22.51 Problem Set 9 (due Fri, Dec. 7)

1 Born's Approximation

Question: Instead of using the heavier machinery of time-dependent perturbation theory, the differential scattering cross-section $d \sigma / d \Omega$ between neutron and a static potential field $V(\mathbf{x})$ can be derived by solving merely the steady-state Schrodinger's equation.
(a). Suppose $\psi(\mathbf{x})$ is a solution to the one-body problem,

$$
\begin{equation*}
\left(-\frac{\hbar^{2} \nabla^{2}}{2 \mu}+V(\mathbf{x})\right) \psi(\mathbf{x})=\frac{\hbar^{2} k^{2}}{2 \mu} \psi(\mathbf{x}) \tag{1}
\end{equation*}
$$

and it has the following asymptotic behavior at large $|\mathbf{x}|$,

$$
\begin{equation*}
\psi(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+f(\theta) \frac{e^{i|\mathbf{k}||\mathbf{x}|}}{|\mathbf{x}|}+\mathcal{O}\left(|\mathbf{x}|^{-2}\right) \tag{2}
\end{equation*}
$$

where θ is the angle between \mathbf{x} and the incident wave-vector \mathbf{k}. Show that,

$$
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}
$$

(b). We may rewite (1) as,

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{x})=\frac{2 \mu V(\mathbf{x})}{\hbar^{2}} \psi(\mathbf{x}) \tag{3}
\end{equation*}
$$

What are the general solutions $\left\{\psi_{0}(\mathbf{x})\right\}$ to,

$$
\left(\nabla^{2}+k^{2}\right) \psi_{0}(\mathbf{x})=0, \quad \mathbf{x} \in \mathbf{R}^{3}
$$

and what is the Green's function solution $g(\mathbf{x})$ to,

$$
\left(\nabla^{2}+k^{2}\right) g(\mathbf{x})=\delta(\mathbf{x})
$$

(c). Given the scattering problem context, pick the general solution $\psi_{0}(\mathbf{x})$, and write down a formal "solution" to (3).
(d). Following the same procedure as in time-dependent perturbation theory, write down a
series expansion for the exact solution.
(e). Take the leading term and take the large $|\mathbf{x}|$ limit, derive $f(\theta)$ in terms of $V(\mathbf{x})$.
(f). Suppose,

$$
V(\mathbf{x})=-\frac{2 \pi \hbar^{2}}{\mu} a \delta(\mathbf{x})
$$

what is the total scattering cross-section and how should one then interpret a ?
(g). Show by rigorous quantum mechanics the relationship between a and b, the free and bound scattering lengths.

Answer:

(a). See Fig. 1. The incident beam $e^{i \mathbf{k} \cdot \mathbf{x}}$ does have finite width, which is enough to cover the sample, but will not be received by the detector.

incident beam

Figure 1: The incident beam $e^{i \mathbf{k} \cdot \mathbf{x}}$ does have finite width.

The particle flux formula is,

$$
\begin{equation*}
\mathbf{j}=-\frac{i \hbar}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{4}
\end{equation*}
$$

since,

$$
\begin{aligned}
-\nabla \cdot \mathbf{j} & =\frac{i \hbar}{2 m} \nabla \cdot\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \\
& =\frac{i \hbar}{2 m}\left(\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right) \\
& =\psi^{*}\left(\dot{\psi}-\frac{V \psi}{i \hbar}\right)+\psi\left(\dot{\psi}^{*}+\frac{V \psi^{*}}{i \hbar}\right) \\
& =\psi^{*} \dot{\psi}+\psi \dot{\psi}^{*}
\end{aligned}
$$

$$
\begin{equation*}
=\quad \dot{\rho} . \tag{5}
\end{equation*}
$$

One could work out the scattered flux exactly, but that is not necessary because at large $|\mathbf{x}|$, $f(\theta) e^{i|k||\mathbf{x}|} /|\mathbf{x}|$ behaves locally very much like a planewave $e^{i \mathbf{k}^{\prime} \cdot \mathbf{x}}$, with,

$$
\mathbf{k}^{\prime} \equiv \frac{|\mathbf{k}| \mathbf{x}}{|\mathbf{x}|}
$$

and amplitude $f(\theta) /|\mathbf{x}|$. The reason is because since,

$$
\nabla=\mathbf{e}_{r} \partial_{r}+\frac{\mathbf{e}_{\theta}}{r} \partial_{\theta}+\frac{\mathbf{e}_{\phi}}{r \sin \theta} \partial_{\phi},
$$

the only $\mathcal{O}\left(r^{-1}\right)$ term in (4) is from the radial derivative $\mathbf{e}_{r} \partial_{r}$. Thus, the scattered flux must be,

$$
\frac{\Phi_{\text {scattered }}}{\Phi_{\text {incident }}}=\left|\frac{f(\theta)}{r}\right|^{2}
$$

compared to the incident flux because both are like planewaves. Therefore the number of outgoing quanta per unit time in solid angle $d \Omega$ is simply,

$$
\frac{d N}{d t}=\Phi_{\text {scattered }} d S=\Phi_{\text {scattered }} \cdot r^{2} d \Omega=\Phi_{\text {incident }}|f(\theta)|^{2} d \Omega
$$

therefore,

$$
\frac{d \sigma}{d \Omega}=\frac{1}{\Phi_{\text {incident }}} \frac{d N}{d \Omega d t}=|f(\theta)|^{2}
$$

(b). The general solutions are planewaves $e^{i \mathbf{k} \cdot \mathbf{x}}, \forall \mathbf{k} \in\{|\mathbf{k}|=k\}$.

The Green's functions $g(\mathbf{x})$ are,

$$
g(\mathbf{x})=-\frac{e^{ \pm i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}
$$

However, the $e^{-i k|\mathbf{x}|} /|\mathbf{x}|$ branch is not physically possible (mathematically speaking, it does not satisfy the boundary condition) because it represents spherically incoming wave. One can check that,

$$
\begin{aligned}
\left(\nabla^{2}+k^{2}\right) \frac{e^{i k|\mathbf{x}|}}{|\mathbf{x}|} & =\left(r^{-2} \partial_{r} r^{2} \partial_{r}+k^{2}\right) \frac{e^{i k r}}{r} \\
& =r^{-2} \partial_{r} r^{2}\left(i k \frac{e^{i k r}}{r}-\frac{e^{i k r}}{r^{2}}\right)+k^{2} \frac{e^{i k r}}{r} \\
& =r^{-2} \partial_{r}\left(i k r e^{i k r}-e^{i k r}\right)+k^{2} \frac{e^{i k r}}{r}
\end{aligned}
$$

$$
\begin{align*}
& =\quad r^{-2}\left(i k e^{i k r}-k^{2} r e^{i k r}-i k e^{i k r}\right)+k^{2} \frac{e^{i k r}}{r} \\
& =\quad 0, \quad r>0 \tag{6}
\end{align*}
$$

When $r \rightarrow 0,-\frac{e^{i k r}}{4 \pi r} \sim-\frac{1}{4 \pi r}$, which was previously shown to be the Green's function to $\nabla^{2} g(\mathbf{x})=\delta(\mathbf{x})$ and has the same singular properties.
(c). Let us pick a particular planewave,

$$
\psi_{0}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}
$$

which is interpreted as the incident beam and a solution to (3) when $V(\mathbf{x})=0$. Using the Green's function, the formal solution to (3) when $V(\mathbf{x}) \neq 0$ can be simply written as,

$$
\begin{align*}
\psi(\mathbf{x}) & =e^{i \mathbf{k} \cdot \mathbf{x}}-\int d \mathbf{x}^{\prime} \frac{2 \mu V\left(\mathbf{x}^{\prime}\right) \psi\left(\mathbf{x}^{\prime}\right)}{\hbar^{2}} \cdot \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \\
& =e^{i \mathbf{k} \cdot \mathbf{x}}+\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \psi\left(\mathbf{x}^{\prime}\right) \tag{7}
\end{align*}
$$

where,

$$
\tilde{V}(\mathbf{x}) \equiv-\frac{\mu}{2 \pi \hbar^{2}} V(\mathbf{x})
$$

is the reduced potential that has unit of length.
(d). The (7) solution for $\psi(\mathbf{x})$ is not directly usable because $\psi(\mathbf{x})$ itself is invoked in the expression. But under the conditions that $\tilde{V}(\mathbf{x})$ can be considered as small, one can use the trick of iterative replacement,
$\psi(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} e^{i \mathbf{k} \cdot \mathbf{x}^{\prime}}+\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \int d \mathbf{x}^{\prime \prime} \tilde{V}\left(\mathbf{x}^{\prime \prime}\right) \frac{e^{i k\left|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right|}}{\left|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right|} e^{i \mathbf{k} \cdot \mathbf{x}^{\prime \prime}}+\ldots$, which is in effect an expansion in orders of $\tilde{V}(\mathbf{x})$.
(e). The leading order term is,

$$
\psi(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} e^{i \mathbf{k} \cdot \mathbf{x}^{\prime}}
$$

In the limit of large $|\mathbf{x}|:|\mathbf{x}| \gg\left|\mathbf{x}^{\prime}\right|$,

$$
\left|\mathbf{x}-\mathrm{x}^{\prime}\right|=|\mathrm{x}|-\frac{\mathrm{x} \cdot \mathrm{x}^{\prime}}{|\mathbf{x}|}+\mathcal{O}\left(\frac{\left|\mathrm{x}^{\prime}\right|^{2}}{|\mathrm{x}|}\right)
$$

Let us define,

$$
\mathbf{k}^{\prime} \equiv k \frac{\mathbf{x}}{|\mathbf{x}|}
$$

then,

$$
e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \approx e^{i k|\mathbf{x}|} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}}
$$

Also,

$$
\frac{1}{\left|x-x^{\prime}\right|}=\frac{1}{|x|}+\mathcal{O}\left(\frac{\left|\mathbf{x}^{\prime}\right|}{|\mathbf{x}|^{2}}\right)
$$

Therefore,

$$
\psi(\mathbf{x}) \approx e^{i \mathbf{k} \cdot \mathbf{x}}+\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) \frac{e^{i k|\mathbf{x}|} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}}}{|\mathbf{x}|} e^{i \mathbf{k} \cdot \mathbf{x}^{\prime}}=e^{i \mathbf{k} \cdot \mathbf{x}}+f(\theta) \frac{e^{i k|\mathbf{x}|}}{|\mathbf{x}|}
$$

with,

$$
f(\theta)=\int d \mathbf{x}^{\prime} \tilde{V}\left(\mathbf{x}^{\prime}\right) e^{i \mathbf{Q} \cdot \mathbf{x}^{\prime}}, \quad \mathbf{Q} \equiv \mathbf{k}-\mathbf{k}^{\prime}
$$

In other words, $f(\theta)$ is simply the spatial Fourier transform of $\tilde{V}(\mathbf{x})$ in wavevector \mathbf{Q} which spans angle θ.
(\mathbf{f}). Clearly $\tilde{V}(\mathbf{x})=a \delta(\mathbf{x})$ and $f(\theta)=a$. Therefore the total scattering cross-section is $4 \pi a^{2}$. In a one-body problem where,

$$
\tilde{V}(\mathbf{x})= \begin{cases}\infty, & |\mathbf{x}|<a \\ 0, & |\mathbf{x}| \geq a\end{cases}
$$

the quantum mechanical total scattering cross section turns out to be $4 \pi a^{2}$ in the longwavelength limit (as compared to πa^{2} total scattering cross section in classical mechanics). Therefore, a can be interpreted as the interaction cutoff distance between hard spheres.
(g). A two-body quantum mechanics problem,

$$
\left(-\frac{\hbar^{2} \nabla_{1}^{2}}{2 m_{1}}-\frac{\hbar^{2} \nabla_{2}^{2}}{2 m_{2}}+V\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right) \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\tilde{E} \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

can be transformed to,

$$
\left(-\frac{\hbar^{2} \nabla_{\mathbf{x}}^{2}}{2 \mu}-\frac{\hbar^{2} \nabla_{\mathbf{X}}^{2}}{2 M}+V(\mathbf{x})\right) \Psi(\mathbf{x}, \mathbf{X})=\tilde{E} \Psi(\mathbf{x}, \mathbf{X})
$$

where,

$$
\mathbf{x} \equiv \mathbf{x}_{1}-\mathbf{x}_{2}, \quad \mathbf{X} \equiv \frac{m_{1} \mathbf{x}_{1}+m_{2} \mathbf{x}_{2}}{m_{1}+m_{2}}, \quad \mu \equiv \frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad M \equiv m_{1}+m_{2}
$$

so,

$$
\Psi(\mathbf{x}, \mathbf{X})=\psi(\mathbf{x}) e^{i \mathbf{K} \cdot \mathbf{x}}, \quad \tilde{E}=E+\frac{\hbar^{2} K^{2}}{2 M}
$$

with,

$$
\left(-\frac{\hbar^{2} \nabla_{\mathbf{x}}^{2}}{2 \mu}+V(\mathbf{x})\right) \psi(\mathbf{x})=E \psi(\mathbf{x}) .
$$

The scattering cross-section is clearly 0 when $V=0$. Since,

$$
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{x})=\frac{2 \mu V(\mathbf{x})}{\hbar^{2}} \psi(\mathbf{x})
$$

the leading order perturbation to $\psi(\mathbf{x})$ is also proportional to μ. Therefore,

$$
\sigma_{\mathrm{bound}}=\left(1+\frac{m_{\mathrm{N}}}{m_{\mathrm{A}}}\right)^{2} \sigma_{\text {free }}
$$

in the long wavelength limit and when the Born approximation is valid.

2 Contrast Variation

Question: A certain element E has two isotopes, E^{41} and E^{44}. E^{41} has spin $2 \hbar, \mathrm{E}^{44}$ has spin $3 \hbar$. The scattering lengths are,

$$
b_{\mathrm{E}^{41}}^{+}=1 \times 10^{-12} \mathrm{~cm}, \quad b_{\mathrm{E}^{41}}^{-}=3 \times 10^{-12} \mathrm{~cm}, \quad b_{\mathrm{E}^{44}}^{+}=-2 \times 10^{-12} \mathrm{~cm}, \quad b_{\mathrm{E}^{44}}^{-}=-4 \times 10^{-12} \mathrm{~cm},
$$

where + and - means spin aligned and anti-aligned between incoming neutron and the nucleus, respectively.
(a). What are the coherent and incoherent scattering lengths for E^{41} and E^{44}, suppose each isotope appears in pure form, respectively?
(b). Suppose the natural abundance of E^{41} is 80% and that of E^{44} is 20%, calculate the coherent and incoherent scattering lengths of pure natural E .
(c). Calculate the desired abundance of E^{41} in order to have only incoherent scattering.
(d). There is simple mixing rule for $b_{\text {coh }}$. Is there for $b_{\text {inc }}$? for $b_{\text {inc }}^{2}$? (e.g., if there is $80 \% \mathrm{E}^{41}$
and $20 \% \mathrm{E}^{44}$, is $b_{\mathrm{inc}}^{2}(\mathrm{E})=0.8 b_{\text {inc }}^{2}\left(\right.$ pure $\left.\mathrm{E}^{41}\right)+0.2 b_{\text {inc }}^{2}\left(\right.$ pure $\left.\left.\mathrm{E}^{44}\right) ?\right)$

Answer:

(a). For pure E^{41},

$$
\begin{aligned}
b_{\mathrm{coh}} & =\frac{2 \times 2+2}{4 \times 2+2} \times 1+\frac{2 \times 2}{4 \times 2+2} \times 3=1.8 \sqrt{\mathrm{barn}} \\
\overline{b^{2}} & =\frac{2 \times 2+2}{4 \times 2+2} \times 1+\frac{2 \times 2}{4 \times 2+2} \times 9=4.2 \text { barn }
\end{aligned}
$$

so,

$$
b_{\mathrm{inc}}=\sqrt{\overline{b^{2}}-b_{\mathrm{coh}}^{2}}=0.9798 \sqrt{\text { barn }} .
$$

For pure E^{44},

$$
\begin{gathered}
b_{\mathrm{coh}}=\frac{2 \times 3+2}{4 \times 3+2} \times(-2)+\frac{2 \times 3}{4 \times 3+2} \times(-4)=-2.8571 \sqrt{\text { barn }} \\
\overline{b^{2}}=\frac{2 \times 3+2}{4 \times 3+2} \times 4+\frac{2 \times 3}{4 \times 3+2} \times 16=9.1429 \text { barn }
\end{gathered}
$$

so,

$$
b_{\mathrm{inc}}=\sqrt{\overline{b^{2}}-b_{\mathrm{coh}}^{2}}=0.9899 \sqrt{\mathrm{barn}}
$$

(b).

$$
\begin{aligned}
b_{\mathrm{coh}} & =0.8 \times 1.8+0.2 \times(-2.8571)=0.8686 \sqrt{\text { barn }} \\
\overline{b^{2}} & =0.8 \times 4.2+0.2 \times 9.1429=5.1886 \text { barn }
\end{aligned}
$$

so,

$$
b_{\mathrm{inc}}=\sqrt{\overline{b^{2}}-b_{\mathrm{coh}}^{2}}=2.1057 \sqrt{\mathrm{barn}}
$$

(c). Let the abundance of E^{41} be x, then,

$$
b_{\mathrm{coh}}=x \times 1.8+(1-x) \times(-2.8571)=0
$$

demands that $x=0.6135$.
(d). There is no simple mixing rule for either $b_{\text {inc }}$ or $b_{\text {inc }}^{2}$. We can have isotopes of the same $b_{\text {inc }}$, but if their $b_{\text {coh }}$'s are different, their mixed $b_{\text {inc }}$ is going to be enhanced.

3 Dynamic Structure Factor

Question:

(a). Calculate the thermally averaged self intermediate scattering function,

$$
F_{s}(\mathbf{Q}, t) \equiv\left\langle e^{-i \mathbf{Q} \cdot \hat{\mathbf{x}}(0)} e^{i \mathbf{Q} \cdot \hat{\mathbf{x}}(t)}\right\rangle
$$

and the self dynamic structure factor $S_{s}(\mathbf{Q}, \omega)$ for ideal gas at temperature T.
(b). Do the same for a single harmonic oscillator of frequency Ω at temperature T.

Hint: Use the Baker-Hausdorff theorem.

Answer:

Let me do (b) first, and then by taking the $\Omega \rightarrow 0$ limit, we can obtain the ideal gas behavior. (b). For 1D simple harmonic oscillator, we know that,

$$
\hat{x}(t)=\sqrt{\frac{\hbar}{2 m_{A} \Omega}}\left(\hat{a}(t)+\hat{a}^{\dagger}(t)\right), \quad \hat{a}(t)=\hat{a} e^{-i \Omega t}, \quad \hat{a}^{\dagger}(t)=\hat{a}^{\dagger} e^{i \Omega t}
$$

in the Heisenberg picture. Therefore,

$$
[\hat{x}(0), \hat{x}(t)]=\frac{\hbar}{2 m_{A} \Omega}\left[\hat{a}+\hat{a}^{\dagger}, \hat{a} e^{-i \Omega t}+\hat{a}^{\dagger} e^{i \Omega t}\right]=\frac{\hbar}{2 m_{A} \Omega} 2 i \sin \Omega t=\frac{i \hbar}{m_{A} \Omega} \sin \Omega t
$$

Since it is just a constant which commutes with any operator, we can use the Baker-Hausdorff theorem,

$$
\begin{align*}
e^{-i Q \hat{x}(0)} e^{i Q \hat{x}(t)} & =\exp \left(i Q \sqrt{\frac{\hbar}{2 m_{A} \Omega}}\left[\left(e^{-i \Omega t}-1\right) \hat{a}+\left(e^{i \Omega t}-1\right) \hat{a}^{\dagger}\right]+\frac{i Q^{2} \hbar}{2 m_{A} \Omega} \sin \Omega t\right) \\
& =\exp \left(\frac{i Q^{2} \hbar}{2 m_{A} \Omega} \sin \Omega t\right) \hat{D}(\alpha(t)), \tag{8}
\end{align*}
$$

where $\hat{D}(\alpha(t))$ is the displacement operator, with,

$$
\alpha(t) \equiv i Q \sqrt{\frac{\hbar}{2 m_{A} \Omega}}\left(e^{i \Omega t}-1\right)
$$

We would like to calculate the thermal average $\langle\hat{D}(\alpha)\rangle$ using complete but non-orthogonal
coherent states basis. The following identities will be used.

$$
\begin{gathered}
\hat{D}(\alpha) \hat{D}(\beta)=e^{\frac{1}{2}\left(\alpha \beta^{*}-\alpha^{*} \beta\right)} \hat{D}(\alpha+\beta) \\
\langle\alpha \mid \beta\rangle=e^{\alpha^{*} \beta-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)} \\
\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|=\mathbf{I} \\
\langle n \mid \beta\rangle=e^{-\frac{1}{2}|\beta|^{2}} \frac{\beta^{n}}{\sqrt{n!}}
\end{gathered}
$$

Now consider,

$$
\begin{align*}
\langle n| \hat{D}(\alpha)|n\rangle & =\int \frac{d^{2} \gamma}{\pi} \int \frac{d^{2} \beta}{\pi}\langle n \mid \gamma\rangle\langle\gamma| \hat{D}(\alpha)|\beta\rangle\langle\beta \mid n\rangle \\
& =\int \frac{d^{2} \gamma}{\pi} \int \frac{d^{2} \beta}{\pi} e^{-\frac{1}{2}|\gamma|^{2}} \frac{\gamma^{n}}{\sqrt{n!}}\langle\gamma| \hat{D}(\alpha)|\beta\rangle e^{-\frac{1}{2}|\beta|^{2}} \frac{\beta^{* n}}{\sqrt{n!}} \\
& =\int \frac{d^{2} \gamma}{\pi} \int \frac{d^{2} \beta}{\pi} e^{-\frac{1}{2}\left(|\gamma|^{2}+|\beta|^{2}\right)} \frac{\left(\beta^{*} \gamma\right)^{n}}{n!}\langle\gamma| \hat{D}(\alpha) \hat{D}(\beta)|0\rangle \\
& =\int \frac{d^{2} \gamma}{\pi} \int \frac{d^{2} \beta}{\pi} e^{-\frac{1}{2}\left(|\gamma|^{2}+|\beta|^{2}\right)} \frac{\left(\beta^{*} \gamma\right)^{n}}{n!} e^{\frac{1}{2}\left(\alpha \beta^{*}-\alpha^{*} \beta\right)}\langle\gamma \mid \alpha+\beta\rangle \\
& =\int \frac{d^{2} \gamma}{\pi} \int \frac{d^{2} \beta}{\pi} e^{-\frac{1}{2}\left(|\gamma|^{2}+|\beta|^{2}\right)} \frac{\left(\beta^{*} \gamma\right)^{n}}{n!} e^{\frac{1}{2}\left(\alpha \beta^{*}-\alpha^{*} \beta\right)} e^{\gamma^{*}(\alpha+\beta)-\frac{1}{2}\left(|\gamma|^{2}+|\alpha+\beta|^{2}\right)} . \tag{9}
\end{align*}
$$

Since,

$$
\sum_{n=0}^{\infty} e^{-\frac{n \hbar \Omega}{k_{\mathrm{B}} T}}=\frac{1}{1-e^{-\frac{\hbar \Omega}{k_{\mathrm{B}} T}}}=\frac{1}{1-d}, \quad \sum_{n=0}^{\infty} e^{-\frac{n \hbar \Omega}{k_{\mathrm{B}} T}} \frac{\left(\beta^{*} \gamma\right)^{n}}{n!}=\exp \left(e^{-\frac{\hbar \Omega}{k_{\mathrm{B}} T}} \beta^{*} \gamma\right)=e^{d \beta^{*} \gamma}, d \equiv e^{-\frac{\hbar \Omega}{k_{\mathrm{B}} T}}
$$

we have,

$$
\begin{align*}
\langle\hat{D}(\alpha)\rangle & =(1-d) \int \frac{d^{2} \gamma d^{2} \beta}{\pi^{2}} e^{-\frac{1}{2}\left(|\gamma|^{2}+|\beta|^{2}\right)} e^{d \beta^{*} \gamma} e^{\frac{1}{2}\left(\alpha \beta^{*}-\alpha^{*} \beta\right)+\gamma^{*} \alpha+\gamma^{*} \beta-\frac{1}{2}\left(|\gamma|^{2}+|\alpha|^{2}+|\beta|^{2}+\alpha^{*} \beta+\alpha \beta^{*}\right)} \\
& =(1-d) e^{-\frac{1}{2}|\alpha|^{2}} \int \frac{d^{2} \gamma d^{2} \beta}{\pi^{2}} e^{-|\gamma|^{2}-|\beta|^{2}+d \beta^{*} \gamma+\gamma^{*} \beta+\gamma^{*} \alpha-\alpha^{*} \beta} \tag{10}
\end{align*}
$$

The above is just a Gaussian integral in 4D. Let,

$$
\alpha \equiv \alpha_{x}+i \alpha_{y}, \quad \beta \equiv \beta_{x}+i \beta_{y}, \quad \gamma \equiv \gamma_{x}+i \gamma_{y}
$$

we have,

$$
\beta^{*} \gamma=\left(\beta_{x}-i \beta_{y}\right)\left(\gamma_{x}+i \gamma_{y}\right)=\beta_{x} \gamma_{x}+\beta_{y} \gamma_{y}+i\left(\beta_{x} \gamma_{y}-\beta_{y} \gamma_{x}\right)
$$

$$
\gamma^{*} \beta=\gamma_{x} \beta_{x}+\gamma_{y} \beta_{y}+i\left(\gamma_{x} \beta_{y}-\gamma_{y} \beta_{x}\right) .
$$

Thus，inside the exponential，the function is，

$$
\begin{align*}
-\left(\begin{array}{llll}
\beta_{x} & \beta_{y} & \gamma_{x} & \gamma_{y}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & -\frac{1+d}{2} & -\frac{1-d}{2 i} \\
0 & 1 & \frac{1-d}{2 i} & -\frac{1+d}{2} \\
-\frac{1+d}{2} & \frac{1-d}{2 i} & 1 & 0 \\
-\frac{1-d}{2 i} & -\frac{1+d}{2} & 0 & 1
\end{array}\right) & \left(\begin{array}{c}
\beta_{x} \\
\beta_{y} \\
\gamma_{x} \\
\gamma_{y}
\end{array}\right)+ \\
& \left(\begin{array}{llll}
-\alpha^{*} & -i \alpha^{*} & \alpha & -i \alpha
\end{array}\right)\left(\begin{array}{c}
\beta_{x} \\
\beta_{y} \\
\gamma_{x} \\
\gamma_{y}
\end{array}\right) \tag{11}
\end{align*}
$$

and since，

$$
\int d^{D} \mathbf{x} \exp \left(-\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b} \mathbf{x}\right)=\frac{(\pi)^{D / 2}}{\sqrt{\operatorname{det}|\mathbf{A}|}} \exp \left(-\frac{1}{4} \mathbf{b}^{T} \mathbf{A}^{-1} \mathbf{b}\right)
$$

the integral is straightforward，but cumbersome．Therefore using Maple we get，

$$
\begin{equation*}
\langle\hat{D}(\alpha)\rangle=(1-d) e^{-\frac{1}{2}|\alpha|^{2}} \frac{1}{\pi^{2}} \cdot \frac{e^{-\frac{d|\alpha|^{2}}{1-d}} \pi^{2}}{1-d}=e^{-\frac{1}{2}|\alpha|^{2}} e^{-\frac{d|\alpha|^{2}}{1-d}}=e^{-\frac{|\alpha|^{2}(1+d)}{2(1-d)}} . \tag{12}
\end{equation*}
$$

```
[ > restart: int(int(int(
    exp(-GX^2-GY^2-BX^2-BY^2+d*(BX-I*BY)* (GX+I*GY) + (GX-I*GY)* (BX+I*BY)
    +(GX-I*GY)*a-conjugate(a)*(BX+I*BY)),GX=-infinity..infinity),GY=-i
    nfinity..infinity),BY=-infinity..infinity);
    {}{\begin{array}{l}{(1/4\frac{4\mp@subsup{d}{}{2}BXa-4dBXa-4\overline{a}BXd+4a⿱亠凶}{BX+4\mp@subsup{d}{}{2}B\mp@subsup{X}{}{2}-8dB\mp@subsup{X}{}{2}+4B\mp@subsup{X}{}{2}+\mp@subsup{d}{}{2}\mp@subsup{a}{}{2}+2da\overline{a}+\mp@subsup{\overline{a}}{}{2}}}\\{d-1}\end{array})\mp@subsup{\pi}{}{(3/2)
    \infty,otherwise
[> int(exp(1/4*(4*d^2*BX*a-4*d*BX*a-4*conjugate(a)*BX*d+4*conjugate(a
    )*BX+4* (^^2*BX^2-8*d*BX^2+4*BX^2+d^2* a^2+2*d*a*conjugate(a)+conjuga
    te(a)^2)/(d-1))*Pi^(3/2)/(-d+1)^(1/2), BX=-infinity..infinity);
\[
\left\{\begin{array}{cc}
\frac{\left(\frac{d a \bar{a}}{d-1}\right)}{\pi^{2}} \\
-d+1 & \operatorname{csgn}\left(-\frac{d^{2}}{d-1}+\frac{2 d}{d-1}-\frac{1}{d-1}\right)=1 \\
\infty & \text { otherwise }
\end{array}\right.
\]
```

Thus,

$$
\begin{align*}
& \left\langle e^{-i Q \hat{x}(0)} e^{i Q \hat{x}(t)}\right\rangle \\
= & \exp \left(\frac{i Q^{2} \hbar}{2 m_{A} \Omega} \sin \Omega t-\frac{|\alpha(t)|^{2}(1+d)}{2(1-d)}\right) \\
= & \exp \left(\frac{i Q^{2} \hbar}{2 m_{A} \Omega} \sin \Omega t-\frac{Q^{2} \hbar}{2 m_{A} \Omega}\left(e^{i \Omega t}-1\right)\left(e^{-i \Omega t}-1\right) \frac{(1+d)}{2(1-d)}\right) \\
= & \exp \left(\frac{Q^{2} \hbar}{4 m_{A} \Omega}\left(e^{i \Omega t}-e^{-i \Omega t}-\left(2-e^{i \Omega t}-e^{-i \Omega t}\right) \frac{1+d}{1-d}\right)\right) \\
= & \exp \left(\frac{Q^{2} \hbar}{4 m_{A} \Omega} \frac{(1-d) e^{i \Omega t}-(1-d) e^{-i \Omega t}-2(1+d)+(1+d) e^{i \Omega t}+(1+d) e^{-i \Omega t}}{1-d}\right) \\
= & \exp \left(\frac{Q^{2} \hbar}{4 m_{A} \Omega} \frac{2 e^{i \Omega t}+2 d e^{-i \Omega t}-2(1+d)}{1-d}\right) \\
= & \exp \left(\frac{Q^{2} \hbar}{2 m_{A} \Omega} \frac{\left(e^{i \Omega t}-1\right)+d\left(e^{-i \Omega t}-1\right)}{1-d}\right) . \tag{13}
\end{align*}
$$

At low $T, d \sim 0$, so,

$$
\left\langle e^{-i Q \hat{x}(0)} e^{i Q \hat{x}(t)}\right\rangle=\exp \left(\frac{Q^{2} \hbar}{2 m_{A} \Omega}\left(e^{i \Omega t}-1\right)\right)=\exp \left(-\frac{Q^{2} \hbar}{2 m_{A} \Omega}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{Q^{2} \hbar}{2 m_{A} \Omega}\right)^{n} e^{i n \Omega t}
$$

and,

$$
S_{s}(Q, \omega)=\exp \left(-\frac{Q^{2} \hbar}{2 m_{A} \Omega}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{Q^{2} \hbar}{2 m_{A} \Omega}\right)^{n} \delta(\omega-n \Omega),
$$

so the neutron is only able to deposit energy in quantas of $\hbar \Omega$.
At high $T, d \sim 1-\frac{\hbar \Omega}{k_{\mathrm{B}} T}$, so,

$$
\frac{\left(e^{i \Omega t}-1\right)+d\left(e^{-i \Omega t}-1\right)}{1-d} \approx \frac{k_{\mathrm{B}} T}{\hbar \Omega}\left(e^{i \Omega t}+d e^{-i \Omega t}-1-d\right),
$$

and we will find that the neutron is able to both extract and deposit energy, with the probability of the latter a little bit greater.

In 3D, we would have,

$$
\left\langle e^{-i \mathbf{Q} \cdot \hat{x}(0)} e^{i \mathbf{Q} \cdot \hat{x}(t)}\right\rangle=\prod_{i=1}^{3} \exp \left(\frac{Q_{i}^{2} \hbar}{2 m_{A} \Omega_{i}} \frac{\left(e^{i \Omega_{i} t}-1\right)+d_{i}\left(e^{-i \Omega_{i} t}-1\right)}{1-d_{i}}\right),
$$

where $\Omega_{x}, \Omega_{y}, \Omega_{z}$ are the oscillator frequencies in three directions.
(a). Let us take the $\Omega \rightarrow 0$ limit. Since,

$$
\begin{align*}
\frac{\left(e^{i \Omega t}-1\right)+d\left(e^{-i \Omega t}-1\right)}{\Omega(1-d)} & \approx \frac{k_{\mathrm{B}} T}{\hbar \Omega^{2}}\left(i \Omega t-\frac{\Omega^{2} t^{2}}{2}+d(-i \Omega t)-d \frac{\Omega^{2} t^{2}}{2}\right) \\
& =\frac{k_{\mathrm{B}} T}{\hbar \Omega^{2}}\left(\frac{\hbar \Omega}{k_{\mathrm{B}} T} i \Omega t-\Omega^{2} t^{2}\right) \\
& =i t-\frac{k_{\mathrm{B}} T t^{2}}{\hbar} \tag{14}
\end{align*}
$$

we have,

$$
\left\langle e^{-i \mathbf{Q} \cdot \hat{x}(0)} e^{i \mathbf{Q} \cdot \hat{x}(t)}\right\rangle=\exp \left(-\frac{|\mathbf{Q}|^{2} \hbar}{2 m_{A}}\left(\frac{k_{\mathrm{B}} T t^{2}}{\hbar}-i t\right)\right)
$$

> restart: simplify(int (

$$
\exp \left(-Q^{\wedge} 2 * h b a r / 2 / m^{\star}\left(k^{*} T * t^{\wedge} 2 / h b a r-I * t\right)-I^{*}\right. \text { omega*t)/2/Pi, }
$$ t=-infinity..infinity));

$$
\left\{\frac{1}{2} \frac{\mathbf{e}^{\left(-1 / 8 \frac{\left(-Q^{2} h b a r+2 \omega m\right)^{2}}{m Q^{2} k T}\right)} \sqrt{2}}{\sqrt{\pi} \sqrt{\frac{Q^{2} k T}{m}}} \quad \operatorname{csgn}\left(Q^{2} \bar{m} k T\right)=1\right.
$$

Thus, the dynamic structure factor of ideal gas is,

$$
S(\mathbf{Q}, \omega)=S_{s}(\mathbf{Q}, \omega)=\frac{1}{\sqrt{2 \pi|\mathbf{Q}|^{2} k_{\mathrm{B}} T / m_{A}}} \exp \left(-\frac{\left(|\mathbf{Q}|^{2} \hbar-2 m_{A} \omega\right)^{2}}{8 m_{A}|\mathbf{Q}|^{2} k_{\mathrm{B}} T}\right)
$$

with the loss peaking at,

$$
\omega_{0}=\frac{\hbar|\mathbf{Q}|^{2}}{2 m_{A}}
$$

When $T=0$, it is a free standing particle, and,

$$
S(\mathbf{Q}, \omega)=\delta\left(\omega-\frac{\hbar|\mathbf{Q}|^{2}}{2 m_{A}}\right) .
$$

So,

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=b^{2}\left(\frac{k^{\prime}}{k}\right) S(\mathbf{Q}, \omega)=b^{2}\left(\frac{k^{\prime}}{k}\right) \delta\left(\omega-\frac{\hbar|\mathbf{Q}|^{2}}{2 m_{A}}\right)
$$

or,

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=b^{2}\left(\frac{k^{\prime}}{k}\right) \delta\left(E-E^{\prime}-\frac{\hbar^{2}|\mathbf{Q}|^{2}}{2 m_{A}}\right)
$$

At this moment it is important to remember what the dependent variables are. Recall that in the derivation, we are lastly down to counting $d^{3} \mathbf{k}^{\prime 3}$ of the outgoing radiation, and it is converted to spherical shell differential $d E^{\prime} d \Omega$. Therefore, the dependent variables are direction $\Omega(\cos \theta)$ and E^{\prime} which are just indices for counting \mathbf{k}^{\prime}. A common mistake is to think that \mathbf{Q} and ω are somehow the dependent variables since $S(\mathbf{Q}, \omega)$ is expressed in them. It is not so. For example, the partial integration in ω of $\delta\left(\omega-\frac{\hbar|\mathbf{Q}|^{2}}{2 m_{A}}\right)$ gives 1 if \mathbf{Q} and ω are considered independent, but that is the wrong answer. The correct answer, when considering the dependence of $|\mathbf{Q}|^{2}$ on ω for fixed $\cos \theta$, would give a factor different from 1.

$$
\frac{\hbar^{2}|\mathbf{Q}|^{2}}{2 m_{A}}=\frac{\hbar^{2}\left|\mathbf{k}-\mathbf{k}^{\prime}\right|^{2}}{2 m_{A}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{A}}+\frac{\hbar^{2}\left|\mathbf{k}^{\prime}\right|^{2}}{2 m_{A}}-\frac{\hbar^{2} \mathbf{k} \cdot \mathbf{k}^{\prime}}{m_{A}}=\frac{\hbar^{2} k^{2}}{2 m_{A}}+\frac{\hbar^{2} k^{\prime 2}}{2 m_{A}}-\frac{\hbar^{2} k k^{\prime} \cos \theta}{m_{A}}
$$

so,

$$
d\left(\frac{\hbar^{2}|\mathbf{Q}|^{2}}{2 m_{A}}\right)=\left(\frac{\hbar^{2} k^{\prime}}{m_{A}}-\frac{\hbar^{2} k \cos \theta}{m_{A}}\right) d k^{\prime}
$$

and therefore,

$$
\int d E^{\prime} \delta\left(E-E^{\prime}-\frac{\hbar^{2}|\mathbf{Q}|^{2}}{2 m_{A}}\right) \ldots
$$

integration would give an extra factor,

$$
\frac{\frac{\hbar^{2} k^{\prime}}{m_{N}} d k^{\prime}}{\frac{\hbar^{2} k^{\prime}}{m_{N}} d k^{\prime}+\left(\frac{\hbar^{2} k^{\prime}}{m_{A}}-\frac{\hbar^{2} k \cos \theta}{m_{A}}\right) d k^{\prime}}=\frac{\frac{m_{A}}{m_{N}} \frac{k^{\prime}}{k}}{\frac{\left(m_{A}+m_{N}\right) k^{\prime}}{m_{N} k}-\cos \theta} .
$$

To get k^{\prime} / k, we use,
$E^{\prime}=\frac{\hbar^{2}\left|\mathbf{k}^{\prime}\right|^{2}}{2 m_{N}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{N}}-\frac{\hbar^{2}|\mathbf{Q}|^{2}}{2 m_{A}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{N}}-\frac{\hbar^{2}\left|\mathbf{k}-\mathbf{k}^{\prime}\right|^{2}}{2 m_{A}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{N}}-\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{A}}-\frac{\hbar^{2}\left|\mathbf{k}^{\prime}\right|^{2}}{2 m_{A}}+\frac{\hbar^{2} \mathbf{k} \cdot \mathbf{k}^{\prime}}{m_{A}}$, or,

$$
m_{A}\left|\mathbf{k}^{\prime}\right|^{2}=m_{A}|\mathbf{k}|^{2}-m_{N}|\mathbf{k}|^{2}-m_{N}\left|\mathbf{k}^{\prime}\right|^{2}+2 m_{N}|\mathbf{k}|\left|\mathbf{k}^{\prime}\right| \cos \theta,
$$

and so,

$$
\left(m_{N}+m_{A}\right) k^{\prime 2}-2 m_{N} \cos \theta k^{\prime} k+\left(m_{N}-m_{A}\right) k^{2}=0,
$$

thus,

$$
\frac{k^{\prime}}{k}=\frac{2 m_{N} \cos \theta \pm \sqrt{4 m_{N}^{2} \cos ^{2} \theta-4\left(m_{N}+m_{A}\right)\left(m_{N}-m_{A}\right)}}{2\left(m_{N}+m_{A}\right)} .
$$

We take the + branch because k^{\prime} / k should be positive, so,

$$
\frac{k^{\prime}}{k}=\frac{m_{N} \cos \theta+\sqrt{m_{N}^{2} \cos ^{2} \theta+m_{A}^{2}-m_{N}^{2}}}{m_{N}+m_{A}} .
$$

Therefore,

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =b^{2}\left(\frac{k^{\prime}}{k}\right) \frac{\frac{m_{A}}{m_{N}} \frac{k^{\prime}}{k}}{\frac{\left(m_{A}+m_{N}\right) k^{\prime}}{m_{N} k}-\cos \theta}=b^{2} \frac{\frac{m_{A}}{m_{N}}\left(\frac{k^{\prime}}{k}\right)^{2}}{\frac{\left(m_{A}+m_{N}\right) k^{\prime}}{m_{N} k}-\cos \theta} \\
& =\frac{m_{A} b^{2}}{\sqrt{m_{N}^{2} \cos ^{2} \theta+m_{A}^{2}-m_{N}^{2}}}\left(\frac{m_{N} \cos \theta+\sqrt{m_{N}^{2} \cos ^{2} \theta+m_{A}^{2}-m_{N}^{2}}}{m_{N}+m_{A}}\right)^{2} . \tag{15}
\end{align*}
$$

```
restart: m:=2: M:=5: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2
    - m^2)) / (m + M) )^2 * M / sqrt(m^2*x^2 + M^2 - m^2), x = -1..1) -
    4*Pi*(M/ (m+M))^2);
                            0.
> m:=1: M:=10.7: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2 -
    m^2)) / (m + M) )^2 * M / sqrt(m^2*x^2 + M^2 - m^2), x = -1..1) -
    4*Pi*(M/(m+M))^2);
                            0.
> m:=3.9: M:=17.7: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2 -
    m^2)) / (m + M) )^2 * M / sqrt(m^2* x^2 + M^2 - m^2), x = -1..1) -
    4*Pi*(M/ (m+M) )^2);
0.
```

It has been verified numerically to give the following total cross-section,

$$
\begin{align*}
\sigma & =2 \pi \int_{-1}^{1} d x \frac{m_{A} b^{2}}{\sqrt{m_{N}^{2} x^{2}+m_{A}^{2}-m_{N}^{2}}}\left(\frac{m_{N} x+\sqrt{m_{N}^{2} x^{2}+m_{A}^{2}-m_{N}^{2}}}{m_{N}+m_{A}}\right)^{2} \\
& =4 \pi b^{2}\left(\frac{m_{A}}{m_{N}+m_{A}}\right)^{2} \\
& =4 \pi a^{2} \tag{16}
\end{align*}
$$

in agreement with the simpler derivations using Born's approximation.

