
22.51 Quiz III (90 min, Chen&Kotlarchyk book only)

Question 1 (7 pt)

Instead of a constant perturbation V̂ to the Hamiltonian, suppose the perturbation is oscil-

latory:

V̂ (t) = V̂0 cos(ω0t).

Derive something similar to Fermi’s Golden Rule No. 2 and explain carefully each step of

your derivation.

Answer: Starting with perturbation expansion of the time-evolution operator,

ÛI(t) = 1 +
1

ih̄

∫ t

0
dt′V̂I(t

′) +
(

1

ih̄

)2 ∫ t

0
dt′V̂I(t

′)
∫ t′

0
dt′′V̂I(t

′′) + ...,

and taking the first order term of the transition amplitude cnm(t) ≡ 〈n|ÛI(t)|m〉,

c(1)
nm(t) =

1

ih̄

∫ t

0
dt′eiωnmt′〈n|V̂ (t′)|m〉.

When V̂ (t) = V̂0 cos(ω0t), there is,

c(1)
nm(t) =

1

ih̄

∫ t

0
dt′eiωnmt′V0nm cos(ω0t

′)

=
1

ih̄
V0nm

∫ t

0
dt′eiωnmt′ e

iω0t′ + e−iω0t′

2

=
1

ih̄
V0nm

∫ t

0
dt′

ei(ωnm+ω0)t′ + ei(ωnm−iω0)t′

2
. (1)

At this point, it can be projected that,

Wnm =
π

h̄
|V0nm|2 [δ(En − Em − h̄ω0) + δ(En − Em + h̄ω0)] .

Mathematically, it can be shown that sin(αx)/αx coupled to sin(α(x− 1))/α(x− 1) leads to

nowhere if α → ∞, whereas sin(αx)/αx coupled to sin(αx)/αx leads to a δ-function, thus

putting the above projection on a rigorous footing.

Question 2 (6 pt)
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Explain why p̂i · Âi is considered a good approximation to the first-order electron-EM field

coupling operator (p̂i·Âi+Âi·p̂i)/2 when i is a bound electron and the radiation considered is

in the visible light region. Do you think it is still so when the radiation is X-ray? gamma-ray?

Answer: The part in Âi that does not commute with p̂i is the eik·x̂i or the e−ik·x̂i factor.

Consider,

eik·x̂ip̂ie
−ik·x̂i = p̂i + ik · [x̂i, p̂i] = p̂i + ik · (ih̄I) = p̂i − h̄k.

Then,

eik·x̂ip̂i = (p̂i − h̄k)eik·x̂i .

We would like to argue that the h̄k (the photon momentum) contribution is somehow much

less than the p̂i (the electron momentum) contribution, so the non-commutative part of

p̂i · Âi is much smaller than p̂i · Âi itself. By the Heisenberg relation,

∆p ·∆x ∼ h̄,

thus the magnitude of p̂i is on the order of h̄/a where a is the atom’s size, which is the

likely range of the bound electron and is usually on the order of a few Å. Thus, the relative

importance of h̄k with p̂i is again a comparison between the wavelength of the photon with

the size of the atom, as in the electric dipole approximation later on.

For visible light, the wavelength is on the order of 4000-7000Å, therefore this approximation

is valid. For X-rays, the wavelength is on the order of Angstroms, so the approximation is

icky but may still work. For gamma-rays, this definitively cannot work.

Question 3 (7 pt)

Suppose isotope A has bcoh(A) and b2
inc(A), isotope B has bcoh(B) and b2

inc(B). Is the above

information sufficient to calculate the bcoh and b2
inc of a mixture composed of x-portion of

isotope A and 1− x portion of isotope B? If so, give the answer. If not, please explain.

Answer: Same as the rule of obtaining the variance of two groups of numbers where the

average values and variances of each group are known, it can be rigorously shown that,

b2
inc =

[
xb2

inc(A) + (1− x)b2
inc(B)

]
+

[
x(1− x)(bcoh(A)− bcoh(B))2

]
,
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where the first bracket is the simple mixture of respective variances, and the second bracket

is the variance when each group has no dispersion.

Bonus Question (6 pt)

In classical EM theory, radiation is shown to carry pressure (see Example 4.1). Given the

thermal distribution Einstein derived (using quantum perturbation theory, no less),

〈nkλ〉 =
1

e
h̄ωk
kBT − 1

,

construct a semi-classical argument (kinetic, not thermodynamical) to calculate the wall

pressure that a blackbody cavity of temperature T has to sustain.

Answer: Take a differential area dS. For a photon mode of a given direction which happens

to take angle θ with the surface normal, there is a differential volume (shaded region) whereby

if the photon is in it, then it is going to impact the surface during interval dt.

cdt

dS

Figure 1: Cross section.

This differential volume is,

dV = cdtdS cos θ.

Since the photon could be anywhere is the blackbody volume V , the probability that this

happens in dt is,

dP =
dV

V
=

cdtdS cos θ

V
.

Upon impact, the photon is going to be absorbed, leaving normal momentum h̄k cos θ. On

the other hand, in parallel, due to detailed balance this little area of wall lining is also
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responsible for replenishing the photon count of this particular mode equal to the rate of

absorption by the emission process. The upshot is that the momentum transfer is 2h̄k cos θ

with the allowable solid dΩ spanning only half of the total solid angle (4π/2 = 2π). Thus,

the pressure is,

p =
∑

k∈2π,λ

2ch̄k cos2 θ

V
=

∑

k∈4π,λ

h̄ωk cos2 θ

V
.

This happens to be the energy density expression with cos2 θ thrown in. Since 〈cos2 θ〉 = 1/3,

there is,

p =
u

3
,

where u is the photon energy per volume.
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