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Reinforcement Learning-Guided Long-Timescale Simulation
of Hydrogen Transport in Metals
Hao Tang, Boning Li, Yixuan Song, Mengren Liu, Haowei Xu, Guoqing Wang,
Heejung Chung, and Ju Li*

Diffusion in alloys is an important class of atomic processes. However,
atomistic simulations of diffusion in chemically complex solids are confronted
with the timescale problem: the accessible simulation time is usually far
shorter than that of experimental interest. In this work, long-timescale
simulation methods are developed using reinforcement learning (RL) that
extends simulation capability to match the duration of experimental interest.
Two special limits, RL transition kinetics simulator (TKS) and RL low-energy
states sampler (LSS), are implemented and explained in detail, while the
meaning of general RL are also discussed. As a testbed, hydrogen diffusivity is
computed using RL TKS in pure metals and a medium entropy alloy, CrCoNi,
and compared with experiments. The algorithm can produce counter-intuitive
hydrogen-vacancy cooperative motion. We also demonstrate that RL LSS can
accelerate the sampling of low-energy configurations compared to the
Metropolis–Hastings algorithm, using hydrogen migration to copper (111)
surface as an example.

1. Introduction

Diffusive atomic motion is an essential microscopic process in
the kinetic theory of materials.[1,2] Various interesting phenom-
ena and applications are rooted in diffusion-related processes,
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from the interdiffusion at metal inter-
faces, vacancy and void formation, to hydro-
gen embrittlement[3] and resistance switch-
ing in oxide memristors.[4] To investigate
the diffusion process, atomic simulation[5,6]

is often used to uncover atomic interac-
tions behind a wide range of materials
phenomena.[2,7] However, a critical chal-
lenge of atomistic simulation of diffusion-
related process is the timescale problem:[8]

the atomic vibration has a timescale of pi-
coseconds, this limits the maximal time
step that can be used in atomistic simula-
tions; however, the diffusion-related tran-
sitions between adjacent energy minima
have orders of magnitude longer timescale.
That is because the energy barriers on
the diffusion pathway slow down the dif-
fusion process.[2] The timescale problem
limits most of the straightforward molecu-
lar dynamics simulations to nanoseconds,

which fall short of the timescales relevant to many diffusion-
related phenomena.[8,9] Therefore, different methods are needed
to deal with the long-timescale problem.[8]

Our work will be compared with one of the widely studied algo-
rithms, the kinetic Monte Carlo (KMC) method,[10] where one di-
rectly works with diffusion timescale without explicitly showing
the vibration timescale motion. Traditional KMC (in contrast with
off-lattice KMC) requires energy minima and transition path-
ways (the so-called event table) as input, and the method chooses
transition events according to the transition rates in the event
table. However, as the diffusion pathway is sometimes counter-
intuitive, correctly determining the necessary input information
of KMC is not a trivial task.[10] To conduct a simulation without
a known event table, the off-lattice KMC is developed.[11] The al-
gorithm conducts saddle-point searches to obtain the diffusion
pathways along with the KMC simulation. Another method re-
ported to have advantageous efficiency is temperature accelerated
dynamics (TAD), where the transition pathways are explored by
high-temperature molecular dynamics.[12] In both methods, the
transition pathway is explored by random sampling (random ini-
tial guess in the saddle-point search for off-lattice KMC, and ran-
dom thermal motion for TAD). However, as the configuration
space is high dimensional, it requires a large amount of ran-
dom sampling to ensure that the correct transition pathway is
obtained, which limits the simulation system size and accessible
timescale.[11]

In this work we developed a reinforcement learning (RL)
based method that guides the transition pathway sampling on
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Figure 1. a) Computational workflow of the RL long-timescale method illustrated on b) hydrogen diffusion in CrCoNi medium entropy alloy. The blue,
green, and grey spheres represent Cr, Co, and Ni atoms, respectively. The orange circle, black dashed arrow, and red arrow represent state, action
space, and selected action, respectively. c) The potential energy landscape of a hydrogen atom on the grey planes in (a, b). When calculating the energy,
surrounding atoms and the z-coordinate of the hydrogen atoms are relaxed.

chemically complex potential energy surface (PES). Instead of
searching for all nearby saddle points along randomly sampled
initial directions,[11] we use parameterized neural network model
to predict the direction of atomic motion that yields the high-
probability transition pathway, based on learning from the out-
comes of rigorous PES minimum energy path (MEP) searches,
resulting in a data superstructure of reduced-dimension “tran-
sition energy landscape” (TEL). The neural network based TEL
avoids the repeated saddle-point searches, which is the most sig-
nificant contributor to the computational cost of the off-lattice
KMC. We demonstrate that our RL model can either simulate
physical time diffusional trajectories (RL TKS) or sample low-
energy configurations (RL LSS) efficiently, in various hydrogen
diffusion phenomena in alloy bulk or near surfaces.

2. Results

2.1. General Framework

2.1.1. Computational Workflow

Our RL method is illustrated in Figure 1a. The PES has a large
number of local minima separated by transition energy barriers.
In this paper, we use hydrogen diffusion in face-centered cubic
(FCC) alloys as an example, as shown in Figure 1b. In the lo-
cal energy minimum configurations of FCC bulk structures, hy-
drogen atoms can reside in octahedral and tetrahedral interstitial
sites shown as the deep blue and shallow green potential wells in
Figure 1c, and the octahedral site corresponds to a lower-energy
configuration. The energy landscape is provided by a universal

neural network interatomic potential (which evaluates the total
energy and forces on atoms for a given atomic configuration),
the PreFerred Potential (PFP),[13,14] throughout this paper. Begin-
ning from a given local energy minimum configuration or “state”
st ≡ (r⃗1, r⃗2,… , r⃗N) (the orange circles in Figure 1, where r⃗i are
the coordinates of the ith atom), a set of possible transition dis-
placements {ati} (also called “actions”) are first identified. In our
problem, we first identify the polyhedron formed by the nearest-
neighbor metal atoms of each interstitial hydrogen. Possible ac-
tions are then defined by moving the hydrogen atom through the
face centers of the polyhedron (See Section 4.1 for details).

In the next step, an action at is selected from the action space
st

≡ {ati}. The probability of selecting each action a given cur-
rent state st is defined as 𝜋𝜃(a|st), which is given by the Boltzmann
policy based on a neural network value function Q𝜃(st, a).[15]

𝜋𝜃(a|st) =
eQ𝜃 (st ,a)∕kBT∑

a′∈st
eQ𝜃 (st ,a′)∕kBT

(1)

where Q𝜃(s, a) represents the expected reward that can be ob-
tained by taking a specific action a in a particular state s, and
the actions with higher expected rewards are more likely to be
selected (Equation (1)). The Boltzmann form reflects the ran-
domness caused by temperature effects. 𝜃 represents the neural-
network model parameters, kB and T are the Boltzmann constant
and physical temperature. We note that Q𝜃(s, a) itself can also de-
pend on T if the vibrational entropy contribution is considered,
which will be discussed later. While Equation (1) looks very simi-
lar to the well-known KMC dynamics, the meaning of Q𝜃(st, a) is
quite different, in that Q(st, a) reflects not only information about
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the present (i.e., the present-step forward energy barrier), but also
“future returns” that involve future energy barriers and/or future
free-energy reductions, in a combination that is to be detailed
later. Q𝜃 is neural network fitting of Q, where 𝜃 stands for the
set of neural network parameters, which is the convention in this
paper. Because of this conceptual distinction with KMC, the “dy-
namics” generated by Equation (1) is not guaranteed yet to be the
real physical timescale according to transition-state theory (TST),
as KMC aims to. And so the time label t in st, at above is an inte-
ger, and not the real time yet.

After selecting an action at = (i, v⃗) (both i and v⃗ are determined
by at), the ith atom is displaced by vector v⃗ across the energy
barrier. The system is then relaxed to the next state, st + 1, using
the MDMin algorithm implemented in the Atomistic Simulation
Environment.[16] Parameters of the transition, including the tran-
sition energy barrier ENEB

b , the attempt frequency 𝜈label
a , and the

energy change after the transition ΔE, can then be computed us-
ing PFP. The transition saddle point is obtained by the nudged
elastic band (NEB) method[17] by setting st and st + 1 as the initial
and final points, to provide the ground truths for neural network
training. The reward function of this transition step, rt, the key
concept in RL, can take different forms depending on the goal of
the RL dynamics (specified in Equation (1)) which will be detailed
later. The whole simulation trajectory is produced by repeating
the above scheme that generates the next state according to the
current state.

2.1.2. Model Architecture of Q𝜃(s, a)

The Q𝜃(s, a) model is constructed based on the DeepPot-SE sub-
networks.[18] As the atomic interaction in alloys is short ranged,
we assume Q𝜃(s, a = (i, v⃗)) is a function of the atomic environ-
ment of the moved atom i and its displacement vector v⃗. The
function Q𝜃(s, a) should be invariant under translation, rotation,
and permutation operations on the atomic system. Therefore, we
define an atomic descriptor i, which is a re-formalization of s
and a, that is invariant under all symmetry operations. i can be
realized by the following construction.

R̃i =

⎡⎢⎢⎢⎢⎢⎣

̂⃗ri1 ⋅
̂⃗ri1 ⋯ ̂⃗ri1 ⋅

̂⃗riM
̂⃗ri1 ⋅ v⃗

̂⃗ri2 ⋅
̂⃗ri1 ⋯ ̂⃗ri2 ⋅

̂⃗riM
̂⃗ri2 ⋅ v⃗

⋮ ⋮ ⋮
̂⃗riM ⋅ ̂⃗ri1 ⋯ ̂⃗riM ⋅ ̂⃗riM

̂⃗riM ⋅ v⃗
v⃗ ⋅ ̂⃗ri1 ⋯ v⃗ ⋅ ̂⃗riM |v⃗|2

⎤⎥⎥⎥⎥⎥⎦
(2)


i
kl =

M+1∑
m,n=1

G1
k(fc(rim), cm)R̃i

mnG2
l (fc(rin), cn) (3)

where ̂⃗rij ≡
fc(rij)r⃗ij

rij
, r⃗ij ≡ r⃗j − r⃗i, rij ≡ |r⃗ij|, j= 1, 2, ⋅⋅⋅, M goes through

all atoms around the ith atom within a cut-off radius rc. The
summation in Equation (3) goes from 1 to M + 1 to go through
all rows/columns in the matrix in Equation (2). fc(r) is a cut-off
function as defined in ref. [18], which goes smoothly to zero at a
cut-off radius rc, and G1

k and G2
l are embedding neural networks

parametrized by 𝜃emb. cm(m = 1, 2, ⋅⋅⋅, M) are the atomic species
of the mth atom. To embed the action (the last row and column in

Equation (2)) into the descriptor, we set cM + 1 as a unique “action
species.” The descriptor i is invariant under all symmetry op-
erations. The descriptor is then flattened to a vector and passed
to a multilayer perceptron (MLP) that outputs the Q function:
Q𝜃(s, a = (i, v⃗)) = MLP𝜃fit

(i(𝜃emb)), where the model parameters
𝜃 = (𝜃fit, 𝜃emb) include both parameters of the MLP 𝜃fit and that
of the embedding network 𝜃emb (see Section S1, Supporting In-
formation for detailed parameter settings).

By choosing different reward functions rt (whose accumulated
form becomes Q in standard RL formalism, for Equation (1)), our
method has at least two working modes: transition kinetics sim-
ulator (TKS) and low-energy states sampler (LSS). RL TKS aims
to simulate physical transition rates according to the HTST (thus
is in principle identical to KMC, just with neural network esti-
mators, and so the t label aims to lead to real physical time also),
while the LSS aims to converge to global energy minimum con-
figurations and is thus similar to an energy annealer, where the
t is fictitious. In the next two sections we will introduce the two
special options, RL TKS and RL LSS, separately. In Section 4.3,
we will also discuss the mathematical and physical meaning of
general RL (finite 𝛼, 𝛽, 𝛾), away from the TKS (𝛼 = 1, 𝛽 = 0, 𝛾 =
0) and LSS (𝛼 = 0, 𝛽 = 1, 𝛾 ≈ 1) corners in parameter space.

2.2. RL Transition Kinetics Simulator Option

TKS adopts the reward function of

rTKS
t ≡ −ENEB

b + kBT ln 𝜈label
a , 𝜈label

a =
∏3M

i=1𝜈i∏3M−1
j=1 𝜈∗j

(4)

where the ENEB
b and 𝜈label

a are obtained using the PFP on the fly
during the neural network training. The attempt frequency 𝜈label

a
in our training data is evaluated using 𝜈i and 𝜈∗j , the ith normal
mode vibrational frequency at state st and the jth positive vibra-
tional frequency at the PES saddle point between st and st + 1. (The
first-order saddle point has one non-positive mode, so j only runs
from 1 to 3M − 1 excluding the non-positive mode, while i runs
from 1 to 3M.) We calculate 𝜈i and 𝜈∗j by diagonalizing the force
constant matrix evaluated by the PFP for the M atoms within a
cut-off radius rc = 4 Å from the atom displaced by the action.

The model is trained as a contextual bandit problem,[19] where
the value function QTKS

𝜃
(st, at) is trained to fit the instantaneous

reward rTKS
t (minimizing ⟨(QTKS

𝜃
(st, at) − rTKS

t )2⟩). This means that
we have set the RL discount-rate 𝛾 = 0, so the RL value func-
tion Q is no longer cumulative or inclusive of the future rewards
and cares only about the present-step immediate reward. Further-
more, this immediate reward is taken to be just the vibrational
free-energy barrier of the forward transition in harmonic transi-
tion state theory (HTST), which means TKS is just a version of
KMC, but with neural network learning for acceleration.

To associate an action with a physical time scale, the transition
rate can be evaluated by QTKS

𝜃
according to HTST:

Γsta
= 𝜈label

a e−ENEB
b

∕kBT = erTKS
t ∕kBT ≃ eQTKS

𝜃
(st ,a)∕kBT (5)

Equation (1) then gives the physical branching ratio (probabil-
ity) P(a|st) = Γsta

∕
∑

a′∈st
Γsta′

. The average residence time of the
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system on the state st, ⟨Δ𝜏⟩ = (
∑

a∈st
Γsta

)−1, can be estimated

using the QTKS
𝜃

functions as

𝜏 = 1∕
∑

a∈st

eQTKS
𝜃

(st ,a) (6)

Note that the t symbol is an integer in RL, counting the number of
state transitions, so t is not the physical time, which are denoted
by 𝜏 in this paper instead.

Then, we make the model applicable to different temperatures.
Expressing the reward rTKS

t = r0
t + r1

t T as a linear function of T,
the zeroth-order term r0

t and the linear term r1
t can be fitted

simultaneously by a two-component value function (Q0
𝜃
, Q1

𝜃
) in

QTKS
𝜃

= Q0
𝜃
+ Q1

𝜃
T .

𝜃 ← 𝜃 − 𝜆∇𝜃

∑
t

[
(Q0

𝜃
(st, at) − r0

t )2 + T2
tr(Q

1
𝜃
(st, at) − r1

t )2
]

(7)

where 𝜆 is the learning rate, and Ttr, the training temperature, is
a hyperparameter that controls the relative importance of the two
terms in the loss function (which does not need to be the physi-
cal temperature in simulations). By introducing temperature into
QTKS

𝜃
, Q0

𝜃
, and Q1

𝜃
give neural network predictions for the energy

barrier ENN
b ≡ −Q0

𝜃
and attempt frequency log 𝜈NN

a ≡
Q1

𝜃

kB
.

As a testbed, we first apply RL TKS to hydrogen diffusion in
pure FCC Cu and Ni. The model is trained on a 4 × 4 × 4 cubic
supercell with four randomly sampled hydrogen sites. The model
is then deployed to simulate a single hydrogen diffusion in a 3 ×
3 × 3 cubic supercell for 500 timesteps. This system is simulated
by RL TKS at temperatures spanning 250 to 500 K with an in-
terval of 50 K and repeated 50 times for each temperature. The
time-dependent squared displacements Δx2

j (𝜏) and temperature
Tj of each (jth) simulation trajectory are recorded. The diffusivity
D(T) for each given temperature T is extracted from the linear
fitting ⟨Δx2

j (𝜏)⟩Tj=T = 6D(T)𝜏. The two parameters D0 and Ea in

the Arrhenius form of diffusivity D = D0e−Ea∕kBT are derived from
the ln D(T) = ln D0 −

Ea

kB

1
T

fit.

First, we checked that our RL TKS are consistent with the
simulation results of traditional KMC using the same PFP in-
teratomic potential, as shown in Table 1. This validates our RL
methods in estimating hydrogen diffusivity in metals. The de-
rived D0 and Ea are also reasonably consistent with the related
experimental measurements. The effective activation energy Ea
in simulation tends to be slightly smaller than the experimental
results for multiple reasons. First, the PFP machine learning po-
tential we used tends to slightly underestimate the energy barrier.
For example, in FCC copper, the diffusion energy barriers in O
→T/T → O (O → T means from octahedral to tetrahedral, and T
→O means the reverse process) transition are 0.32/0.12 eV using
the PFP compared with 0.36/0.14 eV in the DFT calculations.[20]

Second, the quantum tunneling effects in H diffusion can further
influence the activation barrier, which is not considered in our
classical dynamics calculations. The O → T activation barrier in
FCC copper considering quantum tunneling is estimated as 0.40
eV at 300 K using the path-integral Monte Carlo method, 0.04
eV higher than that without considering the quantum tunneling
effect.[20] Therefore, our calculation here slightly underestimate
activation energies. As a PES transition dynamics sampling al-

Table 1. RL TKS hydrogen self-diffusion simulation results in pure copper,

pure nickel, and CrCoNi medium entropy alloy. ΔEb ≡

√⟨(ENN
b

− ENEB
b

)2⟩
and Δ𝜈a ≡

√⟨(ln 𝜈NN
a − ln 𝜈label

a )2⟩ are the validation error of model pre-
diction on transition energy barrier and attempt frequency. The activation
energy Q and coefficient D0 are fitted by reinforcement-learning-simulated
diffusivity D = D0e−Ea∕kBT using maximal-likelihood estimation, and Dexp

0
and Eexp

a are the values from previous experiments.

Cu Ni CrCoNi

ΔEb (eV) 0.020 0.022 0.037

Δln 𝜈a 0.09 0.12 0.12

D0(10−7m2/s) 3.6 3.1 5

Ea(eV) 0.30 0.33 0.43

DKMC
0 (10−7m2∕s) 3.3 2.8 –

EKMC
a (eV) 0.31 0.32 –

Dexp
0 (10−7m2∕s) 3.69[21] 0.15–6.98[22] –

21.1[23] 1.1–6.87[24] –

17.4[25]

Eexp
a (eV) 0.38[21] 0.31–0.44[22] –

0.46[23] 0.37–0.44[24] –

0.435[25]

gorithm, our RL method is compatible with different methods to
estimate activation barriers. Using the DFT or PIMD method to
calculate activation barriers in our training dataset will improve
the prediction accuracy.

To test the method’s capability to capture chemical complexity,
we train the RL model on equiatomic CrCoNi medium entropy
alloy. The CrCoNi alloy has recently attracted interest because of
its outstanding fracture toughness and ductility.[26] In the CrCoNi
solid solution, each metal atom near the hydrogen can be of dif-
ferent atomic species, giving a complex atomistic state space. The
predicted ENN

b and 𝜈NN
a are approximately consistent with the val-

ues in the training and testing datasets, as shown in Figure 2,
where the data points are distributed close to the diagonal line
in the wide range of observed quantities. The standard deviation
errors of the model predictions are close in training and testing
datasets, confirming that the training data is not overfitted de-
spite the large number of neural network parameters.

The hydrogen self-diffusion in CrCoNi is simulated using RL
TKS running on one hydrogen in a 4× 4× 4 rhombohedral super-
cell with short-range ordering (SRO) obtained from ref. [27]. The
hydrogen squared displacement as a function of the RL TKS sim-
ulation time is shown in Figure 3a under 300 K using 30 repeti-
tions of μs long-timescale simulations. An approximate function
form of 〈Δx2〉∝𝜏 is shown by the blue line, and the diffusivity
is estimated to be 2.84 × 10−14 m2 s−1. Similar simulations are
implemented for different temperatures, as shown in Figure 3b.
The Arrhenius plot shows a good linear relation. The estimated
effective activation energy Ea equals 0.43 ± 0.01 eV, and the pre-
exponential factor D0 equals 5 ± 2 × 10−7 m2 s−1. To our knowl-
edge, these parameters have not been provided in the literature,
so we show these results as predictions of our method.

In CrCoNi, SRO has significant influences on various proper-
ties of the material ranging from hardness[30] and stacking fault
energy[27] to magnetism.[31] We show that the SRO also has an ev-
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Figure 2. Comparison of the TEL neural network prediction of a) transition energy barriers ENN
b

and b) attempt frequency 𝜈NN
a with those calculated by

the NEB method in the training dataset, ENEB
b

and 𝜈label
a . Here we show the data for hydrogen diffusion in equiatomic CrCoNi alloy. Validation on the

testing dataset is shown in c) and d).

ident influence on the hydrogen diffusivity in CrCoNi, as shown
in Figure 3c. The system with SRO under thermal equilibrium
(SRO = 1) gives approximately double the hydrogen diffusivity of
the fully random configuration (SRO = 0), showing that the SRO
enhances hydrogen diffusion. This can be explained by the reduc-
tion of Cr–Cr bond concentration by the SRO,[27] as the hydrogen
transition energy barriers proximate to the Cr–Cr bond are found
to be higher than the average hydrogen transition energy barri-
ers. Our results predict that the hydrogen diffusion behavior can
also be tuned by the SRO in multi-principal element alloys.

RL TKS can also be used to discover geometrically surpris-
ing diffusion mechanisms, where the diffusion pathway can
be counter-intuitive and involve cooperative motion of multiple
atoms. We apply our method to the hydrogen-vacancy (HV) com-

plexes diffusion in FCC copper.[32] The HV complex consists of a
copper vacancy and a few hydrogen atoms adsorbed around the
vacancy, as shown in Figure 4a. RL TKS is trained on a series of
HV complexes containing one to eight adsorbed hydrogen atoms,
providing a prediction accuracy of 28 meV for Eb (Figure 4b) and
0.10 for ln 𝜈a. We use RL TKS to simulate the HV complex dif-
fusion, which can happen through multiple different transition
pathways. Here, we present the transition pathway of one fre-
quently appearing diffusion event, shown in Figure 4c. As the
hydrogen distribution influences the vacancy transition rate, one
hydrogen atom moves ahead to form a hydrogen arrangement
that enhances the transition rate of the vacancy (step 0–3). The
vacancy then follows the hydrogen (step 3–4). Finally, the hydro-
gen left behind follows the vacancy, completing the overall trans-
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Figure 3. RL TKS hydrogen diffusion simulation in CrCoNi medium entropy alloy. a) Square hydrogen diffusion displacement Δx2 (absolute value) as a
function of time under 300 K. The grey lines show 30 trajectories; the blue squares and error bars are the mean square displacements and their error range
(± one standard error); the red dashed line is the linear fitting of the blue dots. b) Arrhenius plot of hydrogen self-diffusivity under different temperatures.
The blue caps show the error bar of calculated diffusivities, and the black dashed line is a linear fitting of log D versus 1000

T
. c) Hydrogen self-diffusivity

at 400 K as a function of the short-range ordering parameter (the dashed line is a B-spline[28] connecting the data points). SRO = 0 corresponds to a
fully random solid solution, SRO = 1 corresponds to WC parameters obtained from ref. [27], and intermediate values of SRO are linearly interpolated.
The SRO is sampled using the OTIS code in ref. [29].

lation of the complex. Such a complex diffusion mechanism can
hardly be conjectured by human, showing that our method can
be applied to cases when the KMC event table is hard to con-
struct without deep learning (in our case, the reduced-dimension
“transition energy landscape” TEL is constructed based on Equa-
tions (2) and (3), and see also Section 4.1).

RL TKS provides evident speed-up compared to off-lattice
KMC without RL acceleration, as shown in Figure 5 in Section
4.2. Although implementing the TKS requires RL training in ad-
vance, their simulation runtime per transition step is about two
orders of magnitudes smaller than off-lattice KMC. Therefore,
the overall computational costs of the RL methods are smaller
than the off-lattice KMC as long as the total number of simulation
steps is larger than the threshold. We can see that our simulations
in Figure 3 involve far more simulation steps than the threshold,
demonstrating that RL methods provide significant acceleration.
The acceleration is because to determine transition probabilities,
one needs to do expensive saddle-point searches for all possible
actions in the off-lattice KMC, while we just need to evaluate the
Q𝜃 function in RL TKS, which is much faster.

2.3. RL Low-Energy States Sampler Option

The second option of our method, LSS, is a “true” RL method in
that the discount-rate 𝛾 is generally taken to be finite and pos-
itive, so the RL value function Q is cumulative and inclusive of
future rewards. That is to say, LSS looks long into the future event
horizon. LSS also typically sets the reward function as the energy
reduction after the transition:

rLSS
t ≡ E(st) − E(st+1) (8)

(E(s) is the potential energy of state s). We may also include the
vibrational free-energy contribution

rLSS
t ≡ F(st) − F(st+1) (9)

if we choose to, which would involve the extra computational cost
of computing and diagonalizing the Hessian matrices on the fly,
or its learned version

rLSS
t ≡ F𝜃(st) − F𝜃(st+1). (10)

The model is trained by the Deep Q-Network (DQN)
algorithm,[33] which aims to maximize the total reward

RLSS
≡

thorizon−1∑
t=0

𝛾 trLSS
t (11)

on a trajectory with a discount factor 𝛾 close to one (set as 0.8 in
our calculation). The model parameters are updated according to
the Bellman equation.[33]

𝜃 ← 𝜃 − 𝜆∇𝜃

∑
t

(
rLSS

t + 𝛾 max
a′

QLSS
𝜃t (st+1, a′) − QLSS

𝜃
(st, at)

)2
(12)

where 𝜃t is the target network that updates less frequently than 𝜃,
and then one intermittently assigns 𝜃 to 𝜃t to iterate. Such train-
ing gradually builds up the TEL neural network, in the reduced-
dimension action space (s) = {a = (i, v⃗)} based on the atomic
configuration s, which is much smaller than the 3N-dimensional
PEL and is highly adaptive, that is, it is trained to pay “attention”
to only the small subspace of s that is likely to lead to large Q
within time horizon thorizon.

The converged QLSS
𝜃

(st, at) represents reduced-dimension TEL
and fits the expected value of the maximal total rewards after
timestep t, max(at+1 ,at+2 ,…)

∑thorizon−1
t′=t 𝛾 t′−trLSS

t′ (interested readers can
find details about the DQN training algorithm and implemen-
tation in RL textbooks). As the QLSS function “foresees” the en-
ergy reduction of future steps and chooses actions that maximize
long-term cumulative return, it is expected to converge to low-
energy configurations faster than local strategies that only con-
sider single-step energy terms. RL LSS is thus an efficient an-

Adv. Sci. 2023, 2304122 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304122 (6 of 12)
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Figure 4. Hydrogen-vacancy complexes diffusion in FCC copper with RL TKS. a) Atomic configuration of a hydrogen-vacancy complex, where multiple
hydrogen atoms are adsorbed around a vacancy site. The blue and pink spheres represent copper and hydrogen atoms, respectively. b) NN predicted
energy barriers compared with the energy barriers calculated by the NEB method. c) A counter-intuitive diffusion mechanism identified from the RL TKS
simulation.

nealer (“the end justifies the means”), which converges to a near-
ground state with fewer timesteps than RL TKS (“procedural jus-
tice”).

We demonstrate RL LSS’s performance in simulating energy
annealing by the process of hydrogen migration to copper (111)
surface, as shown in Figure 5a. 4 × 4 × 3 hexagonal supercells
are constructed with 10 randomly sampled hydrogen sites, and
the (111) surface is created with a 15 Å vacuum layer. Hydro-
gen in the surface adsorption sites has lower energy than that
in the bulk interstitial site, so the energy ground state is that all
hydrogen atoms are on the surface adsorption sites. However, be-
cause of the energy difference between the octahedral sites and
tetrahedral sites, the migration pathway involves multiple local
energy minimums and low-energy barriers, making it challeng-
ing to sample the lowest-energy states.[34] After training, our RL
policy gives the most likely action from each state, as shown in

Figure 5a. Within the cut-off radius of 8.5Å in Equation (3) from
the surface, the highest-probability actions (HPAs) from all sites
are oriented toward the surface. The HPAs from surface adsorp-
tion sites point to neighbor surface sites. This policy provides ori-
entation for the hydrogen atoms to migrate across the local en-
ergy barriers toward the surface sites. The HPAs from sites close
to the surface have larger QLSS values than that far from the sur-
face, as the discount factor reduces the contribution of long-term
rewards to the QLSS function compared to short-term rewards.

We compare the annealing process using RL LSS and the
Metropolis–Hastings algorithm,[35] as shown in Figure 5b,c. RL
LSS leads all hydrogen atoms to surface adsorption sites and con-
verges to the energy ground states in 200 timesteps in all 50
trajectories. From the grey lines, one can observe that the sys-
tem moves across a large number of low-energy barriers and
approaches the ground state. In comparison, the Metropolis–

Adv. Sci. 2023, 2304122 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304122 (7 of 12)
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Figure 5. RL LSS sampling low-energy configurations of hydrogen migration to copper (111) surface. a) Highest probability actions (HPAs) and Q values
of hydrogen atoms. The blue, silver, and pink spheres are copper atoms, octahedral interstitial sites, and tetrahedral interstitial sites. The HPAs (the
actions with the highest probability according to the policy) are shown by arrows (red arrow: a unique HPA, black arrow: multiple [but not all] actions with
equal probabilities, brown arrow: all actions have equal probabilities). The Q values of HPAs are denoted. Energy (using ground state energy as reference)
versus simulation step under simulated annealing with b) T = 1000 − 950 t

200
K using the trained policy and c) T = 3000 − 2700 t

𝜏anneal
K (𝜏anneal=200 for

blue lines and 𝜏anneal=500 for red lines) using Metropolis–Hastings algorithm. The grey/cyan/orange thin lines are 50 simulation trajectories, and the
thick red/blue lines are their average.

Hastings algorithm converges slowly. Less than half of the hydro-
gen migrates to the surface sites in 500 timesteps annealing, leav-
ing ≈4eV energy above the ground state on average. These results
demonstrate that the LSS can show advantageous performance
in approaching low-energy configurations compared to straight-
forward Monte Carlo methods. A long lookahead thorizon provides
incentive for the hydrogen atoms stuck in the middle to move
up, and the transition path networks self-assembled in Figure 5a
look similar to the approach taken in the previous diffusive MD
(DMD) algorithm.[2] DMD is however a much cruder dynamical
simulator, without taking into account the correlations between
adjacent atoms, which are now satisfactorily covered by the TEL
neural network Q𝜃 .

3. Discussion and Conclusions

A major difference between the training schemes for TKS and
LSS is that the TKS only learns the immediate reward: QTKS(st,
at) → rt, while the LSS learns the cumulative future reward
QLSS(st, at) → 𝔼[

∑∞
𝜏=t𝛾

𝜏−tr𝜏 ]. The reason why we design the learn-
ing scheme in this way is that the TKS aims to reproduce the
KMC transition probabilities, which depend only on the forward
transition rates from the current states. Thus, RL TKS is a contex-
tual bandit problem, and the Q function is trained as supervised
learning using training dataset iteratively generated by sampling
trajectories. In comparison, the LSS aims to solve a global min-
imization problem to find the low-energy states. The trajectory
toward low-energy states involves a large number of future transi-
tions (Figure 4), so the selection of action needs to consider which
action is more promising in reducing energy in the long term.
Optimizing the cumulative future rewards requires training al-
gorithm beyond supervised learning, and the DQN of our choice
is one of the well-developed RL methods to deal with cumulative
rewards optimization.[33]

TKS and LSS can be viewed as two special limits of a unified
RL DQN dynamics. The generalized present reward function can

be written as a linear combination of the forward barriers and
profits:

rt = −𝛼(F̃(ssaddle
t ) − F(st)) − 𝛽(F(st+1) − F(st)) (13)

where

F(s) ≡ E(s) + kBT
3M∑
i=1

log 𝜈i(s) + F0 (14)

is the vibrational free energy of state s, and

F̃(ssaddle) ≡ E(ssaddle) + kBT
3M−1∑

j=1

log 𝜈∗j (ssaddle) + F0 (15)

is the effective free energy of the saddle point ssaddle (F0 is a state-
independent constant). There are three continuously tunable di-
mensionless parameters (𝛼, 𝛽, 𝛾) then in DQN dynamics Equa-
tion (1) using the generalized

Q ≡ 𝔼

[
thorizon−1∑

t=0

𝛾 trt

]
(16)

and its learning Q𝜃 . 𝛼, 𝛽, 𝛾 controls the importance assigned
to reproducing the present-step transition probabilities, present-
step potential energy reductions, and long-term lookahead of the
model, respectively. TKS and LSS correspond to (𝛼 = 1, 𝛽 = 0, 𝛾
= 0) and (𝛼 = 0, 𝛽 = 1, 𝛾 ≃ 1) corners of the general (𝛼, 𝛽, 𝛾) pa-
rameter space, respectively. Other parametric settings, for which
we are still seeking physical meaning in statistical physics (see
Section 4.3), can be used to explore different aspects of PES with
certain preferences. A probabilistic interpretation of this general
DQN framework equations (1, 13–16) is discussed in Section 4.3,
mapping each parameter set to a probability distribution function
from which the trajectory is sampled.

Adv. Sci. 2023, 2304122 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304122 (8 of 12)
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Our method provides a general computational framework to
simulate the long-timescale diffusion and annealing process. Al-
though the simulations in this paper focus on hydrogen diffusion
in metals, the method is actually applicable to diffusion processes
in different materials and microstructures, given a specifically de-
signed action space. This method can also bridge large length
scales, by first training a model on varied small structures, then
deploying the model to guide the long-timescale simulation in a
large supercell that includes the complexity of all trained struc-
tures.

4. Method

4.1. Action Space Identification Algorithm

A big part of our computational saving comes from the learn-
ing of a reduced-dimension TEL, that is, the energetic forward
barriers and profits for a given action. The action space (s) ≡
{a = (i, v⃗)} is identified based on the atomic configuration s. The
ground truths for these energetic barriers and profits in the
space of actions is computed based on the NEB or other rig-
orous algorithms navigating the 3N-dimensional potential en-
ergy landscape (PES). But once learned, the “transition-energy
landscape” is smaller in dimension (dim(s) ≪ dim s = 3N) and
much faster to evaluate than running NEB calculations on the
fly. One can also think of (s) as the equivalent of “attention”
mechanism[36] in the atomic configuration space, focusing only
on the small cluster of atoms that is likely to be altered at
present in s. The reduced-dimension TEL is therefore an on-the-
fly, adaptive data superstructure that are built on top of the well-
known 3N-dimensional PES, represented by our “forward bar-
rier” (Equation (15)) and “profit” (Equation (9)) neural networks
for evaluating Equation (13).

The algorithm first identifies all hydrogen atoms with indices
i1, i2, ⋅⋅⋅. For each hydrogen atom i, the distance of all metal atoms
j within a cut-off radius rc is ranked

rij1
≤ rij2

≤ ⋯ ≤ rijM
(17)

where rijk
is the distance between atom i and atom j (the kth near-

est neighbor of i). Then, we use all metal atoms jk with a distance
rijk

< 1.2rij4
(we denote the largest k satisfying the condition as

n) and the hydrogen atom i itself to construct a 3D convex hull
including these atoms. If the hydrogen atom i is a corner of the
convex hull, the hydrogen atom is on a surface adsorption site; if
the hydrogen atom i is inside the convex hull, the hydrogen atom
is a bulk interstitial site.

If the hydrogen atom is in a bulk interstitial site, we
choose all face centers, (c⃗1, c⃗2,… , c⃗m), of the convex hull
(j1, ⋅⋅⋅, jn). Then, the actions toward every face center
(i, max (1.6(c⃗k − r⃗i), 1.2∀ c⃗k−r⃗i|c⃗k−r⃗i| )), k = 1, 2,… , m are included

into the action space, except there are “collisional” events. The
“collisional” event is defined as, if the hydrogen atom i takes
the action, it will have a smaller distance than 0.5 Å with at
least one other atom. If the hydrogen atom “collides” with
another hydrogen atom, the action is directly discarded. If the
hydrogen atom “collides” with a metal atom, the metal atom will
be added to reconstruct the convex hull, and actions toward face

Figure 6. Computation costs estimation of our RL TKS method compared
to off-lattice KMC method without deep learning in the hydrogen diffusion
problem in equiatomic CrCoNi medium entropy alloy. RL TKS runtime in-
cludes both NN training and simulation running on the PFP online server.

centers adjacent to the added atom will be included, except if
it evokes another “collision.” If that happens, the action will be
directly discarded.

If the hydrogen atom is on the surface adsorption site, the con-
vex hull is reconstructed using metal atoms jk satisfying rijk

<

1.2rij3
. Atoms directly connected with the hydrogen atom, (j1, j2,

⋅⋅⋅, jn), are identified as the adsorption site (we sort (j1, j2, ⋅⋅⋅, jn)
to form a counter-clockwise loop). The adsorption site center is
obtained as c⃗ = 1

n

∑
k r⃗jk

. The adsorption site has n edges, and the
sth edge center is e⃗s ≡ (r⃗js

+ r⃗js+1
)∕2. First, the surface diffusion ac-

tions (i, 1.6(e⃗s − c⃗)), s = 1, 2,… , n are included. Then, the action
toward the bulk (i, 3∀ c⃗k−r⃗i|c⃗k−r⃗i| ) is included. If “collision” happens,

the same procedure as the bulk interstitial site case is applied.

4.2. Computational Costs Estimation

We estimate the computational costs of RL TKS compared to the
off-lattice KMC for hydrogen diffusion in the equiatomic CrCoNi,
as shown in Figure 6. The RL training time is 42 node hour, the
simulation time per transition step is 1.13 and 88.5 node s for the
RL and off-lattice KMC, respectively. The cross-point of the two
curves is at 1730 simulation steps, and we have 375 000 steps to
produce Figure 3. We note that RL TKS is fundamentally equiv-
alent to KMC. The reason for the acceleration in the case of RL
TKS is solely because we have used deep learning to construct
a reduced-dimension “transition-energy landscape” that is super
fast to evaluate.

4.3. Physical Interpretation of the General DQN Dynamics

The most general form, Equations (1) and (13–(16), in the RL
framework, does not produce dynamics identical to that of the
physical dynamics of trapped metastable systems, often well ap-
proximated by Markovian network[37] + HTST in statistical ki-
netics. However, we feel this general dynamics parameterized by

Adv. Sci. 2023, 2304122 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304122 (9 of 12)
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continuous parameters (𝛼, 𝛽, 𝛾) should still have certain physical
meaning. In this section, we will explore the possible conceptual
explanations of RL dynamics, in different regimes of (𝛼, 𝛽, 𝛾).

By setting the parameters (𝛼, 𝛽, 𝛾), our method samples differ-
ent time-dependent probability distributions. In physical reality,
the transition rate is approximately determined by the HTST:.

Γstat
= 𝜈ae−(E(ssaddle

t )−E(st))∕kBT

= e−(F̃(ssaddle
t )−F(st))∕kBT (18)

If thermal equilibrium is reached (time-dependent → time-
independent probability distribution), the probability distribu-
tion among different states in the state space  is

P(s) = 1
Z

e−F(s)∕kBT , Z =
∑
s∈

e−F(s)∕kBT (19)

Below we analyze two different limits of RL discount-rate 𝛾 = 0,
where only the forward barrier and profit at present are relevant,
and 𝛾 ≈ 1, where all future profits within the time horizon thorizon
are relevant.

4.3.1. 𝛾 = 0 and Modified Detailed Balance

If 𝛾 = 0, the value function cares only about the present,
Q∗(st, at) = rt = −𝛼(F̃(ssaddle

t ) − F(st)) − 𝛽(F(st+1) − F(st)). The
problem simplifies into choosing an action based on the next
step reward, namely, a contextual bandit problem. If the parame-
terized Q𝜃(s, a) properly reproduce the exact value function Q*(s,
a), the policy gives

𝜋𝜃(a|s) = (Γsa)𝛼P(s′sa)𝛽∑
a′∈s

(Γsa′ )𝛼P(s′sa′ )
𝛽

(20)

where s′sa is the next state after taking action a. For RL TKS that
reproduces the transition rates of Equation (18), the coefficients
are set as 𝛼 = 1, 𝛽 = 0. The policy then gives

𝜋𝜃(a|s) = Γsta∑
a′ Γsta′

(21)

and the stationary time of the system at state s, 𝜏(s), is evaluated
as

𝜏(st) =
1∑

a Γsa

= 1∑
a eQ∗(s,a)∕kBT

(22)

In certain scenarios, the goal is to sample thermal equilibrium
distribution. The detailed balance principle (Figure 7a) states that
if the following kinetic laws holds for arbitrary states s1, s2

1
𝜏(s1)

𝜋𝜃(a12|s1)P(s1) = 1
𝜏(s1)

𝜋𝜃(a21|s2)P(s2) (23)

then the sampled states will follow the thermal equilibrium dis-
tribution P(s), as given in Equation (19). Here, aij means the ac-

1, ( 1) 2, ( 2)

12

21

Flux: 21 2 2

2

Flux: 12 1 1

1

(a) Detailed balance (b) Trajectory probability

horizon

0

1

⋯
0

1

horizon −1

⋯Probability:
− ∑ Γ Probability:

Γ

Figure 7. Illustration of the a) detailed balance and b) trajectory proba-
bilities. Orange circles, blue arrows, and green arrows represent states,
transitions, and probability flux, respectively.

tion of transition from state si to state sj. Equation (23) is equiva-
lent to:

exp
{

Q∗(s1, a12) − Q∗(s2, a21)
kBT

}
= exp

{
−

F(s2) − F(s1)
kBT

}
(24)

the well-known forward barrier–backward barrier–
thermodynamics connection. As Q∗(si, aij) = −𝛼(F̃(ssaddle) −
F(si)) − 𝛽(F(sj) − F(si)), we have

Q∗(s1, a12) − Q∗(s2, a21) = (𝛼 + 2𝛽)(F(s1) − F(s2)) (25)

Then standard detailed balance Equation (24) would demand

𝛼 + 2𝛽 = 1 (26)

So we proved that the steady-state probability distribution can ap-
proach Equation (19) as long as 𝛼 + 2𝛽 = 1.

But interestingly, if 𝛼 + 2𝛽 ≠ 1, an altered form of detailed
balance still holds.

exp
{

Q∗(s1, a12) − Q∗(s2, a21)
kBT

}
= exp

{
−

F(s2) − F(s1)
kBTeq

}
(27)

just with

Teq ≡
T

𝛼 + 2𝛽
(28)

In other words, 𝛾 = 0 DQN can have two temperatures, a ki-
netic temperature T using which we run Equation (1), and a
thermodynamic temperature Teq where, when steady state is ap-
proached, the probability distribution still has a canonical form
(Equation (19)) but with a rescaled temperature Teq = T

𝛼+2𝛽
. So if

𝛼 + 2𝛽 > 1, the thermodynamic temperature is lower than the
kinetic temperature, and vice versa.

Algorithmically we do not need to always keep a constant 𝛼, 𝛽.
For example, one strategy could be while keeping Teq constant,
one varies 𝛽/𝛼, and a larger 𝛽/𝛼 ratio could promote sampling
more rare transition events while keeping the eventual thermo-
dynamic properties correct. Indeed, if 𝛼 → 0, we would be doing
classical Metropolis Monte Carlo[38] (MC, not KMC) for sampling

Adv. Sci. 2023, 2304122 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304122 (10 of 12)
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the equilibrium thermodynamic distribution. Thus, 𝛽/𝛼 is a knob
to smoothly tune from KMC to MC.

Because detailed balance is such an important concept in sta-
tistical kinetics (to prevent, e.g., infinite looping between a ring
of states at thermodynamic equilibrium), it is important to dis-
cuss about the type of numerical errors that could break detailed
balance. Due to the neural network prediction error, Q𝜃 and Q*
are not exactly the same, and may contain numerical noise. If
we approximate Q* by Q𝜃 in Equation (25), the detailed balance
Equation (27) may not hold exactly. Therefore, the neural network
prediction error will influence reaching thermodynamic equilib-
rium Teq.

If exact detailed balance is desirable, one can do the following
“symmetrization procedure” with a higher computational cost:
for each Q𝜃(si, aij), we apply the action and get the next state sj,
and calculate F(sj) and the backward Q𝜃(sj, aji), returning to i. We
then use the symmetrized value function

Qcorrected
𝜃

(si, aij) ≡ Q𝜃(si, aij) + (29)

Q𝜃(sj, aji) − Q𝜃(si, aij) − (𝛼 + 2𝛽)(F(sj) − F(si))

2

always to sample the action. This ensures detailed balance and
reaching thermodynamic equilibrium Teq despite of neural net-
work error.

4.3.2. 𝛾 ∼ 1: Maximizing the Path Probability of a Trajectory

When we set 𝛾 ∼ 1, the algorithm maximizes the total reward
of the trajectory  ≡ (s0, a0, 𝜏0, s1, a1, 𝜏1,… sthorizon

) (Figure 7b),
R( ) ≃

∑thorizon
t=0 rt (thorizon is the time horizon of the trajectory. We

consider setting 𝛾 slightly smaller than 1 as a convergence tech-
nique that leads to a small bias).

The physical probability of a trajectory  according to the con-
ventional Markovian network[37] + HTST in standard statistical
kinetics, given an initial state s0, is a product of two factors: 1)
the probability of staying in state st for physical time 𝜏 t equals
e−𝜏t

∑
a Γsta , and 2) the probability of the transition from st to st + 1

in a small time interval [
∑t

i=0 𝜏i, d𝜏 +
∑t

i=0 𝜏i] equals Γstat
d𝜏. We

multiply all factors together to get the total probability of getting
the trajectory  as

P( |s0) =
thorizon−1∏

t=0

e−𝜏t
∑

a ΓstaΓstat
d𝜏 (30)

In any trajectory that our DQN method outputs, the expected sta-
tionary time 𝜏t = 1∕

∑
a Γsta

, so e−𝜏t
∑

a Γsta = e−1 and the probabil-

ity product becomes P( |s0) =
∏thorizon−1

t=0 Γstat
(e−thorizon d𝜏 thorizon ). As

e−thorizon d𝜏 thorizon is a constant independent from the policy, we can
write the path probability as

P( |s0) ∝ exp

{
−

thorizon−1∑
t=0

F̃(ssaddle
t ) − F(st)

kBT

}
(31)

according to the conventional Markovian chain + HTST. Equa-
tion (31) is in fact a path integral akin to the action integral of a

trajectory in classical mechanics, and the “principle of least ac-
tion” applies when we think about the most likely physical trajec-
tory of a metastable system on a Markovian network.[37]

In contrast, in our general DQN trajectory, the total reward can
be rewritten as:

R( ) = −𝛼
thorizon−1∑

t=0

(F̃(ssaddle
t ) − F(st))

− 𝛽

thorizon−1∑
t=0

(F(st+1) − F(st))

= kBT
[
𝛼 log P( |s0) + 𝛽 log P(sthorizon

)
]
+ C0

(32)

where C0 is a constant independent from the policy. So we can see
that maximizing the total rewards in DQN with 𝛾 ∼ 1 is equivalent
to maximizing

A ≡ 𝛼 log P( |s0) + 𝛽 log P(sthorizon
). (33)

We can see right away that while this is different from the phys-
ical action integral (31), it does contain the path-integral contri-
bution, while also mixing with the final energy drop F(sthorizon

) −
F(s0). So the physical interpretation of 𝛼 is an emphasis on “proce-
dural justice,” while 𝛽 emphasizes “the end justifies the means”
(consider that Metropolis MC[38] has only 𝛽 and not 𝛼, while KMC
requires only 𝛼 and not 𝛽).

If 𝛼 = 0, 𝛽 = 1, the method aims to sample the most probable
final state sthorizon

were the system at thermal equilibrium, corre-
sponding to an annealing process that targets the ground state.
If on the one hand 𝛼 = 1, 𝛽 = 0, the method aims to sample the
most probable trajectory based on transition kinetics. In the most
general case, 𝛼 and 𝛽 can be tuned to balance “procedural justice”
with “the end justifies the means.”

Again, 𝛼, 𝛽 and even 𝛾 only need to be piece-wise constant, and
the relative emphasis on “procedural justice” versus “end justifies
the means” may be tuned on the fly. For example, one could first
use large 𝛽/𝛼 and 𝛾 to scope out the possible global direction of
free-energy reduction (see Figure 5), perform on-the-fly training
of the relevant forward barriers and profits, and then based on
this experience, downtune the 𝛽/𝛼 as well as 𝛾 to get more and
more realistic physical time estimation of the paths in this gen-
eral direction. In other words, one may engineer “morphing” of
the RL dynamics in (𝛼, 𝛽, 𝛾) parameter space, from the (0, 1, 1−)
corner running long time horizon annealing, to the (1−, 0+, 0+)
corner (KMC) running physical timescale kinetics.
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S1. NUMERICAL DETAILS OF ATOMISTIC
SIMULATION AND RL TRAINING

The model training on pure copper and nickel is con-
ducted on 4 × 4 × 4 cubic supercell of the FCC met-
als. 3 atomic configurations are generated for each metal,
where 4 hydrogen atoms are randomly sampled in all oc-
tahedral and tetrahedral sites in each configuration. 20
and 40 trajectories are sampled for copper and nickel,
respectively, with 30 timesteps in each. In the atomic
relaxation and NEB calculations, all forces converge to
0.05 eV/Å under the PreFerred Potential (PFP) v4.0.0,
which is used throughout this paper. The cut-off radius
of the neural network model is 4 Å. The embedding net-
work G1

k has one hidden layer and an output layer both
with a size of 12. Throughout the paper, we take the
first 1/4 columns of G1

k to form G2
k, and the input layers

of G1,2
k have a size of Nc + 1, where Nc is the number

of chemical species. We define an element species list:
C = (C1, C2, · · · , CNc

, CNc+1 = action), where Cl is the

lth element. For G1,2
k (fc(rim), cm = Cl), the input layer

takes the Nc+1 dimensional input vector whose lth com-
ponent is fc(rim) and other components are zeros. The
fitting network has two hidden layers with a size of 32.
The maximum atom number (within the cut-off radius
of each atom) of the ”transition energy landscape” is set
as 40, which has not been exceeded during the training.
The training temperature is set as 1000 K throughout
this paper. After including the nth trajectory, one ran-
domly samples a trajectory from probability distribution
Pi =

1−0.99
1−0.99n 0.99

n−i (recent trajectory has larger proba-

bility) and train 20 gradient descend steps from the sam-
pled trajectory, and repeat this for n times. The training
algorithm is Adam throughout this paper, and the learn-
ing rate here is set as 10−3 in all online training. Offline
training is conducted to further improve the model’s ac-
curacy. We separate the training data into the training
dataset (2/3 of the data) and the testing dataset (1/3
of the data). 10000 full gradient descent is implemented
on the training dataset. The learning rate changes from

∗ liju@mit.edu

10−3 to 10−5 that exponentially decays with timesteps in
all offline training in this paper.

The model training on NiCrCo medium entropy alloy
is conducted on 4 × 4 × 4 cubic supercell of the FCC
fully random solid solution. 9 atomic configurations are
generated for each metal, where 4 hydrogen atoms are
randomly sampled in all octahedral and tetrahedral sites
in each configuration. 3 independent processes of train-
ing are conducted with 101 trajectories in each, and each
trajectory contains 30 timesteps. In the atomic relax-
ation and NEB calculations, all forces converge to 0.05
and 0.07 eV/Å, respectively. The cut-off radius of the
neural network model is 5 Å. The embedding network
G1

k has one hidden layer and an output layer both with a
size of 24. The fitting network has two hidden layers with
a size of 128. The maximum atom number is set as 50,
which was not exceeded during the training. The online
training parameters are the same as pure metals. As to
offline training, we separate the training data the same
way as pure metals. Stochastic gradient descent is im-
plemented with a minibatch size of 500 data points (one
timestep is a data point). The minibatch is randomly
sampled from all data points, and 10 gradient descent
steps are applied to each minibatch. That is repeated
for 20000 iterations. In order to avoid overfitting, a nor-
malization term of 5 × 10−6 ∥ θ ∥2 is added to the loss
function.

The deep Q-network learning for copper (111) surface
is conducted on 4× 4× 3 hexagonal lattice of FCC cop-
per (4 replications on a and b directions and 3 replica-
tions on c direction. c direction is along the 3-fold axis).
A vacuum layer of 15 Å is included in the c direction.
We implemented 7 independent training processes, 4 of
them have only one randomly sampled hydrogen atom in
the copper slab (12 configurations are sampled as start-
ing points, and initial configurations are randomly se-
lected from them), and the other 3 have 10 randomly
sampled hydrogen atoms (10 configurations are sampled
as starting points). 300 trajectories are sampled with 30
timesteps in each. In the atomic relaxation, all forces
converge to 0.05 eV/Å. The cut-off radius of the neural
network model is 8.5 Å, as the model needs more distant
atomic information to foresee the long-term rewards. The
embedding network G1

k has one hidden layer and an out-

mailto:liju@mit.edu
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FIG. S1. Training curve (loss vs training epochs) of the TKS NN model for the hydrogen diffusion in equiatomic CrCoNi using
different model hyperparameters. The Nemb, Nfit, and rcut are the width of embedding network, fitting network, and the cut-off
radius, respectively. We use Nemb = 24, Nfit = 128, rcut = 5 Å for unlabeled parameters in each panel.

put layer both with a size of 24. The fitting network has
two hidden layers with a size of 128. The maximum atom
number is set as 260, which has not been exceeded dur-
ing the training. After including the nth trajectory, one
randomly samples a trajectory and trains 5 gradient de-
scent steps from the sampled trajectory, and repeats this
for ⌈n2/3⌉ times. The offline training randomly samples
a mini-batch with 10 trajectories and applies 10 steps of
gradient descent at each iteration. There are 1010 itera-
tions in the training process.

S2. NEURAL NETWORK TRAINING
PARAMETERS

In this section, we compare the training curves us-
ing different neural network hyperparameters to validate

our choice of the NN hyperparameter settings. We use
hydrogen diffusion in equiatomic CrCiNi as an exam-
ple, as shown in Fig. S1. For the embedding network
width Nemb, our choice Nemb = 24 gives similar train-
ing loss with Nemb = 36, slightly better than Nemb = 12
(Fig. S1a). The fitting network width Nfit = 64, 128, 256
gives similar training loss (Fig. S1b). For the cut-off ra-
dius rcut, our choice rcut = 5 gives the lowest training
lost within rcut = 3.5, 5, 6 (Fig. S1c). In all plots, the loss
function converges with respect to epochs. The tests vali-
date that our NN settings give close-to-convergent model
performance.
If one wants to further improve the model performance,

a more sophisticated NN architecture design will be nec-
essary. A promising choice is to use equivariant graph
neural networks [1–3] to represent the Qθ(s, a) function,
where the state s is represented by a graph and the action
a is represented by a vector input on nodes.
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