22.51 Problem Set 3 (due Fri, Sept. 28)

1 Schrodinger Picture (40 pt)

Question: We are going to fill in the missing steps on lecture and rederive the Schrodinger picture step by step in a rigorous fashion from the three quantum postulates.
(a). Prove that,

$$
\begin{equation*}
\left[\hat{A}, \hat{B}_{1} \hat{B}_{2} . . \hat{B}_{n}\right]=\sum_{s=0}^{n-1} \hat{B}_{1} . . \hat{B}_{s}\left[\hat{A}, \hat{B}_{s+1}\right] \hat{B}_{s+2} . . \hat{B}_{n} . \tag{1}
\end{equation*}
$$

(b). By Quantum Postulate 3, any Heisenberg operator must be defined as,

$$
\begin{equation*}
\hat{A}(t) \equiv \sum_{n} c_{n}(t) \ldots \hat{q}(t) \hat{p}(t) \hat{q}(t) \hat{q}(t) \ldots \tag{2}
\end{equation*}
$$

where $\ldots \hat{q}(t) \hat{p}(t) \hat{q}(t) \hat{q}(t) \ldots$ means a certain ordered combination of the elementary Heisenberg operators $\hat{q}(t), \hat{p}(t)$. Also, the partial time-derivative of $\hat{A}(t)$ is defined to be,

$$
\begin{equation*}
\frac{\partial \hat{A}(t)}{\partial t} \equiv \sum_{n} \dot{c}_{n}(t) \ldots \hat{q}(t) \hat{p}(t) \hat{q}(t) \hat{q}(t) \ldots \tag{3}
\end{equation*}
$$

which is equivalent to what we do in classical mechanics. Using the following two axioms,

$$
\begin{equation*}
\frac{d \hat{q}(t)}{d t}=\frac{1}{i \hbar}[\hat{q}(t), \hat{\mathcal{H}}(t)], \quad \frac{d \hat{p}(t)}{d t}=\frac{1}{i \hbar}[\hat{p}(t), \hat{\mathcal{H}}(t)] \tag{4}
\end{equation*}
$$

which relate directly to the classical Hamiltonian dynamics, and (a), prove that,

$$
\begin{equation*}
\frac{d \hat{A}(t)}{d t}=\frac{1}{i \hbar}[\hat{A}(t), \hat{\mathcal{H}}(t)]+\frac{\partial \hat{A}(t)}{\partial t} . \tag{5}
\end{equation*}
$$

c. For any $\hat{U}(t)$ that satisfies $\hat{U}^{+}(t) \hat{U}(t)=\hat{U}(t) \hat{U}^{+}(t)=\hat{I}$, we may define,

$$
\begin{equation*}
\hat{A}_{s}(t) \equiv \hat{U}(t) \hat{A}(t) \hat{U}^{+}(t) \tag{6}
\end{equation*}
$$

Therefore by definition,

$$
\begin{equation*}
\hat{q}_{s}(t) \equiv \hat{U}(t) \hat{q}(t) \hat{U}^{+}(t), \quad \hat{p}_{s}(t) \equiv \hat{U}(t) \hat{p}(t) \hat{U}^{+}(t), \quad \hat{\mathcal{H}}_{s}(t) \equiv \hat{U}(t) \hat{\mathcal{H}}(t) \hat{U}^{+}(t) \tag{7}
\end{equation*}
$$

Show that (2) is still satisfied when all the operators have subscript " s " attached. Therefore,

$$
\begin{equation*}
\hat{A}=\sum_{n} c_{n}(t) \ldots \hat{q} \hat{p} \hat{q} \hat{q} \ldots \tag{8}
\end{equation*}
$$

where the operators may or may not depend on t, is considered a picture-independent expansion formula.
d. Show that in order for $\hat{q}_{s}(t), \hat{p}_{s}(t)$ to be independent of time,

$$
\begin{equation*}
\frac{d \hat{q}_{s}(t)}{d t}=0, \quad \frac{d \hat{p}_{s}(t)}{d t}=0 \tag{9}
\end{equation*}
$$

the following would be sufficient,

$$
\begin{equation*}
i \hbar \frac{d \hat{U}(t)}{d t}=\hat{\mathcal{H}}_{s}(t) \hat{U}(t), \quad \hat{U}(0) \equiv \hat{I} \tag{10}
\end{equation*}
$$

Furthermore prove that it guarantees $\hat{U}^{+}(t) \hat{U}(t)=\hat{U}(t) \hat{U}^{+}(t)=\hat{I}$ at any t.
e. From now on let $\hat{U}(t)$ satisfies (10). Show that,

$$
\begin{equation*}
\frac{d \hat{A}_{s}(t)}{d t}=\sum_{n} \dot{c}_{n}(t) \ldots \hat{q}_{s} \hat{p}_{s} \hat{q}_{s} \hat{q}_{s} \ldots \tag{11}
\end{equation*}
$$

If we define,

$$
\begin{equation*}
\frac{\partial \hat{A}_{s}(t)}{\partial t} \equiv \sum_{n} \dot{c}_{n}(t) \ldots \hat{q}_{s} \hat{p}_{s} \hat{q}_{s} \hat{q}_{s} \ldots \tag{12}
\end{equation*}
$$

which is again a picture-independent definition if we compare with (3), then we would have,

$$
\begin{equation*}
\frac{d \hat{A}_{s}(t)}{d t}=\frac{\partial \hat{A}_{s}(t)}{\partial t}=\hat{U}(t)\left(\frac{\partial \hat{A}(t)}{\partial t}\right) \hat{U}^{+}(t) \tag{13}
\end{equation*}
$$

f. Explain why if we define,

$$
\begin{equation*}
\left|\psi_{s}(t)\right\rangle \equiv \hat{U}(t)|\psi\rangle \tag{14}
\end{equation*}
$$

the two pictures would be equivalent.
g. Show that if $\hat{\mathcal{H}}(t)$ has no explicit dependence on time, meaning that if in its definition (2) all coefficients $c_{n}(t)$'s are just c_{n} 's, then,

$$
\begin{equation*}
\hat{\mathcal{H}}_{s}(t)=\hat{\mathcal{H}}_{s}(0)=\hat{\mathcal{H}}(t)=\hat{\mathcal{H}}(0) . \tag{15}
\end{equation*}
$$

In summary, there is only one $\hat{\mathcal{H}}$, and,

$$
\begin{equation*}
\hat{U}(t)=\exp \left(\frac{t \hat{\mathcal{H}}}{i \hbar}\right) \tag{16}
\end{equation*}
$$

is the solution to (10).

2 Operator Inverse (30 pt)

Question: If $\hat{A} \hat{B}=\hat{B} \hat{A}=\hat{I}$, then \hat{B} is called the inverse of \hat{A} and is denoted by \hat{A}^{-1}. Prove by induction that,

$$
\begin{equation*}
(\hat{A}-\lambda \hat{B})^{-1}=\hat{A}^{-1}+\lambda \hat{A}^{-1} \hat{B} \hat{A}^{-1}+\lambda^{2} \hat{A}^{-1} \hat{B} \hat{A}^{-1} \hat{B} \hat{A}^{-1}+\ldots \tag{17}
\end{equation*}
$$

for small enough $\lambda \in \mathbf{C}$.

3 Operator Trace (30 pt)

Question: Let \hat{A} be Hermitian with $\left\{\left|a_{n}\right\rangle\right\}$ as its eigenkets. If we adopt $\left\{\left|a_{n}\right\rangle\right\}$ as the basis, then the matrix representation of operator \hat{C} would be,

$$
\begin{equation*}
C_{n m} \equiv\left\langle a_{n}\right| \hat{C}\left|a_{m}\right\rangle \tag{18}
\end{equation*}
$$

and we define the trace of \hat{C} to be $\operatorname{Tr}_{A}(\hat{C})$,

$$
\begin{equation*}
\operatorname{Tr}_{A}(\hat{C}) \equiv \sum_{n} C_{n n}=\sum_{n}\left\langle a_{n}\right| \hat{C}\left|a_{n}\right\rangle \tag{19}
\end{equation*}
$$

where the subscript A is used to remind us of the fact that this number may well depend on the choice of \hat{A}.
(a). Prove that $\operatorname{Tr}_{A}(\hat{C})=\operatorname{Tr}_{B}(\hat{C})$, where \hat{B} can be any Hermitian operator. In other words the trace operation is representation-independent, and is an invariant of \hat{C} which we shall denote as $\operatorname{Tr}(\hat{C})$.
(b). Prove that $\operatorname{Tr}(\hat{C} \hat{D})=\operatorname{Tr}(\hat{D} \hat{C})$.
(c). Calculate $Z(\beta) \equiv \operatorname{Tr}(\exp (-\beta \hat{\mathcal{H}}))$, where $\hat{\mathcal{H}}$ is the simple harmonic oscillator Hamiltonian.
(d). Calculate $\bar{E}(\beta) \equiv \operatorname{Tr}(\exp (-\beta \hat{\mathcal{H}}) \hat{\mathcal{H}}) / Z$ for the simple harmonic oscillator. This is the average energy of an oscillator at finite temperature T with $\beta=1 / k_{\mathrm{B}} T$.

