
22.51 Problem Set 6 (due Nov. 2)

1 Spatially Averaged Maxwell Equations

Question:

a. Denote convolution, ∫ ∞

−∞
b(x′)g(x− x′)dx′, x, x′ ∈ R,

as b(x) ∗ g(x). Prove that if a(x) ≡ b(x) ∗ g(x), then [db(x)/dx] ∗ g(x) = da(x)/dx. In other

words, differentiation commutes with convolution.

b. The Intel Pentium 4 chip is based on .18µm CMOS technology, which means that the

smallest feature on the chip is .18µm. Therefore, a description of the EM field down to .01µm

spatial resolution should be sufficient for chip design purposes. However, even in a tiny

.01µm× .01µm× .01µm Si crystallite, there are ∼ 106 atoms, and even more electrons. If we

account for all of them explicitly as charge and current sources in the Maxwell equations, the

problem becomes intractable. Therefore, Maxwell equations must undergo spatial averaging

before it can be used for such problems.

Spatial averaging of a(x) is generally done by defining a smoother field a(x) as,

a(x) ≡
∫

d3x′a(x′)g(x− x′),
∫

d3xg(x) = 1,

where g(x) is a smearing function chosen to have the lengthscale of the necessary spatial

resolution. For example, in the above case we may choose,

g(x) =
1

(2πL2)3/2
exp

(
−|x|

2

2L2

)
,

with L ∼ .01µm. E(x), for example, is then E(x′) averaged around x over a size ∼ (.01µm)3

region, which is what we want.

Prove that the form of Maxwell equations remain invariant after averaging. That is,

∇ ·B = 0, ∇× E = −1

c

∂B

∂t
,

∇ · E = 4πρ, ∇×B =
4π

c
j +

1

c

∂E

∂t
.
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So as far as the macroscopically averaged EM fields are concerned, material effects come

in only via the macroscopically averaged ρ and j. We have eliminated a lot of degrees of

freedom by this procedure!

2 Bound Charge Density

Question: There is no inherent difference between “free” and “bound” electrons; “free” and

“bound” are descriptions of its relation to the molecule. While “bound” electrons cannot

be displaced by more than ∼ 1Å from the molecule, thereby maintaining its total charge

neutrality, free electrons can migrate by macroscopic length L (see Problem 1).

Let us label molecules by n. Within each molecule, there are multiple charges {qi
n}, with,

∑

i

qi
n = 0, ∀n,

and whose positions are {xi
n}. Each molecule also has a center of mass xn. Let us define,

∆xi
n = xi

n − xn.

∆xi
n is clearly microscopic, |∆xi

n| ¿ L. Let us define dipole moment pn for the molecule

and dipole moment density p(x) for the medium as,

pn ≡ ∑

i

qi
n∆xi

n, p(x) ≡ ∑
n

pnδ(x− xn),

and quadruple moment Qn and quadruple moment density Q(x) as,

(Qn)αβ ≡ 3
∑

i

qi
n(∆xi

n)α(∆xi
n)β, Q(x) ≡ ∑

n

Qnδ(x− xn).

The charge density contribution from all bound charges is,

ρbound(x) ≡ ∑
n

∑

i

qi
nδ(x− xi

n).

As we see in Problem 1, ρbound(x) is not as handy as ρbound(x). Prove that,

ρbound(x) = −∇ · p(x) +
1

6

∑

α,β

∂2Qαβ(x)

∂xα∂xβ

+ ...

2



in the limit of |∆xi
n| ¿ L and explain why all terms except the first one should become

negligible.
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