22.51 Problem Set 5 (due Fri, Oct. 26)

1 3D Green's Function

Question: Prove that the solution to,

$$
\nabla^{2} g(\mathbf{x})=-4 \pi \delta(\mathbf{x}), \quad \mathbf{x} \in \mathbf{R}^{3}
$$

is

$$
g(\mathbf{x})=\frac{1}{|\mathbf{x}|}
$$

Answer:

For $|\mathbf{x}|>0$, there is,

$$
\nabla \frac{1}{|\mathbf{x}|}=-\frac{\mathbf{x}}{|\mathbf{x}|^{3}},
$$

and so,

$$
\nabla \cdot\left(-\frac{\mathbf{x}}{|\mathbf{x}|^{3}}\right)=-\frac{\nabla \cdot \mathbf{x}}{|\mathbf{x}|^{3}}-\mathbf{x} \cdot\left(-\frac{3 \mathbf{x}}{|\mathbf{x}|^{5}}\right)=0
$$

However, as $|\mathbf{x}| \rightarrow 0$, the terms involved get larger and larger, so $|\mathbf{x}|=0$ becomes a singularity.

The one and only criterion that something is a δ-function is that it is 0 everywhere beside the singularity, and the singularity is integrable with result unity. Here, because,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \nabla \cdot\left(\nabla \frac{1}{|\mathbf{x}|}\right) d^{3} \mathbf{x}=\iiint_{R} \nabla \cdot\left(\nabla \frac{1}{|\mathbf{x}|}\right) d^{3} \mathbf{x}
$$

where the integrated volume changes from whole space to a spherical region of radius R (because the integrand is zero outside of R). We then use the divergence theorem,

$$
\iiint_{R} \nabla \cdot\left(\nabla \frac{1}{|\mathbf{x}|}\right) d^{3} \mathbf{x}=\iint_{S}\left(\nabla \frac{1}{|\mathbf{x}|}\right) \cdot \mathbf{n} d S=\iint_{S}-\frac{\mathbf{R}}{R^{3}} \cdot \mathbf{n} d S=-4 \pi
$$

Thus, $\nabla^{2}\left(|\mathbf{x}|^{-1}\right)$ is zero when $|\mathbf{x}|>0$, but its volume integral gives -4π, so it can only be a δ-function.

2 Spatial-Temporal Green's Function

Question: Prove that the solution to,

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi(\mathbf{x}, t)=-4 \pi \rho(\mathbf{x}, t), \quad \mathbf{x} \in \mathbf{R}^{3}
$$

is

$$
\phi(\mathbf{x}, t)=\int d^{3} \mathbf{x}^{\prime} \frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

Answer: For $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|>0$, there is,

$$
\nabla\left(\frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)=-\frac{\rho\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}-\frac{\rho_{t}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{c\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}} .
$$

From Problem 1 we see that $\nabla \cdot\left(-\left(\mathbf{x}-\mathbf{x}^{\prime}\right) /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}\right)=0$ for $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|>0$, thus,

$$
\begin{align*}
& \nabla^{2}\left(\frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \\
= & \frac{\rho_{t}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{c\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \cdot \frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}+\frac{\rho_{t t}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{c\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \cdot \frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{c\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}}- \\
& \frac{\rho_{t}}{c}\left(\frac{\nabla \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}}-2 \frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{4}} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \\
= & \frac{\rho_{t t}}{c^{2}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} . \tag{1}
\end{align*}
$$

Thus, when $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|>0$,

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)=0
$$

Therefore,

$$
\begin{align*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi(\mathbf{x}, t) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d^{3} \mathbf{x}^{\prime}\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \\
& =\iiint_{R} d^{3} \mathbf{x}^{\prime}\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \tag{2}
\end{align*}
$$

Since we are free to choose any R, we can choose it to be very small, so as \mathbf{x}^{\prime} approaches \mathbf{x},
we can expand $\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right)$ as,

$$
\rho\left(\mathbf{x}^{\prime}, t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}\right) \approx \rho\left(\mathbf{x}^{\prime}, t\right)-\frac{\rho_{t}}{c}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|+\mathcal{O}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}\right)
$$

Therefore,

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi(\mathbf{x}, t) \approx \iiint_{R} d^{3} \mathbf{x}^{\prime}\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\frac{\rho\left(\mathbf{x}^{\prime}, t\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\frac{\rho_{t}}{c}+\mathcal{O}(R)\right)
$$

and the integral contributions from all terms except $\nabla^{2}\left(\frac{\rho\left(\mathbf{x}^{\prime}, t\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)$ which is singular at $\mathbf{x}=\mathbf{x}^{\prime}$ become negligible. So we have,

$$
\iiint_{R} d^{3} \mathbf{x}^{\prime} \nabla^{2}\left(\frac{\rho\left(\mathbf{x}^{\prime}, t\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)=\iiint_{R} d^{3} \mathbf{x}^{\prime} \rho\left(\mathbf{x}^{\prime}, t\right)\left(-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right)=-4 \pi \rho(\mathbf{x}, t)
$$

QED.

3 Lorentz Transformation

Question: For observer A, any event can be labeled by (x, t). For observer B , the same event is labeled by $\left(x^{\prime}, t^{\prime}\right)$. Suppose there is a linear connection between (x, t) and $\left(x^{\prime}, t^{\prime}\right)$,

$$
x^{\prime}=\alpha x+\beta t, \quad t^{\prime}=\mu x+\eta t
$$

which is based on the belief that space-time is homogeneous, where α, β, μ, η are constants, our goal is to determine α, β, μ, η.

The first condition is that B is seen by A as moving with uniform velocity v, therefore an event $\left(0, t^{\prime}\right)$ for B - which is how B labels himself, is labeled by A as $(x, t)=(v t, t)$. Conversely, $(0, t)$ for A should be considered $\left(-v t^{\prime}, t^{\prime}\right)$ for B .

The second condition is that the speed of light is c for both A and B , therefore $(x, t)=(c t, t)$ corresponds to $\left(x^{\prime}, t^{\prime}\right)=\left(c t^{\prime}, t^{\prime}\right)$.

Lastly, the space should be isotropic, so using $-x$ as labeling variable should be no different from using x as labeling variable. This suggests that if α is a function of v, then $\alpha(v)=$ $\alpha(-v)$.

Please solve for $\alpha(v), \beta(v), \mu(v), \eta(v)$.

Answer: The first condition gives,

$$
\alpha(v t)+\beta t=0
$$

so $\beta=-\alpha v$. For the reciprocal case, the following is a useful identity to remember,

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\mu & \eta
\end{array}\right)^{-1}=\frac{1}{\alpha \eta-\mu \beta}\left(\begin{array}{cc}
\eta & -\beta \\
-\mu & \alpha
\end{array}\right)
$$

and so,

$$
\begin{equation*}
x=\frac{\eta x^{\prime}-\beta t^{\prime}}{\alpha \eta-\mu \beta}, \quad t=\frac{-\mu x^{\prime}+\alpha t^{\prime}}{\alpha \eta-\mu \beta} . \tag{3}
\end{equation*}
$$

Thus,

$$
\eta\left(-v t^{\prime}\right)-\beta t^{\prime}=0
$$

so $\beta=-\eta v$, therefore $\beta=-\alpha v=-\eta v$ and $\alpha=\eta$.
From the second condition, we have,

$$
c t^{\prime}=\alpha c t-\alpha v t, \quad t^{\prime}=\mu c t+\alpha t
$$

so,

$$
c=\frac{c-v}{c \mu / \alpha+1} \quad \longrightarrow \quad \mu / \alpha=-v / c^{2}
$$

For the third requirement, from (3) we see that,

$$
\alpha(-v)=\frac{\eta(v)}{\alpha(v) \eta(v)-\mu(v) \beta(v)}=\frac{\alpha(v)}{\alpha(v) \eta(v)-\mu(v) \beta(v)},
$$

if $\alpha(v)=\alpha(-v)$, we must have,

$$
1=\alpha(v) \eta(v)-\mu(v) \beta(v)=\alpha^{2}-\alpha\left(-v / c^{2}\right)(-\alpha v)
$$

which means that,

$$
\alpha(v)=\frac{1}{\sqrt{1-v^{2} / c^{2}}},
$$

and so,

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}}, \quad t^{\prime}=\frac{-v x / c^{2}+t}{\sqrt{1-v^{2} / c^{2}}}, \quad x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-v^{2} / c^{2}}}, \quad t=\frac{v x^{\prime} / c^{2}+t^{\prime}}{\sqrt{1-v^{2} / c^{2}}} .
$$

4 Doppler Shift

Question: A wave is characterized by $A \exp (i k x-i \omega t)$. In a different frame, it must also be characterized by $A^{\prime} \exp \left(i k^{\prime} x^{\prime}-i \omega^{\prime} t^{\prime}\right)$. A and A^{\prime} can be very different for various reasons, but it is unlikely that the phase, $\theta \equiv k x-\omega t$, differs from the phase, $\theta^{\prime} \equiv k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}$, because it would be a very strange world if a wave-crest event in one frame is not a wave-crest event in the other frame.

Assuming $\theta=\theta^{\prime}$, so θ is a frame invariant, derive the transformation law from (k, ω) to $\left(k^{\prime}, \omega^{\prime}\right)$ between the two inertial frames described in Problem 3. Specialize the result to when $\omega / k=c$, and show that $\omega^{\prime} / k^{\prime}$ is still c, even though ω^{\prime} differs from ω.

Doppler shift of spectral lines is the main method to measure the relative speed between here and distant stars.

Answer: If, as Problem 3 shows,

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}}, \quad t^{\prime}=\frac{-v x / c^{2}+t}{\sqrt{1-v^{2} / c^{2}}}
$$

then

$$
k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=\frac{k^{\prime} x-k^{\prime} v t}{\sqrt{1-v^{2} / c^{2}}}-\frac{-\omega^{\prime} v x / c^{2}+\omega^{\prime} t}{\sqrt{1-v^{2} / c^{2}}}
$$

which if it must agree with $k x-\omega t$ for any (x, t), can only happen if,

$$
k=\frac{k^{\prime}+\omega^{\prime} v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}, \quad \omega=\frac{\omega^{\prime}+k^{\prime} v}{\sqrt{1-v^{2} / c^{2}}},
$$

or conversely,

$$
k^{\prime}=\frac{k-\omega v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}, \quad \omega^{\prime}=\frac{\omega-k v}{\sqrt{1-v^{2} / c^{2}}} .
$$

$\omega^{\prime}=\omega-k v$ is the classical Doppler shift formula, applicable to small v. The $\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ factor is the relativistic correction. Since,

$$
\frac{\omega}{k}=\frac{\omega^{\prime}+k^{\prime} v}{k^{\prime}+\omega^{\prime} v / c^{2}}=\frac{\omega^{\prime} / k^{\prime}+v}{1+\left(\omega^{\prime} / k^{\prime}\right)\left(v / c^{2}\right)}
$$

it is easy to see that if $\omega^{\prime} / k^{\prime}=c$, then $\omega / k=c$.

