
22.51 Problem Set 5 (due Fri, Oct. 26)

1 3D Green’s Function

Question: Prove that the solution to,

∇2g(x) = −4πδ(x), x ∈ R3,

is

g(x) =
1

|x| .

Answer:

For |x| > 0, there is,

∇ 1

|x| = − x

|x|3 ,

and so,

∇ ·
(
− x

|x|3
)

= −∇ · x
|x|3 − x ·

(
− 3x

|x|5
)

= 0.

However, as |x| → 0, the terms involved get larger and larger, so |x| = 0 becomes a singu-

larity.

The one and only criterion that something is a δ-function is that it is 0 everywhere beside

the singularity, and the singularity is integrable with result unity. Here, because,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
∇ ·

(
∇ 1

|x|

)
d3x =

∫ ∫ ∫

R
∇ ·

(
∇ 1

|x|

)
d3x,

where the integrated volume changes from whole space to a spherical region of radius R

(because the integrand is zero outside of R). We then use the divergence theorem,

∫ ∫ ∫

R
∇ ·

(
∇ 1

|x|

)
d3x =

∫ ∫

S

(
∇ 1

|x|

)
· ndS =

∫ ∫

S
− R

R3
· ndS = −4π.

Thus, ∇2(|x|−1) is zero when |x| > 0, but its volume integral gives −4π, so it can only be a

δ-function.
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2 Spatial-Temporal Green’s Function

Question: Prove that the solution to,

(
∇2 − 1

c2

∂2

∂t2

)
φ(x, t) = −4πρ(x, t), x ∈ R3,

is

φ(x, t) =
∫

d3x′
ρ(x′, t− |x− x′|/c)

|x− x′| .

Answer: For |x− x′| > 0, there is,

∇
(

ρ(x′, t− |x− x′|/c)
|x− x′|

)
= −ρ(x− x′)

|x− x′|3 −
ρt(x− x′)
c|x− x′|2 .

From Problem 1 we see that ∇ · (−(x− x′)/|x− x′|3) = 0 for |x− x′| > 0, thus,

∇2

(
ρ(x′, t− |x− x′|/c)

|x− x′|

)

=
ρt(x− x′)
c|x− x′| ·

(x− x′)
|x− x′|3 +

ρtt(x− x′)
c|x− x′| ·

(x− x′)
c|x− x′|2 −

ρt

c

(∇ · (x− x′)
|x− x′|2 − 2

(x− x′)
|x− x′|4 · (x− x′)

)

=
ρtt

c2|x− x′| . (1)

Thus, when |x− x′| > 0,

(
∇2 − 1

c2

∂2

∂t2

) (
ρ(x′, t− |x− x′|/c)

|x− x′|

)
= 0.

Therefore,

(
∇2 − 1

c2

∂2

∂t2

)
φ(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d3x′

(
∇2 − 1

c2

∂2

∂t2

) (
ρ(x′, t− |x− x′|/c)

|x− x′|

)

=
∫ ∫ ∫

R
d3x′

(
∇2 − 1

c2

∂2

∂t2

) (
ρ(x′, t− |x− x′|/c)

|x− x′|

)
(2)

Since we are free to choose any R, we can choose it to be very small, so as x′ approaches x,
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we can expand ρ(x′, t− |x− x′|/c) as,

ρ

(
x′, t− |x− x′|

c

)
≈ ρ(x′, t)− ρt

c
|x− x′|+O

(
|x− x′|2

)
.

Therefore,

(
∇2 − 1

c2

∂2

∂t2

)
φ(x, t) ≈

∫ ∫ ∫

R
d3x′

(
∇2 − 1

c2

∂2

∂t2

) (
ρ(x′, t)
|x− x′| −

ρt

c
+O(R)

)
.

and the integral contributions from all terms except ∇2
(

ρ(x′,t)
|x−x′|

)
which is singular at x = x′

become negligible. So we have,

∫ ∫ ∫

R
d3x′∇2

(
ρ(x′, t)
|x− x′|

)
=

∫ ∫ ∫

R
d3x′ρ(x′, t)(−4πδ(x− x′)) = −4πρ(x, t),

QED.

3 Lorentz Transformation

Question: For observer A, any event can be labeled by (x, t). For observer B, the same

event is labeled by (x′, t′). Suppose there is a linear connection between (x, t) and (x′, t′),

x′ = αx + βt, t′ = µx + ηt,

which is based on the belief that space-time is homogeneous, where α, β, µ, η are constants,

our goal is to determine α, β, µ, η.

The first condition is that B is seen by A as moving with uniform velocity v, therefore

an event (0, t′) for B - which is how B labels himself, is labeled by A as (x, t) = (vt, t).

Conversely, (0, t) for A should be considered (−vt′, t′) for B.

The second condition is that the speed of light is c for both A and B, therefore (x, t) = (ct, t)

corresponds to (x′, t′) = (ct′, t′).

Lastly, the space should be isotropic, so using −x as labeling variable should be no different

from using x as labeling variable. This suggests that if α is a function of v, then α(v) =

α(−v).

Please solve for α(v), β(v), µ(v), η(v).
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Answer: The first condition gives,

α(vt) + βt = 0,

so β = −αv. For the reciprocal case, the following is a useful identity to remember,


 α β

µ η



−1

=
1

αη − µβ


 η −β

−µ α


 ,

and so,

x =
ηx′ − βt′

αη − µβ
, t =

−µx′ + αt′

αη − µβ
. (3)

Thus,

η(−vt′)− βt′ = 0,

so β = −ηv, therefore β = −αv = −ηv and α = η.

From the second condition, we have,

ct′ = αct− αvt, t′ = µct + αt,

so,

c =
c− v

cµ/α + 1
−→ µ/α = −v/c2.

For the third requirement, from (3) we see that,

α(−v) =
η(v)

α(v)η(v)− µ(v)β(v)
=

α(v)

α(v)η(v)− µ(v)β(v)
,

if α(v) = α(−v), we must have,

1 = α(v)η(v)− µ(v)β(v) = α2 − α(−v/c2)(−αv),

which means that,

α(v) =
1√

1− v2/c2
,

and so,

x′ =
x− vt√
1− v2/c2

, t′ =
−vx/c2 + t√

1− v2/c2
, x =

x′ + vt′√
1− v2/c2

, t =
vx′/c2 + t′√

1− v2/c2
.
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4 Doppler Shift

Question: A wave is characterized by A exp(ikx − iωt). In a different frame, it must also

be characterized by A′ exp(ik′x′ − iω′t′). A and A′ can be very different for various reasons,

but it is unlikely that the phase, θ ≡ kx−ωt, differs from the phase, θ′ ≡ k′x′−ω′t′, because

it would be a very strange world if a wave-crest event in one frame is not a wave-crest event

in the other frame.

Assuming θ = θ′, so θ is a frame invariant, derive the transformation law from (k, ω) to

(k′, ω′) between the two inertial frames described in Problem 3. Specialize the result to

when ω/k = c, and show that ω′/k′ is still c, even though ω′ differs from ω.

Doppler shift of spectral lines is the main method to measure the relative speed between

here and distant stars.

Answer: If, as Problem 3 shows,

x′ =
x− vt√
1− v2/c2

, t′ =
−vx/c2 + t√

1− v2/c2
,

then

k′x′ − ω′t′ =
k′x− k′vt√
1− v2/c2

− −ω′vx/c2 + ω′t√
1− v2/c2

,

which if it must agree with kx− ωt for any (x, t), can only happen if,

k =
k′ + ω′v/c2

√
1− v2/c2

, ω =
ω′ + k′v√
1− v2/c2

,

or conversely,

k′ =
k − ωv/c2

√
1− v2/c2

, ω′ =
ω − kv√
1− v2/c2

.

ω′ = ω− kv is the classical Doppler shift formula, applicable to small v. The (1− v2/c2)−1/2

factor is the relativistic correction. Since,

ω

k
=

ω′ + k′v
k′ + ω′v/c2

=
ω′/k′ + v

1 + (ω′/k′)(v/c2)
,

it is easy to see that if ω′/k′ = c, then ω/k = c.
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