.1 × sin θ [nm μA/V2]. One can deduce that | a0
b | ∼ 12.3

6.1 ∼ 2,
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indicating that the magnitude of sint and s�T are close. As
discussed before, the asymmetry in electron self-energies due
to asymmetric phonon dressing is weak (∼100 times smaller
than the typical energy scale in optical processes). Therefore,
the intrinsic symmetry breaking is also weak, and there is
plenty of room to enhance the BPV conductivities by breaking
the symmetries to a greater extent. Potential ways of breaking
symmetries may be strain gradient, electric field, magnetic
field, etc.

Interestingly, the BPV current under phonon dressing is
nonreciprocal [44,45]. As shown in Fig. 4(d), the photocurrent
does not necessarily change direction when the direction of
the temperature difference reverses (θ → π + θ ). This comes
from the inter f erence between the asymmetry from (A) ex-
trinsic phonon dressing and (B) intrinsic atomic potential
[Eq. (5)]. The intrinsic shift current is the consequence of
the so-called shift vector Rint – upon photoexcitation; the
electron wave package can jump in real space by Rint, owing
to scatterings with asymmetric atomic potentials. The aver-
age Rint (over all electron modes) is closely related to the
intrinsic symmetry breaking and should be parallel with sint.
The scatterings with asymmetrical phonons, on the other
hand, lead to another electron displacement R�T in real space
as discussed before, resulting in an additional term in the total
current. The average R�T should align in parallel with s�T .
Consequently, one has the total current j ∝ Rint + R�T ∝
sint + s�T . When the direction of the temperature difference

reverses (s�T → −s�T ), j does not necessarily change sign.
Note that time-reversal symmetry T is broken in our two-
temperature model—when there is a temperature difference,
the system would thermalize, leading to entropy increase and
T breaking. There are also other sources of dissipation in
the nonlinear photocurrent generation process. For example,
under light illumination, some electrons would be excited to
the conduction bands. There will be dissipations when these
electrons jump back to the valence bands. The important role
of dissipation is discussed in Refs. [46,47].

In summary, we developed a Green’s function formalism
to systematically incorporate the many-body interactions in
NLO processes. We use e-ph coupling as an example and
demonstrate that the phonon dressing effect can make signif-
icant impacts on NLO responses. Notably, out of equilibrium
phonons can lead to symmetry breaking in nominally cen-
trosymmetric crystals and alter the selection rules on NLO
processes. We also demonstrate that the phonon dressing ef-
fect can be nonreciprocal. This work paves the way for future
studies on the correlations between many-body theory and
light-matter interactions.
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