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ABSTRACT: The strong nuclear force gives rise to the widely
studied neutron scattering states and MeV-energy nuclear
bound states. Whether this same interaction could lead to low-
energy bound states for a neutron in the nuclear force field of a
cluster of nuclei is an open question. Here, we computationally
demonstrate the existence of μeV-level neutronic bound states
originating from the strong interactions in nanocrystals with a
spatial extent of tens of nanometers. These negative-energy
neutron wave functions depend on the size, dimension, and
nuclear spin polarization of the nanoparticles, providing
engineering degrees of freedom for the artificial neutronic
“molecule”.
KEYWORDS: ultracold neutron, nanoparticle, bound states, strong interaction, quantum control

INTRODUCTION
Neutron scattering is a widely used technique to characterize
materials’ structure and dynamics.1 In neutron scattering, the
interference of neutron’s positive-energy scattering states in a
cluster of nuclei is utilized to probe the atomic configuration,2

magnetic structures,3 and ionic motion.4 Besides scattering
states, the strong nuclear interaction between neutron and
nuclei can also trap a neutron in femtometer-scale bound
states, known as the radiative neutron capture.5 Such bound
states have MeV-scale binding energy, where the neutron and
nucleus combine into another isotope and emit γ-photon.6 The
energy spectra of the neutron, therefore, include the
continuum spectra from scattering states covering the positive
energy range and the discrete lines from bound states with
∼MeV deep negative energy. The energy gap between the
deeply negative and positive energy spectra contains no bound
states7 if the neutron just interacts with a single nucleus due to
the short-range nature of the strong nuclear interaction.8,9

However, it is unknown to us whether a neutron interacting
with a cluster of nuclei can have low-energy bound states.
Intuitively, the neutron eigenstates of different nuclei interact
with each other and form delocalized eigenstates, in analogy to
how the linear combination of atomic orbitals (LCAO) forms
molecular orbitals lower in energy than the isolated atomic
orbitals.10 It is, therefore, intriguing to probe whether there are
long-lived discrete weakly bound states of neutrons, localized
around a collection of nuclei, e.g., nanoparticles and nanowires.
We define the negative-energy neutronic states with a 10 nm-
scale broadening of the “molecular neutronic” states. Such

weakly bound neutron states, if they exist, would provide a
platform for designing neutron eigenfunction by controlling
the material configuration and for probing the strong nuclear
force by low-energy neutrons. For example, the molecular
neutronic states can be used in probing the nuclei’s neutron
scattering and absorption cross sections,11 neutron electric
dipole moment,12,13 as well as neutron bound-state β−-decay14

under the low-energy limit, which contains critical information
about the strong force, one of the four fundamental forces of
nature.
In this work, we demonstrate the existence of the molecular

neutronic state in hydrogen-containing nanocrystals by
analytical derivation and computational simulations. Essen-
tially, the multicenter superposition of positive-energy
scattering states can form a negative-energy weakly bound
state. Different from the MeV neutron bound states whose
properties are set by the fixed isotope properties,6 the energy
levels and wave functions of molecular neutronic states can be
engineered by the host nanocrystal’s size and shape. As the
molecular neutronic state is similar to the electronic state in
quantum dots,15 we call the system hosting such states
“neutronic quantum dot” (NQD).
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RESULTS AND DISCUSSION
Theory. We use Green’s function formalism and direct

numerical calculations to demonstrate the existence of low-
energy bound neutron states. The neutron moves in a nuclear
force potential V(r)⃗ = ∑i vi(r)⃗, where vi (r)⃗ is the potential of
the ith nucleus located at R⃗i (i = 1, 2, ..., N, with N being the
nuclei in the system). Solving for neutron states in the NQD
encounters a multiscale challenge:16 the strong interaction vi is
localized to the femtometer length scale, while the interatomic
distance R⃗i − R⃗j is of the length scale of Å, exhibiting a
separation of 5 orders of magnitude. That makes it
prohibitively expensive to directly discretize the Schrödinger
equation on a uniform spatial grid. In order to bypass this
problem, we use the Green function formalism to show that
the concept of Fermi pseudo potential17 used in neutron
scattering can also be applied to the molecular neutronic states,
which coarse-grains the detailed fm-scale features into the
scattering length.11

The bound-state wave function ψ(r)⃗ with an eigenenergy E
< 0 can be obtained from an integral equation18
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2 , mn is the neutron mass and ℏ is the
reduced Planck constant. As the support of V(r)⃗ is localized to
the femtometer-neighborhoods around the nuclei positions,
the integral can be rewritten as a sum of local integrals around
each nucleus. Depending on whether r ⃗ is close to a nucleus, the
integral eq 1 can be rewritten as
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Here Ωi is a spherical volume around the ith nucleus with a
radius of the nuclear force range. In the first case, the position r ⃗
is far from all nuclei; in the second case, the position r ⃗ is ∼ fm
close to that of R⃗j. For all nuclei i subject to |r ⃗ − R⃗i| ≫ fm, we
applied the Green function approximation G(r,⃗r′⃗;E) |r′⃗∈Ωdi

≃
G(r,⃗R⃗i;E). The detailed behavior of the wave function around
the nuclei (including fm-scale oscillations) is uninfluential to
the Å-scale spatial distribution of low-energy neutron states.17

Therefore, we coarse-grain the wave function over an
intermediate length scale fm ≪ D ≪ Å and introduce the
average wave function,
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nuclei’s influence on the average wave function can be
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strength is characterized by the real part of the scattering
length bi.

11 We prove (see Supporting Information (SI)19−23

section I for details) that the following equation of the average
wave function can be derived by integrating eq 2:
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where the second term in the second case of eq 2 is proved to
be negligible after integration. The scattering length is more
frequently used to describe low-energy (compared to MeV)
neutron scattering, where the neutron state has a near-zero
positive energy. In our neutron bound state case, the neutron
has a near-zero negative energy. The two situations share the
same scattering length (see SI section S1 for details). The
average wave function at nucleus positions R⃗i, ψ̅i ≡ ψ̅(R⃗i) can
then be obtained by solving an eigenvalue problem

+
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simultaneously determining the wavevector κ and the binding

energy E
mb 2

2 2

n
. The molecular neutronic state exists if and

only if eq 4 has a nonzero solution with κ > 0. Provided that a
nucleus has a negative scattering length,11 the condition can be
satisfied when the size and density of the nuclear cluster exceed
a threshold, thus, indicating the existence of a bound state.

Because [ ]bRee
R j

Rij

ij
is far smaller than 1 (where we define

Rij≡|R⃗i-R⃗j|), the equation can be satisfied only when the
summation is over a large number of nuclei, so that the second
term can cancel the first term. Details on the solutions of eq 4
are elaborated in Methods.
Energy Level and Eigenfunction. The existence of

neutronic bound states thus requires negative scattering
lengths, representing attractive forces to neutrons. Protons
have a negative neutron scattering length with the largest
magnitude among all isotopes when their nuclear spin is
polarized opposite to that of the neutron.11 Polarization of the
nuclear spin of hydrogen nuclei can be achieved by various
experimental techniques, including dynamic nuclear polar-
ization (DNP)24,25 and optical pumping.26 In the following
simulation, we assume that all hydrogen nuclear spins in the
nuclear cluster are polarized in the same direction. We use LiH
nanocrystal (Figure 1a), a widely studied hydrogen storage
material,27−29 as an exemplary system to demonstrate the
existence of weakly bound neutronic states by solving eq 4
numerically. The nanocrystalline quantum dot (nanocrystal) is
assumed to have a spherical shape with a radius R of tens of
nanometers.30,31 Both Li and H have an attractive nuclear force
with neutrons,11 creating the negative nuclear strong-force
potential shown in Figure 1b. The binding energy levels of the
bound states are then calculated as a function of the
nanocrystal radius, as shown in Figure 1c. The existence of
bound states requires the nanocrystal radius R to be larger than
a critical value, Rc = 13 nm in the LiH case. Intuitively, that is
because confining neutrons in a smaller-R NQD requires
higher wavenumbers and thus kinetic energy, which makes the
overall energy positive, so that the bound states can no longer
exist. Larger R gives rise to multiple bound states with different
symmetries (see Figure 1d), whose binding energies all
increase monotonically with R. The neutronic d orbitals of
LiH NQD split into t2g (the 1d (*3, meaning 3-fold
degeneracy) curve) and eg* orbitals (the 1d (*2) curve)
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because the cubic lattice breaks the SO(3) symmetry of the
spherically shaped nanocrystal.32 The eigenfunctions corre-
sponding to the first two energy levels, 1s and 1p, are plotted in
Figure 1d. These neutronic eigenfunctions cover the whole
nanocrystal and extend tens of nanometers into the vacuum.
Moreover, the bound states and their transition frequencies
can be engineered by the size and shape of the nanocrystal,
providing additional tunability for quantum applications.
The binding energies of the molecular neutronic states

depend on the size and dimensionality of the nanocrystal. The
Γ-point neutron bound-state energy levels in the zero-
dimensional LiH nanoparticle, one-dimensional LiH nanowire,
and two-dimensional LiH thin film are shown in Figure 2a, b,
and c, respectively. Multiple μeV-level bound states exist and
exhibit stronger binding for larger system sizes (diameter for
nanoparticle and nanowire, thickness for thin film) in all three
systems. Systems with higher dimensions have a smaller
minimal size to host a bound state and approach stronger
binding at the same system size. Different from the
nanoparticle case, a thin film with arbitrarily small thickness
hosts bound states. That means the neutronic bound state can
exist in 2D systems with atomic-scale thickness. The neutron
bound states around the Γ point in three-dimensional LiH
perfect crystal have a parabolic band dispersion, as shown in
Figure 2d. The band structure is calculated by both eq 4 and a
planewave basis expansion method, showing consistent results.
The Γ-point energy in infinite LiH crystal is −0.33 μeV, which
is the lower bound of the neutron energy levels in LiH. In the
nanowire and thin film (Figure 2e,f), the bound state energy
band splits into a series of sub-bands due to the quantum

Figure 1. (a) Illustration of cold neutron bound states in a 30 nm
radius LiH spherical nanocrystal. (b) Atomic structure (top) and
nuclear force potential (bottom) of neutrons in LiH at zero
temperature, where the hydrogen nuclear spins are fully polarized
in the opposite direction with the neutrons. The nuclear force
potential is smeared by the zero-point vibrations of nuclides to
become a sum of picometer length scale Gaussians and visualized
on the (100) canyon plane. (c) Binding energies of molecular
neutronic states as a function of nanocrystal radius. The energy
levels are denoted as 1s, 1p (3-fold degeneracy), 1d (*2, 2-fold
degeneracy), 1d (*3, 3-fold degeneracy), and 2s from low to high.
(d) Real part of the average eigenfunction ψ̅(r)⃗ of 1s and 1p states
when R = 30 nm, plotted on a plane across the center of the
sphere.

Figure 2. Bound neutron states in nanostructures with different dimensionality. Bound energy levels in LiH (a) zero-dimensional spherical
nanoparticles, (b) one-dimensional cylindrical nanowire, and (c) two-dimensional thin film at T point as a function of the diameter of the
nanoparticle, nanowire, and thickness of the thin film. (d) Neutron bound states band structure in perfect LiH crystal using eq 4 and a plane
wave basis expansion method. (e) Neutron band structure in the 80 nm diameter spherical nanowire and (f) 100 nm thickness thin film.
Throughout this figure, we assume hydrogen nuclear spins are fully polarized.
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confinement, showing the same behavior as electron band
structures in low-dimensional structures.
Under realistic conditions, the hydrogen nuclear spins in the

host materials may not be completely polarized.24,25 We verify
that neutronic bound states can still exist under an incomplete
but finite nuclear-spin polarization, as shown in Figure S2 in SI,
section S4. If the polarization is incomplete but not far from
fully polarized, then the bound state will have a slightly smaller
binding energy than the complete polarization case. Therefore,
the neutronic bound states are robust to a constant incomplete
nuclear spin polarization. The nuclear spin polarization can
also have temporal fluctuation, which adds random perturba-
tion to the bounded neutron.33 However, as the bound-state
neutron wave function extends among millions of nuclei, it
effectively only interacts with the average nuclear spin
polarization. Although a single nuclear spin polarization can
have evident fluctuation, the fluctuation of the average
polarization of a large number of nuclear spins is likely small.
Despite this, the temporal fluctuation of the average nuclear
spin polarization depends on specific experimental conditions,
which need to be evaluated case by case.
Being spin-1/2 Fermions like electrons, the many-neutron

wave function Ψ(xn1,xn2, ..., xnN) of N identical neutrons, with xni
labeling both the position and spin of a neutron, must satisfy
Ψ(..,xni , ..., xnj , ...) = −Ψ(..., xnj , ..., xni , ...). The independent
particle picture, an approximation of Ψ(xn1,xn2, ..., xnN), suggests
that neutrons can fill up the NQD states in a “neutronic shell
model” akin to the electronic shell filling in molecules, with the
single-particle energy and degeneracy illustrated in Figures 1c
and 2. The ground-state wave function is thus approximated by
a Slater determinant of the N lowest-energy NQD spin−orbital
states. With the QD size increasing to infinity, turning the
nanostructure into a bulk material, we have computed that if all
the bound states are occupied by neutrons all the way to E =
0−, there will be a maximal mass gain of the LiH crystal by 6.8
× 10−6 % (68 ppb), which could be measurable experimentally.
Also, unlike electrons, the neutron−neutron interaction
between these delocalized NQD spin-orbitals is rather weak;
thus, the many-neutron quantum state may be a good
approximation of the noninteracting limit of a many-Fermion
system and have some unique characteristics as a quantum
information platform.

Lifetime of Neutron Bound States. A neutron trapped in
a negative-energy state in materials can still undergo
radioactive decay and turn into a proton, electron, and
antineutrino,34 or get upscattered in energy by lattice
vibrations.35 Besides the binding energy, the lifetime is also
an important feature in characterizing the neutron bound state.
Although neutrons interact weakly with the environment, their
lifetimes are limited by the nuclear reaction probabilities that
the weakly bound neutron is finally absorbed by H or Li to
form D or 7Li. The absorption of bound-state neutrons exists
even when the nanoparticle is at zero temperature, so it gives
an upper bound of a neutronic bound state’s lifetime. In
comparison, neutron upscattering by lattice vibrations does not
happen at zero temperature but becomes dominant when the
nanoparticle is at room temperature. In the following, we first
show results on neutron capture and then phonon upscatter-
ing.
Neutron Absorption Lifetime. For a given infinite crystal,

we define the ground-state binding energy as Eb* and the
ground-state neutron absorption lifetime (inverse of the
neutron absorption rate) as T*, which is the neutron bound
state’s lifetime at zero temperature (upper bound). They can
be calculated as materials properties:

* = [ ]

* =

E
m

n b

T
n E

E
m

2
Re

1
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1
( )
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n i
i i
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2
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where Ω is the unit cell volume, ni, bi, and σa
i (Ek) are the

number of i-type atoms in a unit cell, their scattering length,
and neutron absorption cross section for neutron with a kinetic
energy of Ek. Finite-size nanocrystal gives smaller binding
energy Eb and longer neutron absorption lifetime Tlife, but their
product is bounded by an inequality (see SI, section S2 for
derivations):

* * =
[ ]
[ ]

E T E T
n b

n b2

Im

Re
i i i

i i i
b life b

(6)

showing that increasing the neutron absorption lifetime may
lead to a decrease in binding energy with the same
combination of isotopes.

Figure 3. (a) Binding energy Eb* and lifetime T* of molecular neutronic states in different perfect hydride crystals at zero temperature. The
crystals are selected from 10,409 hydride systems from the materials project database, and crystals satisfying Pareto optimality with respect
to exhibiting large binding energy and lifetime are denoted as blue squares. (b) Inelastic neutron−phonon up-scattering rate and lifetime of
neutron bound state as a function of temperature.
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The Eb* and T* of different crystals are shown in Figure 3,
where the gray dots list all nonradioactive stable crystal
structures from the Materials Project database that contain
hydrogen and can host bound states.36 The binding energies
are at the level of μeV, corresponding to a required milli-
Kelvin-level temperature, that is already realizable with the
present ultracold neutron (UCN) technology.37 The lifetime is
at the level of 0.1−1 ms. In general, there is a trade-off between
binding energy and lifetime. Materials satisfying Pareto
optimality38 (that means no material simultaneously has larger
binding energy and longer lifetime than each selected material)
are labeled by the blue points in Figure 3, forming a frontier
curve of possible (Eb*,T*) combinations. A series of common
hydrogen storage nanomaterials,28 including MgH2 (0.27 μeV,
0.19 ms) and LiBH4 (0.27 μeV, 0.19 ms) also exhibit
reasonably high Eb* and T*.
Neutron−Phonon Upscattering. Under experimental

conditions, the nanoparticle can have a nonzero lattice
temperature T, and lattice vibrations in the nanoparticle give
rise to inelastic phonon scattering of the bound neutron, where
it can absorb a phonon and gain energy.35 As phonons typically
have meV energy scale, it will eject the neutron out of the
bound states, reducing the bound states’ lifetime at increasing
temperatures. The total upscattering rate from the neutron
ground state in bulk crystal is derived using Fermi’s golden
rule:

=

× + · +
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The meanings of symbols and detailed derivations are
provided in SI, section S3. We numerically evaluate eq 7 for
the neutronic bound states in the LiH crystal and obtain the

temperature-dependent neutron upscattering rate, as shown in
Figure 3b. The neutron upscattering rate is positively related to
temperature and approaches 2.01 × 104 s−1 at 300 K, which is
larger than the neutron nuclear absorption rate of 0.52 × 104
s−1 in the same setting. That means if the nanoparticle is not
cooled below room temperature, the neutron upscattering will
be the main limitation of the bound state’s lifetime. The bound

state’s lifetime is evaluated as * = +*( )T
1

upscattering

1

considering both neutron reaction and upscattering (Figure
3b). We notice that cooling the host material to liquid nitrogen
temperature increases the bound state’s lifetime τ* to 0.186
ms, close to the zero-temperature limit of 0.192 ms. The
phonon upscattering process also influences the lifetime of
neutron bound states in other host materials in Figure 3a,
which can be computed by density functional perturbation
theory (DFPT). Our results in Figure 3b imply that applying
cooling to the host materials can improve the lifetime of bound
neutron states to a value close to the T* shown in Figure 3a.
Quantum Control. It is also interesting to explore

methods to control the transition between the neutronic
ground and excited states. The neutronic states have weak
coupling to external electromagnetic fields due to the charge
neutrality of neutrons. Although such a weak coupling makes it
difficult to apply direct microwave control protocols to
transition between different neutronic states, we propose
methods to manipulate the states through indirect coupling. As
the neutron bound states are sensitive to the nuclide positions,
which in turn are sensitive to electromagnetic waves if the QD
is charged, they can be indirectly controlled by microwave
driving. We take the LiH nanocrystal 1s and 1p neutronic
states in Figure 1d as an example to illustrate allowed dipole
transition, as they can be used as the two states of a qubit
controlled by microwave. The direct Zeeman interaction of a
neutron spin with the microwave’s magnetic field is as weak as
10 kHz under a typical experimental condition with B ∼ 10 G

Figure 4. (a) Microwave control of neutron bound states in nanocrystals. The electric field of the microwave in resonance with 1s to 1p
transition drives oscillations of charged nanocrystals and neutron states. (b) Rabi oscillation of neutronic 1s and 1p states (R = 40 nm, E = 1
kV/cm, VLiH = 1 V). The average population of neutrons in the 1s state (ns) and 1p state (np) is plotted as a function of time. (c) Rabi
frequency of different transitions as a function of microwave electric field (R = 40 nm, VLiH = 1 V). (d) Rabi frequency of 1s to 1p transition
as a function of nanocrystal radius and electric field (VLiH = 1 V).
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(for example, a 10 G magnetic field shown in ref 39). The
corresponding Rabi oscillation time period is as long as the
lifetime of the bound neutron states, making microwave
control through the magnetic field difficult. To achieve a strong
driving, we instead propose to use an electric field, as shown in
Figure 4a. The nanocrystal is electrostatically charged by the
standard charging methods,40,41 i.e., tuning the redox voltage
so the net number of electrons does not balance the net
nuclear charge, to a voltage of the order of magnitude of 1 V.
The electric field of the microwave would then drive an
oscillatory translation of the nanocrystal with net monopolar
charge q ≠ 0 and mass M, as in a driven oscillator model (off-
resonance).42 Since the neutronic state is aware of the
translation of the center-of-mass of the nanoparticle, this
controls the time-dependent Hamiltonian for the neutron
parametrically and thus can drive the Rabi oscillation of a
neutron between two bound states.
The Rabi frequency of a neutron between bound state i and j

is (see SI, section S5 for derivation):

= · *qm
M

E r r r V( ) ( )dij
n ij

i j (8)

where ω and ωij are the microwave frequency and resonance
frequency of the transition, E⃗ is the electric amplitude vector of
the microwave. Initializing a neutron in the 1s state, the Rabi
oscillation of the average neutron numbers in the 1s and 1p
states is shown in Figure 4b. The Rabi oscillation is 2−3 orders
of magnitude faster than its decay (here we only consider the
decay from neutron absorption), allowing a pulse sequence of
microwave control applied to the neutron qubit. Each pair of
bound states following the selection rule of electric dipole
transition has a transition matrix element, and the Rabi
frequencies are generally on the order of magnitude of MHz
with typical electric field intensity in experiments of kV/cm
(for example, ref 43 applies an electric field of 3 kV/cm, and ref
44 applies a stronger electric field up to 500 kV/cm), as shown
in Figure 4c. The Rabi frequency has a negative relation with
the nanocrystal radius, providing strong coupling between 1s
and 1p states up to 5 MHz (Figure 4d).
The above-studied neutron bound-state to bound-state

transitions are mediated by microwave coupling to the mass
of a charged quantum dot (the neutron does not couple
directly to an electric field but is coupled to the nuclide mass
distribution of the quantum dot). It is also possible to excite a
neutron bound-state to an unbound continuum scattering state
by microwave irradiation, using the same principle. The ability
to “launch” bound neutrons to a specific momentum state
controlled by the microwave frequency, polarization, and
detailed morphology of the quantum dot is potentially useful
for precision control of individual neutrons.

CONCLUSIONS
In this work, we demonstrated with analytical derivations and
numerical calculations that hydride nanoparticles can host
neutron bound states with ∼μeV binding energy, tens of
nanometers extent, and ∼ms lifetime. The weakly bound
neutron state can be controlled by the electric field of a
microwave with a Rabi frequency of ∼MHz, to explore other
bound excited states. To trap neutrons into μeV bound states
in experiments, the incident neutrons need to be cooled to
milli-Kelvin temperature, which can be realized by the
ultracold neutron (UCN) source.37 Although the neutron
kinetic energy needs to be cooled to milli-Kelvin temperature,

the nanoparticle material can have a much higher temperature
(liquid-nitrogen temperature, Figure 3b) without significantly
affecting the neutron bound states’ lifetime, thanks to the slow
energy transfer process between the host material and neutron
through inelastic phonon scattering. The nuclear spins of
hydrogens in the nanoparticles need to be polarized, which can
be realized by DNP.
The NQD in a UCN bottle can be initialized to its ground

state using a microwave with a frequency higher than the 1p
state binding energy but lower than the 1s state binding
energy. The microwave can deplete the neutron in excited
states, and the ground-state NQDs will accumulate. The
population of NQDs in different molecular neutronic states
can be read out by the same microwave pulse and counting the
outgoing neutrons. This gives the population of neutrons in
the excited states. The tens of nanometers spatial extent of the
neutron bound states provides possibilities to have multiqubit
interaction. In comparison to the long-range electromagnetic
interactions in Rydberg atom platforms generated by electrical
dipole−dipole interactions,45 the effective interactions between
two quantum particles in NQDs are generated by the wave
function overlap. The system we propose with feasible state
preparation and control can be applied to explore fundamental
physics such as characterizing the strong nuclear interaction
with high precision and exploring the quantum statistics of
different particles as well as develop certain quantum
information processing applications.

METHODS
In order to prove the existence of molecular neutronic states, we need
to show that the equations have nonzero solutions ψ ̅ i with positive κ.
In general cases, this can be solved only numerically. Here, we first
provide a simplified model that shows the existence of molecular
neutronic states analytically and then provide the computational
workflow to solve the equation in general.

Assuming there are nuclei on an infinite cubic lattice with a lattice
constant a, and each nucleus has a scattering length of b. We assume
Re[b] ≪ a. Because of the periodicity of the lattice, the neutron
eigenfunction follows the Bloch theorem. We consider the Bloch
function at the Γ point, which means ψ ̅ i on lattice points is a constant
in the whole space. Then eq 4 gives

+ [ ]
+ +

=
+ +b

a
e

x x x
1

Re
0

x x x

a x x x

( , , ) (0,0,0) 1
2

2
2

3
2

1 2 3

1
2

2
2

3
2

(9)

where (x1, x2, x3) go through all combinations of integers except
(0,0,0). We can easily see that the equation has a solution only when
Re[b] < 0. As | [ ]| 1b

a
Re and each term in the summation is less than

1, there must be a large number of lattice points contributing to the
summation so that the second term can equal −1. That means the
lattice is dense, and the summation can be approximated as an integral
over the whole space:

+ [ ]
| |

=
| |b

a
x e

x
1

Re
d 0

a x
3

(10)

The integral can be done analytically, giving
a

4
2 2 . The solution of

the binding energy is then

* = = [ ]E
m

b
m a2

2 Re

n n
b

2 2 2

3 (11)

Similarly, if a unit cell contains multiple nuclei in an infinite crystal,
the condition that allows this equation to have a solution is
∑αnαRe[bα] < 0, where na and ba are the number and scattering
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length of the αth type of nucleus in a unit cell. The solution of the
binding energy is then

* = =
[ ]

E
m

n b

m V2

2 Re
b

n n

2 2 2

u.c. (12)

which is eq 5 (Vu.c. is the unit cell volume). The order of magnitude of
Eb, considering hydrogen-storage materials, is 0.1−1 μeV. The
dispersion relation can also be obtained as
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+E k
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V
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4 Re
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Using this equation, we can evaluate the mass gain of the LiH
crystal when trapping neutrons. The Brillouin zone volume with E(k)

< 0 is = [ ]( )V
n b

VB.Z.
4
3

4 Re 3/2

u.c.
. Assuming the neutron−neutron

interaction in the molecular neutronic states is negligible, the neutron
mass density in the material is =n

m V

(2 )
n B.Z.

3 . Then, the percentage mass

gain discussed in the main text is
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Using the data of the LiH crystal ρLiH = 780 kg/m3, nLi = nH = 4,
Re[bLi] = −2.22 fm (7Li, unpolarized), Re[bH] = −18.33 fm (1H, fully
polarized), Vu.c. = 68.09 Å3, mn = 1.675 × 10−27 kg), we get a mass
gain of 6.78 × 10−6% for infinite 3D crystal of LiH.

As an infinite crystal can host bound neutronic states, we can
conclude that a finite NQD can also host such states, as long as its size
is sufficiently large. Then, we aim to numerically solve the molecular
neutronic states for finite-size NQD. In order to obtain a manageable
numerical problem, we do a coarse-graining by turning eq 4 into an
integral equation using again the continuum approximation:

+
| |
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| |
r r

e
r r
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V
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Re
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r r
3
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where Ωn.c. is the nanocrystal region. The equation is then discretized
by the coarse grid lattice ri⃗ = (xi,yi,zi)a0 with integer numbers of xi.yi,zi.
Then, the equation turns into:

+
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3
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(16)

where rij = |ri⃗ − rj⃗|, and grid separation a0 is set as R/10, one tenth of
the nanocrystal radius. All grid points within the nanocrystal sphere
are included in eq 16 and are solved as an eigenvalue problem with
eigenvector (ψ ̅(r1⃗), ψ̅(r2⃗), ...). Our numerical test shows that this a0
gives good numerical convergence of binding energy to three effective
digits accuracy.
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S1. NEUTRON BOUND STATES

Here we describe the formalism of neutrons’ low en-
ergy bound states in a nuclear force potential created by
multiple nuclei. The Hamiltonian of the system is

H = − ℏ2

2mn
∇2 +

∑
i

vi(r⃗), (S1)

where vi(r⃗) is the nuclear force potential energy of the
ith nucleus to a neutron. Here, we employ the Green
function formalism. The time-independent Schrodinger
equation for an energy eigenfunction ψ(r⃗) can be written
as:[

− ℏ2

2mn
∇2 + V (r⃗)

]
ψ(r⃗) = Eψ(r⃗) = −ℏ2κ2

2mn
ψ(r⃗), (S2)

where we define V (r⃗) ≡
∑
i vi(r⃗) the wave vector κ ≡√

−2mnE
ℏ for bound states. The above equation is equiv-

alent to: (
κ2 −∇2

)
ψ(r⃗) = −2mnV (r⃗)

ℏ2
ψ(r⃗). (S3)

The Green function of this equation satisfies:{(
κ2 −∇2

)
G(r⃗, r⃗′;E) = δ(r⃗ − r⃗′)

lim|r⃗−r⃗′|→∞G(r⃗, r⃗′;E) = 0,
(S4)

which gives

G(r⃗, r⃗′;E) =
e−κ|r⃗−r⃗

′|

4π|r⃗ − r⃗′|
. (S5)

The energy eigenfunctions can then be formally expressed
as:

ψ(r⃗) = −
∫
G(r⃗, r⃗′;E)

2mnV (r⃗′)

ℏ2
ψ(r⃗′)dr′3, (S6)

which is Eq. (1) in the main text. The integral can be
rewritten as a sum of local integrals around each nucleus:

ψ(r⃗) = −
∑
i

∫
Ωi

G(r⃗, r⃗′;E)
2mnvi(r⃗

′)

ℏ2
ψ(r⃗′)dr′3, (S7)

∗ liju@mit.edu

where Ωi is a spherical volume around the ith nucleus
with a radius of the nuclear force range. We consider two
cases: the first is r⃗ is not fm-scale close to any nuclei. As
G is a slowly varying function of r⃗′ that is approximately
a constant at each nucleus’ fm-scale neighborhood, it can

be taken out of the integral, replacing r⃗′ by R⃗i (case 1 of
main text Eq. (2)):

ψ(r⃗) = −
∑
i

G(r⃗, R⃗i;E)

∫
Ωi

2mnvi(r⃗
′)

ℏ2
ψ(r⃗′)dr′3. (S8)

The second case is that r⃗ is ∼fm close to the jth nucleus,
so extracting G out of the integral around Ωj in Eq. (S8)
is invalid. Then we need to add a contribution from the
jth nucleus’ neighborhood (case 2 of main text Eq.(2)):

ψ(r⃗) = −
∑
i ̸=j

G(r⃗, R⃗i;E)

∫
Ωi

2mnvi(r⃗
′)

ℏ2
ψ(r⃗′)dr′3

−
∫
Ωj

G(r⃗, r⃗′;E)
2mnvj(r⃗

′)

ℏ2
ψ(r⃗′)dr′3.

(S9)

As we consider the low-energy case, this integral can then
be simplified following the typical assumptions of the
Fermi pseudopotential. We can introduce the scatter-
ing length, bi, for low-energy neutron [1] whose real part

is Re[bi] ≡ limE→0
1

4πψ̄(R⃗i)

∫
Ωi

2mnvi(r⃗
′)

ℏ2 ψ(r⃗′)dr′3, where

ψ̄(r⃗) is the average eigenfunction [1]:

ψ̄(r⃗) =
3

4πD3

∫
|r⃗−r⃗′|<D

ψ(r⃗′)dr′3. (S10)

Here D is a length that is far smaller than the inter-
atomic distance but far larger than the force range of
nuclear potential. This approximation can be taken be-
cause the interatomic distance is five orders of magnitude
large than the force range of nuclear force. Eq. (S8) and
Eq. (S9) can be simplified using the average eigenfunction
and scattering length. The first case (Eq. (S8)) gives:

ψ̄(r⃗) ≃ ψ(r⃗) = −4π
∑
i

G(r⃗, R⃗i;E)Re[bi]ψ̄(R⃗i)

= −
∑
i

e−κ|r⃗−R⃗i|

|r⃗ − R⃗i|
Re[bi]ψ̄(R⃗i), ∀i(|r⃗ − R⃗i| ≫ fm),

(S11)

mailto:liju@mit.edu
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where ψ̄(r⃗) approximately equals ψ(r⃗) as the later is
slowly varying at the length-scale D when r⃗ is far from
nuclei. The second case (Eq. (S9)) gives:

ψ(r⃗) = −
∑
i ̸=j

e−κ|r⃗−R⃗i|

|r⃗ − R⃗i|
Re[bi]ψ̄(R⃗i)

−
∫
Ωj

e−κ|r⃗−r⃗
′|

|r⃗ − r⃗′|
mnvj(r⃗

′)

2πℏ2
ψ(r⃗′)dr′3, (|r⃗ − R⃗j | ∼ fm).

(S12)
The average eigenfunction around the nuclei can be de-
rived by substituting this equation into Eq. (S10). Using
the slow varying condition again for the first term, we
obtain

ψ̄(r⃗) = −
∑
i ̸=j

e−κ|r⃗−R⃗i|

|r⃗ − R⃗i|
Re[bi]ψ̄(R⃗i)−

3

4πD3

×
∫
|r⃗1−r⃗|<D

dr31

∫
Ωj

dr32
e−κ|r⃗1−r⃗2|

|r⃗1 − r⃗2|
mnvj(r⃗2)ψ(r⃗2)

2πℏ2
.

(S13)
In the second term, we can first do the integral∫
|r⃗1−r⃗|<D

e−κ|r⃗1−r⃗2|

|r⃗1−r⃗2| dr31, and as κD ≪ 1, the exponen-

tial term in the Green function approximates 1. As both

r⃗ and r⃗2 are fm-close to R⃗j , their distance is also in fm
scale, far smaller than D. The integral gives 2πD2, then

the second term equals − 3
2DRe[bj ]ψ̄(R⃗j). As D ≫ fm,

this term is negligible compared to ψ̄ itself, so only the
first term remains. Summarizing the two cases gives the
general expression of the average eigenfunction:

ψ̄(r⃗) ≃ −
∑

i,|r⃗−R⃗i|≫fm

e−κ|r⃗−R⃗i|∣∣∣r⃗ − R⃗i

∣∣∣ Re[bi]ψ̄
(
R⃗i

)
, (S14)

which is Eq. (3) in the main text. To get a closed set of

equations, we set r⃗ = R⃗i and denote ψ̄
(
R⃗i

)
as ψ̄i:

ψ̄i +
∑
j ̸=i

e−κ|R⃗i−R⃗j|∣∣∣R⃗i − R⃗j

∣∣∣ Re[bj ]ψ̄j = 0, (S15)

which is Eq. (4) in the main text.
Finally, we reexamine the applicability of Fermi pseu-

dopotential in molecular neutronic states. Here, we prove

that limE→0
1

4πψ̄(R⃗i)

∫
Ωi

2mnvi(r⃗
′)

ℏ2 ψ(r⃗′)dr′3 converges to

the same number regardless of whether E approaches
zero from a positive or negative direction. That vali-
dates our usage of the scattering length from neutron
scattering data to molecular neutronic states. As the
force range of vi(r⃗) is far smaller than 1/κ, the eigen-
function near a nucleus is accurately approximated as
an s-wave. We denote the wave function around Ri as
ψ(r) and u(r) ≡ rψ(r), where r is the distance from the
nucleus. The eigenvalue equation is:

− ℏ2

2mn

d2u

dr2
+ vi(r)u(r) = Eu(r). (S16)

At r larger than the force range R0, the potential vi(r) =
0, then we have u′′(r) = 0 given E → 0. That means the
u(r)|r>R0

= k(r + c0) is a linear function. The average

eigenfunction ψ̄i =
3

4πD3

∫D
0
u(r)4πrdr ≃ k (as c0, R0 ≪

D). We can then integrate Eq. (S16) multiplied by r
from r = 0 to r = R0:

− ℏ2

2mn

∫ R0

0

dr
d2u

dr2
r +

∫ R0

0

vi(r)u(r)rdr = 0. (S17)

That gives:

− ℏ2

2mn

[
r
du

dr
− u(r)

]R0

0

+
1

4π

∫
Ωi

vi(r⃗)ψ(r⃗)dr = 0. (S18)

As u(0) = 0, R0
du
dr |R0

− u(R0) = −kc0, we obtain

ℏ2

2mn
c0ψ̄i +

1

4π

∫
Ωi

vi(r⃗)ψ(r⃗)dr
3 = 0. (S19)

That proves the expression 1

4πψ̄(R⃗i)

∫
Ωi

2mnvi(r⃗
′)

ℏ2 ψ(r⃗′)dr′3

approaches a constant of −c0, which is defined as Re[bi],
when E approaches zero. Here, neglecting the E-term
applies as long as

√
2mn|E|/ℏ ≪ fm−1 regardless of the

sign of E, so the low-energy scattering state and bound
state have the same scattering length.

S2. NEUTRON ABSORPTION LIFETIME AND
MATERIALS SCREENING

In addition to the binding energy, it is also impor-
tant to evaluate other effects that might limit the life-
time of molecular neutronic states. In the Hamiltonian
in Eq. (S1), we did not consider electromagnetic radi-
ation, which leads to the radiative neutron absorption
process where a neutron drops into a MeV deep bound
state and emits a γ-ray photon. This neutron absorp-
tion process makes the neutron bound state unstable.
The low-energy neutron absorption rate is proportional
to the Fermi contact, with a constant of low-energy ab-
sorption cross-section σa(Ek) multiplied by neutron ve-

locity
√
2Ek/mn [2]. Summing over all nucleus, the ab-

sorption rate of a molecular neutronic state in a uniform
perfect crystal is:

dΓ

dt
=

1

T ∗ =
∑
i

|ψ̄i|2 lim
Ek→0

σia(Ek)

√
2Ek
mn

= lim
Ek→0

1

Vu.c.

∑
α

nασ
α
a (Ek)

√
2Ek
mn

,

(S20)

which is Eq. (5) in the main text. In the second line, we
use the condition that ψ̄ is normalized and constant in
space.
If the nanocrystal has a finite size, the argument based

on the uniform wave function is no longer valid. Interest-
ingly, the product of binding energy and absorption rate
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are upper bounded. The binding energy can be rewritten
as the opposite of the summation of potential energy and
kinetic energy:

Eb = −2πℏ2

mn

∑
i

Re[bi]|ψ̄i|2−⟨Êk⟩ ≤ −2πℏ2

mn

∑
i

Re[bi]|ψ̄i|2,

(S21)

where ⟨Êk⟩ is the average kinetic energy, sum over i goes
through all unit cells m and all the atom types α in each
unit cell. As ψ̄ is slowly varying in the scale of a unit
cell, the inequality approximates:

Eb ≤ −2πℏ2

mn

∑
m

|ψ̄m|2
∑
α

nαRe[bα], (S22)

where ψ̄m is the average eigenfunction in the mth unit
cell. The absorption rate, by this notation, can be writ-
ten as:

1

Tlife
=

∑
m

|ψ̄m|2 lim
Ek→0

∑
α

nασ
α
a (Ek)

√
2Ek
mn

. (S23)

We therefore have

EbTlife ≤ −2πℏ2

mn

∑
α nαRe[bα]

limα→0

∑
α nασ

α
a (Ek)

√
2Ek

mn

= E∗
bT

∗,

(S24)
which is Eq. (6) in the main text. It is worth noticing that
the inequality can be transformed into an inspiring form,
which is similar to the time-energy uncertainty principle.
The low energy absorption cross section is related to the
imaginary part of the scattering length [2]:

σαa (Ek) =
4π Im[bα]

k
= 4π Im[bα]

√
ℏ2

2mnEk
. (S25)

Substituting this back into Eq. (S24), we derive

EbTlife ≤ −ℏ
2

∑
α nαRe[bα]∑
α nα Im[bα]

. (S26)

We see that compared to the time-energy uncertainty

principle, the upper bound has an amplification of Re[bα]
Im[bα] ,

which is 106 for polarized hydrogen atoms.
In the materials screening, we select crystal structures

from all available structures in the Materials project con-
taining hydrogen. We first exclude structures not sta-
ble and structures containing elements heavier than La
(because they generally have excessively high absorption
cross sections and cannot give a reasonable lifetime), and
then calculate E∗

b and T ∗ by Eq. (5) in the main text.
The values of bi are extracted from ref. [2], where we as-
sume that H nuclei are fully polarized, and all other nuclei
are non-polarized. For most elements, we assume a natu-
ral abundance of isotopes, except for a few elements: we
assume Li, B, Cl, and Se are purified as 7Li, 11B, 37Cl,
80Se, because these isotopes are naturally abundant and
the purification significantly improves lifetime in some
compound.

S3. NEUTRON UPSCATTERING

In this section, we elaborate the derivation and compu-
tational details to obtain the neutron upscattering rate
shown in Fig. 3b in the main text. The total Hamiltonian
of the neutron phonon system is Ĥ = Ĥn + Ĥph + ˆVint,

where Ĥn = − ℏ2

2mn
∇2 +

∑
i vi(r⃗) is the neutron Hamil-

tonian when nuclei are at equilibrium positions, Hph =∑
j ℏωj(n̂j +

1
2 ) is the phonon Hamiltonian under har-

monic approximation, and V̂int = −
∑
i Q⃗i · ∇vi(r⃗) is the

interaction between neutron and phonon expanded to the

first-order of atomic displacement Q⃗i. In the Hamiltoni-
ans, ωj and n̂j are the vibration frequency and phonon
number operator of the jth vibration mode. The atomic
displacement operator can be expressed as phonon cre-

ation and annihilation operators, a†j and aj :

Q⃗i =
∑
j

√
ℏ

2Mjωj
(a†j + aj)e⃗ij (S27)

where Mj and e⃗ij are the effective mass and polariza-

tion vector of the jth phonon mode. Assuming V̂int is a
perturbation, the neutron upscattering rate can then be
calculated using Fermi’s golden rule.
Initially, we assume the neutron is at the low-

est bound state ψ0(r⃗) with energy E0. The phonon
is at thermal equilibrium, which has P ({nj}, T ) =∏
j

1
Zj
e−njℏωj/kBT probability of being at state |{nj}⟩

with energy E{nj}(having nj phonons at mode j. Zj
is the partition function). The final state of the neutron

is ψk(r⃗) = eik⃗·r⃗ with energy Ek = ℏ2k2

2mn
, and the final

state of phonons is |{n′j}⟩ (with energy E{n′
j}) where one

phonon is absorbed. The total transition rate is then:

Γupscattering =
2π

ℏ
∑

{nj},{n′
j}

∫
d3k

(2π)3
P ({nj}, T )

|⟨ψk, {n′j}|V̂int|ψ0, {nj}⟩|2δ(Ek + E{n′
j} − E0 − E{nj})

(S28)

Substituting the expressions of P ({nj}, T ), V̂int, and all
energy terms, the expression is simplified to:

Γupscattering =
2π

ℏ
∑
j

∫
d3k

(2π)3
fB.E.(ωj , T )

ℏ
2Mjωj

|
∑
i

e⃗ij · ⟨ψk|∇vi(r⃗)|ψ0⟩|2δ(Ek − E0 − ℏωj)

(S29)
Taking the bulk crystal limit for a nanoparticle, the sum-

mation over vibrational modes
∑
j turns into

∑
n

∫
d3k′

(2π)3 ,

Mj becomes Mu.c.
nk Nu.c. (effective mass in one unit

cell times the number of unit cells), and e⃗ij becomes∑
i e⃗

0
i,nk′e

ik⃗′·R⃗i , where e⃗0i,nk′ is the polarization vector in

one unit cell. Using the average wavefunction ψ̄0 ≃ 1

and Fermi pseudopotential vi(r⃗) = 2πℏ2bi
mn

δ(r⃗ − R⃗i0) to
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FIG. S1. Phonon band structure and density of states (blue
lines) of LiH crystal calculated by the DFT. The grey lines
are band structure of the final-state free neutrons.

evaluate the matrix element, we get

⟨ψk|∇vi(r⃗)|ψ0⟩ = ik⃗
2πℏ2

mn
bie

−ik⃗·r⃗ (S30)

The |
∑
i e⃗ij · ⟨ψk|∇vi(r⃗)|ψ0⟩|2 then gives:

(2π)3Nu.c.Ωu.c.(
2πℏ2

mn
)2

∑
m

|⃗k·
∑
i∈u.c.

e⃗0i,nk′bi|2δ(k⃗−G⃗m−k⃗′)

(S31)

where Ωu.c. is the unic cell volume and G⃗m is the inverse
lattice vector (indexed by m). Summarizing these results
together, we obtain

Γupscattering =
ℏ4

2m2
n

∑
n

∫
d3kfB.E.(ωnk, T )

Ωu.c.

Mu.c.
nk ωnk∑

m

|(k⃗ + G⃗m) ·
∑
i∈u.c.

e⃗0i,nkbi|2δ(Ek − E0 − ℏωnk)

(S32)
which is Eq. (7) in the main text.

In order to evaluate Eq. (7) in the main text, we
first conduct DFT calculations to evaluate the phonon
band structures ωnk and polarization vectors e⃗0i,nk. We
use LiH crystal as an example. The DFT calculations
are implemented by Vienna ab-initio simulation package
(VASP) [3] using the projector-augmented wave (PAW)
method [4]. The generalized gradient approximation
(GGA) is employed with the Perdew-Burke-Ernzerhof
(PBE) functional [5]. The k-point mesh is sampled by
the Monkhorst-Pack method [6] with a separation of
0.2 rad/Å. Electronic iterations converge to 10−6 eV
and forces in atomic relaxation converges to 0.01 eV/Å.
The force constant matrix is calculated using density
functional perturbation theory (DFPT) implemented in
VASP using a 3×3×3 supercell. The phonon band struc-
ture and polarization vectors are then calculated using
the phonopy package [7] on a 50× 50× 50 k-point mesh.

FIG. S2. Energy levels of the molecular neutronic states in
40 nm-radius spherical LiH nanoparticle with incomplete hy-
drogen nuclear spin polarization pH. We assume that pH is
uniform and constant in the nanoparticle.

The calculated phonon band structure and density of
states are plotted in Fig. S1. We evaluate the neutron up-
scattering rate using Eq. (7) in the main text, where the
integral over k is numerically evaluated on the 50×50×50
k-point mesh, and the energy δ-function is smeared as a
Gaussian function with σ = 0.2h×THz. In the sum-
mation over inverse lattice vectors G⃗m =

∑3
l=1ml⃗bl,

m1,m2,m3 goes through all integers in [-3, 3]. We ex-
amine that the calculated scattering rates are well con-
vergent over all numerical parameters. The calculation
gives results in Fig. 3b in the main text.

S4. IMPACT OF INCOMPLETE NUCLEAR
SPIN POLARIZATION

Here we consider the case when the hydrogen nuclear
spins are not fully polarized. The scattering length bi is
consists of a coherent part bi,coherent and an incoherent
part bi,incoherent:

bi = bi,coherent +
2bi,incoherent√
I(I + 1)

s⃗ · I⃗ . (S33)

Consider the density matrix of the nuclear spin ensemble

is ρI . We define the polarization p⃗H = 1
ITr[I⃗ρI ] oriented

towards z-direction. Assuming the neutron spin is com-
pletely polarized in the opposite direction of the nuclear
polarization, then we have s⃗ = − e⃗z

2 (as I = 1/2 for H).
Then, the average scattering length in the nuclear spin
ensemble is

⟨bi⟩ = Tr[biρ] = bi,coherent −
pH√
3
bi,incoherent. (S34)

Energy levels of molecular neutronic states are then eval-
uated by substituting the ⟨bi⟩ in Eq. (S34)into Eq. (4) in
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the main text, as shown in Fig. S2. The results verify that
the molecular neutronic states is robust against slightly
incomplete polarization. In the rest part of this paper,
we assume pH = 1,

S5. MICROWAVE CONTROL

The microwave applies an electric field on a charged
nanocrystal with a mass of M = 4π

3 R
3ρ and an electric

charge of q. If the electric field is

E⃗(t) = E⃗0 sinωt. (S35)

Then the coordinates R⃗ of the center of the charged
nanocrystal is

R⃗(t) = − qE⃗0

Mω2
sinωt. (S36)

The time-dependent Schrodinger equation ĤR⃗(r)ψ =

iℏ∂ψ∂t gives:

c′m(t)+
∑
n

cn(t)R⃗
′(r)·⟨ψm,R(t)|∇R|ψn,R(t)⟩ =

1

iℏ
cm(t)Em,

(S37)
where cm(t) is the wave function in the en-
ergy representation and Schrodinger picture:
|ψ(t)⟩ =

∑
m cm(t)|ψm,R(t)⟩, where ĤR(t)|ψm,R(t)⟩ =

Em|ψm,R(t)⟩. Transforming to the interaction picture,

we derive

d

dt
cim(t) +

∑
n̸=m

cin(t)Ωmne
i
ℏ (Em−En)t cosωt = 0, (S38)

where the Rabi frequency equals:

Ωmn =
qmnE⃗0

Mℏ
Em − En

ℏω
· ⟨ψm,R(t)|r⃗|ψn,R(t)⟩. (S39)

As the matrix element does not depend on t, so we write
it as ⟨ψm|r⃗|ψn⟩ in Eq. (8) in the main text. In the deriva-

tion, we used the fact that ψn,R(t) is a function of r⃗−R⃗(t).
so ∇Rψn,R(t) = −∇rψn,R(t). Then,

⟨ψm,R|∇R|ψn,R⟩ = −⟨ψm,R|∇r|ψn,R⟩

= −mn

ℏ2
⟨ψm,R|[r⃗, Ĥ]|ψn,R⟩

= (Em − En)
mn

ℏ2
⟨ψm,R|r⃗|ψn,R⟩.

(S40)
This completes the derivation from Eq. (S37) to the Rabi
frequency expression Eq. (S39).
Numerically, we calculate the matrix element by dis-

cretizing the integral on the same lattice as described in
section 1. The integral is done on a cubic region whose
center is the sphere center of the nanocrystal and the
length of a side is 3 times of the sphere radius. The
numerical test shows that the box size of the integral
gives good numerical convergence of the matrix element
to three effective digits accuracy.
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