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Elastic stability criteria are derived for homogeneous lattices under arbitrary but uniform external load.
These conditions depend explicitly on the applied stress and reduce, in the limit of vanishing load, to the
criteria due to Born, involving only the elastic constants of the crystal. By demonstrating the validity of our
results through a comparison of the analysis of an fcc lattice under hydrostatic tension with direct molecular-
dynamics simulation, we show that crystal stability under stress (ideal strength) is not a question only of
material property, and that even qualitative predictions require the inclusion of the effects of applied stress.
General implications of our findings, as well as relevance to stability phenomena in melting, polymorphism,
crack nucleation, and solid-state amorphization, are discussed.

L. INTRODUCTION

The fundamental basis for understanding the mechanical
stability of the solid state lies in the formulation of stability
criteria, a set of conditions which specify the critical level of
external stress or internal strain under which a homogeneous
lattice, without defects of any kind, becomes structurally un-
stable. Lattice stability is not only one of the most central
issues in elasticity, it is also an essential consideration in the
analysis of structural responses in solids, ranging from poly-
morphism, amorphization, and melting to fracture. It may
seem surprising, therefore, that despite the recognized impor-
tance of assessing crystal stability, the question of the proper
formulation of stability criteria at finite load remains an open
issue.

The systematic analysis of lattice stability is generally at-
tributed to Born,! who showed that by expanding the internal
energy of a crystal in a power series in the strain and by
requiring convexity (positivity) of the energy, one obtains
stability criteria in the form of a set of conditions on the
elastic constants appropriate to the crystal. While Born’s re-
sults are well known,? the fact that they are valid only under
conditions of zero load has not always been appreciated.’~>
In a critical discussion of instability analysis of homoge-
neous lattices, Hill® has pointed out certain confusion in the
literature where the Born criteria had been used to determine
theoretical strengths of perfect crystals.>™> The problem lies
in that when the crystal is under load, the first-order changes
in the surface tractions in an incremental deformation have to
be specified, as both the external work done and the change
in the internal energy are evaluated to second order.® Stabil-
ity thus can be regarded in the sense of a mechanical test or
as an intrinsic property of the material. In the former, the
loading is frame dependent and the work is affected by rota-
tion, whereas in the latter one imagines that the loading “‘fol-
lows” the material during deformation and is therefore frame
independent. Without concluding which view is more physi-
cally meaningful, Hill stressed the relativity aspect of the
stability concept, namely, in a crystal under load, convexity
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of the internal energy is coordinate dependent.® In a follow-
ing series of comprehensive theoretical and computational
studies, Hill and Milstein showed that different choices of
strain measures lead to different domains of stability.”~!!

The purpose of this paper is to present a method for ana-
lyzing the onset of instabilities in homogeneous lattices un-
der critical loading. By formulating a Gibbs integral which
combines the change in the Helmholtz free energy and the
external work done during deformation (in analogy with the
Gibbs free energy), we derive stability criteria in which the
elastic stiffness coefficients B appear in place of the elastic
constants C. Because B depends explicitly on the applied
stress and therefore does not have Cauchy symmetry, it is
necessary to define stability strictly in terms of the symme-
trized form of B. Nevertheless, we can give arguments
which indicate that stability criteria involving only B may be
quite robust. Next we consider the case of a cubic lattice
under hydrostatic loading to obtain predictions of critical
strain and mode of deformation, along with numerical results
based on an explicit atomistic model. The predictions are
tested by molecular-dynamics simulations, carried out at
constant applied stress, in which the onset of structural insta-
bility is explicitly observed and the mode of instability is
determined. In this direct manner we demonstrate the valid-
ity of our stability criteria at finite load.

In the present approach we do not deal directly with the
Gibbs integral which is dependent on the deformation path in
most cases. Instead we interpret it as the result of path inte-
gration in a field of driving forces, and obtain the stability
criteria from the first-order expansion of this force field
around equilibrium position, in terms of the strain. The elas-
tic stiffness tensor then appears as the sum of the elastic
constant tensor and another fourth-rank tensor (second-rank
in deformation space) which depends solely on the applied
load. Since the latter has symmetry determined by the ap-
plied load, this means the response of the lattice is no longer
a purely intrinsic property of the material system. In the limit
of vanishing load, the present results reduce to the stability
criteria derived by Born.!?
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The paper is organized as follows. Derivation of stability
criteria is discussed in Sec. II, where one can see clearly the
connection to Born’s results. In Sec. III we specialize to the
case of a cubic lattice and hydrostatic loading, a particularly
simple situation which is nevertheless sufficient to illustrate
the importance of the explicit role of the external stress. In
Sec. IV we discuss first numerical evaluations of the elastic
stiffness coefficients necessary for the prediction of the criti-
cal strain at which an fcc lattice becomes unstable. Then
molecular-dynamics simulation results are presented to show
the effectiveness of the instability criteria. We conclude in
Sec. V by commenting on the fundamental role that elastic
instability can play in structural responses to stress or tem-
perature.

II. LATTICE STABILITY AT FINITE LOADING

Consider a perfect lattice undergoing homogeneous defor-
mation under an applied load. In response to the load, the
system configuration changes from X to Y=JX, where J is
the deformation gradient or the Jacobian matrix.'? The asso-
ciated Lagrangian strain tensor is defined as

p=(1/2)(JTT-1). 2.1

All homogeneous deformations can be described by the
movement of a configuration variable in deformation space,
in general a nine-dimensional space with origin at an arbi-
trarily chosen reference state X. In this space any configura-
tion point can be uniquely represented by the transformation
matrix J (relative to X). Moreover, if there exists particular
constraints which allow us to uniquely determine J from
7, then deformation space becomes six-dimensional, which
we call unique to denote the fact that any configuration can
be specified in terms of 7 instead of J. As an example, in the
Parrinello-Rahman method for performing atomistic simula-
tion at constant stress,'” J is usually constrained to be sym-
metric. Because J in this case can then be uniquely deter-
mined from 7 through the equation

J=V1+2p=1+5—(12) p*+ - - -, 2.2)

we will refer to such a deformation space as symmetric. (No-
tice that there can be other unique deformation spaces. For
instance, we can constrain J to be always upper triangular, so
it has only 6 degrees of freedom which is also uniquely de-
termined by 7.) The opposite of unique is the general case
which we will discuss elsewhere. For the present deforma-
tion under an applied load the change in the Helmholtz free
energy, a quantity which is rotationally invariant, and there-
fore only a function of 7, can be always expanded into a
power series of 7,

AF=F(X,n)—F(X,0)
=VOOLH(X) 7+ (12)C(X) gy+---1.  (23)

In (2.3) we have the conventional definitions of the thermo-
dynamic stress and second-order elastic constant tensor,

1 3 ( oF
V(X) 2 19711‘]'

t;(X)= ,7:()), (2.4)
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2
Ciju(X)= ! 3'4( or l :0), (2.5)
J V(X) "\ aniome|”

where §n is the nth rank symmetrization operator,
8:(Gj)=(G;+G;)12,

34(Gijk1) =(Gijut Gt Gijut G4, (2.6

etc.

For the work that will be done by an external stress 7, we
let Y be any point on the deformation path and consider a
virtual move near Y along the path, i.e., J—J+ 6J. We have
in mind a deformation space with configuration X as the
origin and the reference state for 7. The incremental work
done is then given by the surface integral

&6'4,‘

SW= ngTijnj-5uidS—fyv-(Tﬁu)dV—V(Y)TijEY—j
vy Tij &Sui+¢98uj 7
_()Tayj ay, )’ @7

Here du is the virtual displacement on the surface. Making
use of the fact that Su=(8J)X=&J-J 'Y, which leads to

Tij _ _
SW= V(Y)—zi(af.f Y Tosumy,, (2.8)

and the fact that the differential of (2.1) is

Sp=112)[JT 6T+ (8IT)J], (2.9)
or
J Ui Y=Q2)[67- 77 +77T- 6171, (2.10)
we obtain for the incremental (differential) work,
SW=V(Y)Tr(J ‘7 T67). (2.11)

The work done over the deformation path [ is therefore

AW(l)= flV(Y)Tr(rlrern). (2.12)

To examine the system stability at configuration X we
consider the difference between the increase in Helmholtz
free energy and the work done by external stress,

AG(Y,)=AF(X,n) —AW(l)= flg(Y)-dﬂ (2.13)

with

oF
g(Y)=5;—V(Y)J“rJ*T. (2.14)

We define AG to be the Gibbs integral in analogy with
the Gibbs free energy which is the appropriate thermody-
namic potential in the (NTP) ensemble. However, it is im-
portant to point out that AG might be dependent on the de-
formation path in this more general case of constant stress
condition (to be shown later). This means that this quantity is
not a true thermodynamic potential to which one can apply
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the usual stability analysis. Nevertheless, we can identify
—g(Y) as the Gibbs driving force and focus on its property
as a force field in deformation space to formulate a stability
analysis.

The spirit of our analysis here may be compared to a
virtual work argument. Stability of a lattice under load may
be determined by imagining the lattice undergoing a virtual
displacement, with the applied stress held constant. Then one
asks whether the work that would be done by the applied
load exceeds that absorbed as an increase in internal energy.
If this situation obtains, then an excess energy would be
available to cause the displacement to grow, and the lattice
would be unstable.

From now on we will analyze stability behavior in sym-
metric deformation space. Since there is a one-to-one corre-
spondence between 7 and J, the space is six dimensional
and all related second-rank tensors (strains and stresses) can
be treated as vectors in this space (taking the trace between
two matrices is like taking an inner product between two
vectors). On the basis of (2.13) we can interpret —g(Y) as
the direction of steepest descent at configuration Y, and re-
gard it as the most plausible way for the system to evolve at
that point, at least for quasistatic processes. To show that
g(Y) has the property of a force field, let us assume the
condition for equilibrium at X to be the requirement that no
first-order change in AG occurs for any small variation about
X. This can only be satisfied by the condition

oF
g,-j(X)= - V(Y)(JilTJ—T)ij

an; J=1
=V(X)[t;(X)—7;]=0, (2.15)
or
ti(X)=m; ; (2.16)

thus, the condition for mechanical equilibrium is, as ex-
pected, the equality between external load 7;; and the inter-
nal stress #;;(X).

Suppose the system, initially at equilibrium at X under
stress 7(g(X)=0), is perturbed to configuration Y with cor-
responding strain 7. In view of (2.14) the first-order expan-
sion for g(Y) becomes

8ij(Y)=gi(m=V(X)Bjuumut -, (2.17)
where
a(det|J| T3, Tnd i)
Bij=Ciju— Er l,=0, j=1- (2.18)
Since
oL 1—np+ (2.19)
Jit2n 700 '
det|J|=1+Tr(n)+---, (2.20)
(2.18) can be evaluated to give
Bijw1=Cijru— O 7ij+ 8uTji+ 81 Ti (2.21)
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Because 7;; and 7;;( 77, and 7;;) are not separate variables,
we need to symmetrize with respect to the interchange of
indices (i« j) and (k</). Thus,

Bijxi=Cijut+ (12)( 87+ s+ 8ymji+ 6 Tie— 2 61 7ij) -
(2.22)

Equation (2.22) is the expression defining the elastic stiff-
ness coefficient B.'* We can see that B does not possess
(ij)«>(kl) symmetry, so AG is path dependent in general,
unless the applied load is hydrostatic, 7;;%J;; .

The physical implication of (2.17) is that in deformation
space the shape of the force field around the origin is de-
scribed by the ‘“second-rank tensor” B. Consider now the
following inner product:

N=n-Bng. (2.23)

Because — B 7 should be the most probable direction for ac-
tion, if we can show that A >0 for any # near the origin, then
it means the system is always moving toward the origin, no
matter how it is initially perturbed. This means the system is
stable. On the other hand, if one can find an % for which
A <<0, then there exists a path which will lead the system to
instability. Given that B is in general asymmetric, the stabil-
ity of B is governed by its symmetrized counterpart,

A=(112)(BT+B), (2.24)

because

N=79"B,=(12)n"(B"+B)n (2.25)

for any column vector 2. The stability criterion is then the
requirement that all the eigenvalues of A be positive. Stated
another way, the system becomes unstable when

det|A|=0 (2.26)

for the first time.

We can also propose an equivalent “free energy” argu-
ment. We had been purposely avoiding the term ‘“‘free en-
ergy” because AG might depend on path as well as the final
state. But suppose we can stipulate a path for every final
position beforehand, then

AG(Z,)=AG(Z,1(Z))=AG*(Z) (2.27)

again, and the problem is superficially solved. For conve-
nience we will define the path for every point in space to be
the straight line between it and the origin, and the corre-
sponding criterion can be simply stated as “The system is
stable if and only if AG*(Z)>0 for any Z near the origin.”

It is easy to show that this criterion is totally equivalent to
(2.26) because a straight path integral of a linearly dependent
function g(#n)=Bn will simply give us

AG*(np)=(12)np-By=(112)np-An, (2.28)
as long as the first-order expansion is valid.
We can easily show that when
det|B|=0 (2.29)

the system is already unstable. However, this is a “weaker”
criterion than (2.26) because it cannot predict definitely the
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incipient instability mode. Yet it can turn out that some
modes predicted by (2.29) are identical to the prediction of
(2.26) due to reasons of underlying symmetry, and if the
incipient mode is among those common ones, then the two
criteria are equivalent as far as incipient instability is con-
cerned. One example is the uniaxial tension case, where the
C,,= C,3 mode is predicted by both (2.26) and (2.29), and
this happens to be the incipient instability mode found in the
simulation studies we have carried out. Thus it appears that
the “B criteria” are quite robust.

One should also keep in mind that results from (2.17) to
(2.29) are only for symmetric deformation space, which is
the dominant situation in computer simulation. Stability cri-
teria for general deformation space have been derived and
will be discussed in a future publication.

III. STABILITY CRITERIA FOR A CUBIC LATTICE

To exhibit explicitly instability criteria for a particular lat-
tice type and applied loading, we consider a cubic lattice
under hydrostatic pressure

Tij=_P5ij' (31)

In this case B is symmetric, and there is genuine Gibbs
free energy. We follow the convention that inward pressure is
positive while inward stress is negative (P<<0 for tension).
Given (3.1) one finds from (2.22) that the nonzero elements
of the stiffness coefficients are

B1=Bp=B3=Cy—P,

BIZ=B21:Bl3:C12+P, (32)

Byy=Bss=Bg=4(Cyu—P).

In the present case of volumetric deformation the stiffness
coefficients and the elastic constants have the same symme-
try. Inserting these elements into (2.29) gives three instability
criteria and corresponding eigenmodes of deformation,
C11+2C12+P:0,

(1,1,1,0,0,0) 67 (3.3)

C —C —2P~O (677xX’57]yy’57722’0’0’0) (3 4)
" 12 ’ 577xx+ 577yy+ 57711:0 .

Cyu—P=0, (0,0,0,57,,0,0). (3.5)

These results have straightforward interpretations. The
first criterion clearly has to do with volumetric deformation,
as indicated by its eigenmode. Also, with
C1;+2C,=3By, where By is the isothermal bulk modulus,
we see that for (3.3) to be satisfied, P would have to be
negative. Thus, the nature of this instability is lattice deco-
hesion by pure dilatation. Since it involves the vanishing of
the bulk modulus, we will refer to it as the spinodal instabil-
ity. The second instability, (3.4) involves symmetry breaking
(bifurcation) with volume conservation; the vanishing modu-
lus here may be identified as the tetragonal shear,
G'=(C,;—Cp)/2. We will refer to this as the Born insta-
bility. The third instability is the simple shear along one of
the symmetry directions, with volume conservation; the
modulus here is G=Cy,.
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FIG. 1. Potential energy per atom (a) and lattice parameter (b) of
EAM (Au) model at various temperatures and zero pressure; ag is
the lattice parameter at 0 K.

IV. DILATATION-INDUCED INSTABILITY

To investigate the instability induced by an applied hydro-
static stress we perform molecular-dynamics simulation us-
ing an interatomic potential model of the embedded-atom
type (EAM) developed for Au.!> (The particular choice of
the potential has no special significance here since we are
interested only in the generic features of the results.) The
simulation cell is cubic and contains N =504 atoms, arranged
in an fcc structure with periodic border conditions imposed
in the manner of Parrinello and Rahman.!> A series of
isothermal-isostress simulations are carried out at several
temperatures, each over a range of applied tension up to and
beyond the point of instability. At each temperature the
atomic trajectories generated are used to compute the elastic
constants C;; at the current state of tension using appropriate
fluctuation formulas.'® Having determined the elastic con-
stants in this manner, the elastic stiffness coefficients are
obtained through (2.22).

Since molecular dynamics allows us to examine not only
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the system stability at various levels of applied stress, but
also the effects of temperature, we show first in Fig. 1 how
our simulation model behaves under isobaric (P=0) heat-
ing. The variations of the potential energy and the lattice
parameter at zero pressure are those characteristic of a crys-
tal undergoing normal thermal expansion; the lattice expands
as temperature increases, while the potential energy also in-
creases because thermal motions cause the instantaneous sys-
tem configurations to be relatively more disordered. The
simulation data for both quantities can be fitted well to a
quadratic expansion in the temperature. We will henceforth
regard the lattice parameter ratio a/a,, where a is the equi-
librium (minimum energy) value at zero temperature, as a
convenient measure of lattice strain 7. Notice that so long as
the system is stable, there is a one-to-one correspondence
between 7 and T [Fig. 1(b)]. Thus, at finite temperature the
lattice is under strain even though the system is under zero
load.

We have determined the variations of the elastic constants
and elastic stiffness coefficients with hydrostatic loading at
several temperatures, 200, 500, 800, 1000, and 1200 K.
Since the stability criteria are given in terms of elastic
moduli, it is more relevant to examine their behavior under
load. We first define the bulk modulus and the two shear
moduli,

Br=(3)(C;;+2Cyy), 4.1)
G'=(3)(C;1—Cyp), (4.2)
G=4Cy,. 4.3)

Next we introduce their extensions to finite hydrostatic load-
ing,

BH(7)=(3)(B1;+2B12)=(5)(C;+2C 1+ P), (4.4)

G’(7')=(%)(BH—B12)=(%)(C11—C12—2P), 4.5)

G(17)=B4yy=4(Cyy—P). (4.6)

In the limit of zero load (4.4)—(4.6) obviously reduce to
(4.1) and (4.3), whereas at finite load, the two sets of moduli
are both well defined and clearly differ from each other. In
contrast to the conventional stability criteria which require
that (4.1)—(4.3) be positive, the stability criteria derived in
Sec. III require instead (4.4)—(4.6) to be positive.

In Fig. 2 we show how the two sets of moduli vary with
strain at a relatively low temperature of 500 K. These results
are obtained by imposing a certain hydrostatic load on the
simulation cell and allowing the system to come to equilib-
rium. After equilibrium is reached, long simulation runs are
made to collect trajectory data for the calculation of the three
elastic constants, C;;, Ci, and Cy, using fluctuation
formulas'® at various levels of applied load. Comparing the
conventional elastic moduli defined in (4.1)—(4.3) with their
counterparts defined in terms of elastic stiffness coefficients,
we see the effect of the applied stress [see (2.22)] is most
pronounced in the tetragonal shear modulus G', less so in
G, and even less in By. The significance of Fig 2 is that on
the basis of (3.3)—(3.5) one would predict the lattice to un-
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dergo decohesion at a strain of 1.060, while the conventional
criteria would predict an instability caused by the vanishing
of G’ at a strain of 1.025. These two predictions are suffi-
ciently different that a direct simulation of the instability
induced by pure dilatation should have no difficulty in show-
ing which is correct.

Figure 3 shows the simulation results for both compres-
sion and tension loadings at 500 K. One sees the internal
pressure decreases monotonically with tension until the
strain reaches a value of 1.058, at which point the pressure
shows a sudden relief. Correspondingly, the energy at the
critical strain shows a sudden drop. The static structure factor
gives little indication of any structural change, while the
mean squared displacement shows a dramatic increase in
atomic displacement. Upon detailed examination of the
atomic configurations after the unstable structural response,
we find that cavitation has taken place in the previously ho-
mogeneous lattice. The sudden creation of a surface around
the region of cavitation provides a mechanism to relieve
some of the tension and lower the energy (by allowing par-
ticles to relax to a state of lower local stress). It also explains
why the system apparently remained relatively ordered and
indicates that the large mean square displacement is likely
due to the opening of the cavity.

The clearcut conclusion from Fig. 3 is that the observed
instability occurs at a critical strain, which agrees very
closely with that predicted by the present stability criteria.
Moreover, the symmetry associated with the onset of cavita-
tion points to the vanishing of B rather than the vanishing
of G'. Thus, by direct comparison we have demonstrated the
validity of the present stability criteria, and at the same time
the inapplicability of the conventional criteria.

Results corresponding to those given in Figs. 2 and 3 also
have been obtained at several other temperatures: 200, 800,
1000, and 1200 K. Figure 4 shows the strain at which each
stability criterion is violated as given by (4.4)—(4.6). At each
temperature, therefore, the predicted critical strain is again
the lowest value of strain at which the first violation occurs.
Figure 4 also shows the observed values from the direct
simulation. It is seen that the predictions agree well with the
simulation results. Notice that while at 800 K instability oc-
curs when the bulk modulus vanishes, a crossover from de-
cohesion to tetragonal shear takes place at still higher tem-
perature, such that at 1200 K the mechanism of unstable
structural response is now clearly the vanishing of G'.

Returning to the question of what is the structural state of
the system after the onset of instability, we note that the
instability at 800 K is accompanied by a potential energy
increase and an abrupt vanishing of the static structure factor,
as shown in Fig. 5. This characteristic behavior is indicative
of loss of crystalline order. Indeed, inspection of the atomic
configurations generated during the simulation shows that
the lattice has become completely disordered. The disorder-
ing, brought on by the spinodal instability, stands in distinct
contrast to the structural response previously observed at 500
K, where at the onset of spinodal instability the potential
energy decreased and S(k) shows little change (cf. Fig. 3).
As we reported earlier, in the latter case the atomic configu-
rations revealed the formation of a cavity with the remaining
lattice still reasonably well ordered.
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FIG. 2. Variations with hydrostatic strain of moduli associated with
elastic stiffness coefficients (4.4)—(4.6) (closed symbols) and with elastic
_constants (4.1)—(4.3) (open symbols), respectively, (a) bulk modulus, (b)
tetragonal shear modulus and (c) rhombohedral shear modulus. Lines show
low-order polynomial fits to the data points.
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V. DISCUSSION

In this work we have analyzed the stability of a homoge-
neous lattice under a constant uniform load by formulating a
Gibbs integral which combines the change in the Helmholtz
free energy with the work done by the applied stress. Be-
cause it is dependent on the path of deformation, this integral
cannot be used directly to assess stability in the sense of a
true thermodynamic potential. We showed that the integrand
of the Gibbs integral leads to an effective force field acting in
the deformation space; moreover, this quantity is character-
ized by the elastic stiffness tensor as defined in (2.21). Using
the fact that the force field provides a direction for action, we
arrive at a condition for instability involving the symme-
trized form of the stiffness tensor (2.26).

We demonstrate that this approach provides an accurate
means of predicting the maximum deformation (strain) that
the lattice can sustain before the system becomes structurally
unstable, the simple test being a comparison with direct
molecular-dynamics simulation. In verifying (3.3)-(3.5), we
show at the same time that the conventional criteria attrib-
uted to Born, obtained by setting P=0 in (3.3)~(3.5), are not
valid at finite load, a limitation which appears not to have
been fully recognized in previous studies of ideal strengths
of solids.>~ It should be noted here that the technique devel-
oped by Parrinello and Rahman'? for carrying out simulation
at constant stress is ideally suited to the present purpose,
since it corresponds precisely to the conditions under which
the derivation is made. Direct simulation therefore provides
the cleanest test of the theoretical limits of lattice stability.

It is noteworthy that the present stability analysis, based
on only elasticity considerations, turns out to describe so
accurately the onset of structural instability observed by ato-
mistic simulations. This correspondence provides not only a
method for the determination of ideal strengths at finite tem-
peratures, but also an approach to understanding the role of
elastic stability in various structural transitions such as
stress-induced polymorphism and amorphization, and homo-
geneous melting. While stability analysis itself is incapable
of determining the final configuration to which a structurally
unstable system will evolve, it is an invaluable aid in the
interpretation of molecular-dynamics simulations.

In several current studies, (2.22) has led to precise iden-
tifications of the elastic instability which triggers the struc-
tural transition. In hydrostatic compression of Si in the dia-
mond cubic structure, the instability which causes the
transition to B-tin structure is found to be the vanishing of
the tetragonal shear G'(P)."" In contrast, compression of
crystalline SiC in the zinc blende structure results in an
amorphization transition associated with the vanishing of
G(P)."'® For behavior under tension, crack nucleation in SiC
(Ref. 19) and cavitation in a model binary intermetallic,?
both triggered by the spinodal instability, the vanishing of
B(P), are results which are analogous to the observations
reported here. Notice, however, that in the present work a
crossover at high temperature from spinodal to shear insta-
bility takes place. Further studies using the present EAM
potential model have been made. While the detailed results
will be reported elsewhere, it is pertinent to mention here
that under uniaxial tension a transition from fcc to bcc was
observed at the instability where G'(P) vanished. The prob-
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lem of isobaric heating at zero pressure is of particular inter-
est because then there is no difference between the present
stability criteria and those due to Born. We found that the
homogeneous lattice melts at the onset of instability again
associated with the vanishing of G'(P)."

Present work shows clearly the connection between the
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FIG. 4. Variation of critical strain with temperature of EAM
(Au) model under hydrostatic tension; predictions based on (4.4)—
(4.6) are denoted by circles, squares, and crosses, respectively.
Strains at which instability occurred in simulation are indicated by
triangles.
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stability criteria for a crystal under load, our (2.26) and the
more approximate result (2.29), and the well-known stability
criteria, generally attributed to Born, det/C|=0. One sees
immediately that the latter conditions are valid only for a
crystal under no external load. The distinction between the
fourth-rank tensor B, which we call the elastic stiffness co-
efficient, and the second-order elastic constant tensor C is
apparent from (2.22). This is a central relation in our analy-
sis. While it has been derived previously,'*?? its essential
role in the determination of lattice stability under load appar-
ently has not been recognized in the way we have presented
here. It is worth noting that it is intuitively reasonable that
stability criteria for crystals under load should depend ex-
plicitly on the loading. As (2.22) shows, the effect of the
external work, to the order of our analysis, appears as a
group of terms involving only the applied stress. Since the
symmetry of the group depends only on the loading and
therefore is unrelated to the symmetry of lattice, B has
mixed symmetry. If we regard B as the tensor of effective
elastic moduli, then according to (2.29) the condition for
stability is not a question of intrinsic material property alone.
We also note that in general B does not have Voigt symme-
try, B;ju =By, and that it does not satisfy Cauchy rela-
tiOIlS, Bijkl:Bikjl= [ .6'23

We are not aware of any previous derivation of (2.26) and
(2.29). On the other hand, Hill and Milstein’ have written
down a formal expression combining the strain energy and
the external work which is equivalent to (2.13) and derived
stability criteria under volumetric deformation for different
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choices of strain measure. Our stability criteria based on
(4. 4)—(4.6) agree identically with their results’ for the case
of Green’s strain measure. For a summary of the series of
studies on crystal stability under load and the relativity of the
Born criteria carried out by Hill and Milstein, one should see
the review of Milstein.?*

Finally, we note that the disordering of a homogeneous
lattice under isobaric heating at zero pressure can be re-
garded as an unstable structural response triggered by an
elastic instability. In this case, the appropriate stability crite-
ria are those given by Born. Through a combination of sta-
bility analysis and direct molecular-dynamics simulation,
one can show that the thermoelastic concept of melting pro-
posed by Born? and later extended by Boyer*® indeed holds,
provided heterogeneous nucleation is suppressed by the
elimination of all defects.?!
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