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Abstract: Multiscale materials modeling has emerged as a significant concept in computational materials
research. We examine several case studies which seek to provide understanding of mechanical behavior of
solids at the atomistic level, in the context of upper and lower limits to strength and deformation, the
interplay between melting and stability criteria, the competition between pressure-induced polymorphism
and amorphization, the role of kink mechanism in dislocation mobility, and the concept of a local free
energy as an invariant measure of defect driving force. Through these illustrations we express the
optimistic belief that further pursuits of this kind would be worthwhile.
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1. Introduction

Understanding materials behavior at the atomic
level has long been a grand challenge to scientists and
engineers across many disciplines. Currently the in-
terest in identifying problems in computational mate-
rials research that offer the prospects of fundamental
advances along with technological innovations has be-
come intensified and widespread [1]. To provide a ba-
sis for such inquiries, a particular focus on atomistic
simulations has emerged in the context of multiscale
approach to materials theory and simulation [2, 3].
Our aim here, on the occasion of the 50th anniversary
celebration of the Society of Materials Science, Japan,
is to examine, through selected investigations of phase
stability and defect mobility, how atomistic simula-
tions can lead to insights into the basic mechanisms
underlying the strength and deformation of solids.

We will begin in Sec. 2 by considering measures of
strength through elastic and vibrational stability cri-
teria which set the upper limit on theoretical strength.
Expanding on this theme we then consider studies
of melting in Sec. 3 and pressure-induced structural
transitions in Sec. 4 to bring out the distinction be-
tween thermodynamic and mechanical melting and
the role of chemical disorder in solid-state amorphiza-
tion. In the process we find that Born’s criteria on
melting and stability can be unified, and the competi-
tion between polymorphism and crystal-to-amorphous
transitions clarified. Lower limits of strength in real
materials are often governed by the mobility of the
defect microstructure. We discuss in Sec. 5 a kinetic
Monte Carlo study of kink mechanism in dissociated
screw dislocations in Si to illustrate how one can over-

come the problem of bridging the space and time scales
between atomistics and experiments.

Atomistic simulations of defect microstructure evo-
lution are clearly central to the understanding of
strength and deformation in terms of stress-strain re-
sponses. However, the concept of stress field may be
inapplicable at the nanometer level, while the con-
cept of energy remains well-defined in the manner of
an interatomic potential. In Sec. 6 we suggest a lo-
cal formulation of the thermodynamic driving force to
move a defect. By decomposing the system into a core
zone connected to the remainder through a buffer layer
and deriving a tractable method of local free-energy
calculation, we find results for the free energy change
in a defect displacement confirming its invariance to
the size of the core region. It is also noteworthy that
defect-environment interactions can be highly local.
To conclude our commentary brief remarks on multi-
scale materials modeling are offered in Sec. 7.

2. Theoretical Limits to Strength

Material strength can be defined in terms of me-
chanical stability. For a crystal lattice stability con-
ditions can be formulated which specify the critical
level of external stress that the system can withstand.
Lattice stability is not only one of the most central is-
sues in elasticity, it is also fundamental in any analysis
of structural transformations in solids, such as poly-
morphism, amorphization, fracture or melting. It was
first shown by M. Born that by expanding the internal
energy of a crystal in a power series in the strain and
requiring positivity of the energy, one obtains a set of
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conditions on the elastic constants of the crystal that
must be satisfied to maintain structural stability [4,5].
This leads to the determination of ideal strength of
perfect crystals as an instability phenomenon, a con-
cept that has been examined by Hill [6] and Hill and
Milstein [7], as well as used in various applications [8].

That Born’s results are valid only when the lattice
is not under external stress was brought out explicitly
in a derivation by Wang et al [9] invoking the formu-
lation of a path-dependent Gibbs integral. The lim-
itation is most displayed by considering the relation
between two second-rank tensors, the elastic stiffness
coefficients B and the elastic constants C [10],

Bijkl = Cijkl + Λijkl, (1)

where

Λijkl =
1
2
(δikτjl+δjkτil+δilτjk+δjlτik−2δklτij), (2)

with δij being the Kronecker delta symbol and τij be-
ing the applied stress tensor. The condition for the
onset of elastic instability is [9],

det |A| = 0, (3)

where,

Aijkl =
1
2

(Bijkl + Bklij) . (4)

In the absence of an external stress the elastic
stiffness coefficients are the same as the elastic con-
stants, in which case Eq.(3) gives the Born criteria.
Conversely, at finite external stress lattice stability,
or strength, is in principle not an intrinsic material
property as are the elastic constants. In the deriva-
tion of Eq.(3) [9] the origin of the term Λijkl arises
clearly from the work done by the external stress. Fur-
ther discussions of Eq.(3) has been given by Zhou and
Joos [11] regarding thermodynamic (ensemble) impli-
cations and the deformation path, and by Morris and
Krenn [12] regarding compatibility with the condition
for internal stability formulated by Gibbs in 1876.

The connection between stability criteria and the-
oretical strength is rather straightforward. For a given
applied stress one can imagine evaluating the current
elastic constants to obtain the stiffness coefficients B.
Then by increasing the magnitude of stress one will
reach a point where one of the eigenvalues of the sym-
metric matrix A (cf. Eq.(3)) vanishes. This critical
stress at which the system becomes structurally un-
stable is then a measure of the theoretical strength of
the solid. In view of this, one has a direct approach
to strength determination through atomistic simula-
tion of the structural instability under a prescribed
loading. If the simulation is performed by molecular

dynamics, temperature effects can be taken into ac-
count naturally by following the particle trajectories
at the temperature of interest.

Under a uniform load the deformation of a single
crystal is homogeneous up to the point of structural
instability. For a cubic lattice under an applied hydro-
static stress, the load-dependent stability conditions
are particularly simple, being of the form,

C11 +2C12 +P > 0, C11−C12− 2P > 0, C44−P > 0,
(5)

where P is positive (negative) for compression (ten-
sion), and the elastic constants Cij are to be evaluated
at the current state. While this result is known for
some time [13–15], direct verification against atom-
istic simulations showing that the criteria do accu-
rately describe the critical value of P (Pc) at which
the homogeneous lattice becomes unstable has been
relatively recent [9, 16–20]. One may therefore regard
Pc as a definition of the theoretical or ideal compres-
sive (tensile) strength of the elastic body.

One may regard the stability criteria, Eq.(5), as
manifestation in the long wavelength limit of the gen-
eral condition for vibrational stability of a lattice. The
vanishing of elastic constants then corresponds to the
phenomenon of soft phonon modes in lattice dynam-
ics. Indeed one finds that under sufficient deformation
such soft modes do occur in a homogeneously strained
lattice. To see the lattice dynamical manifestation of
this condition, we apply molecular dynamics to re-
lax a single crystal sample with periodic boundary
condition at essentially zero temperature for a spec-
ified deformation at constant strain. The resulting
atomic configurations are then used to construct the
dynamical matrices which are then diagonalized. Fig.
1 shows two sets of dispersion curves for fcc Ar at
0K described by the Lennard-Jones interatomic po-
tential (rc = 2.5σ), one for the crystal at equilibrium
(for reference) and the other when the lattice is de-
formed under a uniaxial tensile strain of 0.138 which
is close to the critical value [21]. One can see in the
latter a Γ-point soft mode in the [011] direction. Sim-
ilar results for deformation under shear or hydrostatic
tensile strain would show Γ-point soft modes in the
[111] and [100] directions, respectively. All these are
acoustic zone-center modes, therefore they would cor-
respond to elastic instabilities. For a more compli-
cated lattice such as SiC in the zinc blende structure,
one would find that soft modes also can occur at the
zone boundaries [21]. The overall implication here is
that lattice vibrational analysis of a deformed crystal
offers the most general measure of structural instabil-
ity at 0K, and this again demonstrates that strength
is not an intrinsic property of the material, rather it
depends on the mode of deformation.

Returning to molecular dynamics simulations we
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Figure 1: Phonon dispersion curves of single crystal of Ar as described by the Lennard-Jones potential (solid
lines), (a) comparison of results for equilibrium condition with experimental data (36Ar results (circles) are
rescaled for m = 39.948 amu) [59], (b) results for uniaxial tension deformation at strain of 0.138, corresponding
stresses of 266 MPa and 119 MPa along the tensile and transverse direction. The labeling tracks only one split
branch of the original cubic-symmetry k-point. [21]

show in Fig. 2 the stress-strain response for a sin-
gle crystal of Ar under uniaxial tension at 35.9K. At
every stage of fixed strain, the system is relaxed and
the stress tensor evaluated. One sees the expected lin-
ear elastic response at small strains up to about 0.05;
thereafter the response is nonlinear but still elastic up
to a critical strain of 0.1 and corresponding stress of
130 MPa. Applying a small increment strain beyond
this point causes a dramatic stress reduction (relief)
at point (b). Inspection of the atomic configurations
at the indicated points shows the following. At point
(a) several point defect like inhomogeneities have been
formed; most probably one or more will act as nucle-
ation sites for a larger defect which causes the strain
energy to be abruptly released. At the cusp, point
(b), one can clearly discern an elementary slip on an
entire [111] plane, the process being so sudden that it
is difficult to capture the intermediate configurations.
Figuratively speaking, we suspect that a partial dis-
location loop is spontaneously created on the (111)
plane which expands at a high speed to join with the
dispersed inhomogeneities until it annihilates with it-
self on the opposite side of the periodic border of the
simulation cell, leaving a stacking fault plane. As one
increases the strain the lattice loads up again until an-
other slip occurs. At (c) one finds that a different slip
system is activated.

What we have seen here in Fig. 2 is a typical stress-
strain response on which one can conduct very detailed
analysis of the deformation using the atomic config-

uration available from the simulation. This atomic-
level version of structure-property correlation can be
even more insightful than the conventional macro-
scopic counterpart simply because in simulation the
microstructure can be as well characterized as one de-
sires. As an illustration we consider the single-crystal
response such as that shown in Fig. 2 a reference
and repeat the deformation simulation using initial
atomic configurations which have some distinctive mi-
crostructural features. We have performed such stud-
ies on SiC using prepared amorphous and nanocrys-
talline structures [21]. In this case the single-crystal
reference at T = 1300K, under pure shear rather
than uniaxial tension, shows a similar linear elastic
response at small strain up to about 0.05; thereafter
the response is nonlinear but still elastic up to a crit-
ical strain of εxy = 0.18 and corresponding stress of
σxy = 43 GPa. Applying a small increment strain
beyond this point causes a dramatic change, similar
to that seen at point (a) in Fig. 2, with the internal
stress suddenly reduced by a factor of 3. Inspection of
the atomic configurations shows the nucleation of an
elliptical microcrack in the lattice along the direction
of maximum tension. With further strain increments
the specimen deforms by strain localization around the
crack with essentially no change in the system stress.

The responses of the amorphous and nanocrys-
talline SiC differ significantly from that of the sin-
gle crystal under hydrostatic tension. The former
shows a broad peak, at about half the critical strain
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Figure 2: Atomistic stress-strain response of a sin-
gle crystal of Ar under uniaxial tensile deformation
at constant strain at a reduced temperature of 0.3
(35.9K), simulation data are indicated as circles and
solid line is drawn to guide the eye. [21]

and stress, suggesting a much more gradual structural
transition. Indeed, the deformed atomic configuration
reveals channel-like decohesion at strain of 0.096 and
stress 22 GPa. Another feature of the amorphous sam-
ple is that the response to other modes of deformation,
uniaxial tension and shear, is much more isotropic rel-
ative to the single crystal, which is perhaps under-
standable with bonding in SiC being quite strongly
covalent and therefore directionally dependent. For
the nanocrystal, the critical strain and stress are simi-
lar to the amorphous phase, except that the instability
effect is much more pronounced, qualitatively like that
of the single crystal. The atomic configuration shows
rather clearly the failure process to be intergranular
decohesion. These observations allow us to correlate
the qualitative behavior of the stress-strain responses
with a gross feature of the system microstructure,
namely, the local disorder (or free volume). This fea-
ture is completely absent in the single crystal, well
distributed in the amorphous phase, and localized at
the grain boundaries in the nanocrystal. The disorder
can act as a nucleation site for structural instability,
thereby causing a reduction of the critical stress and
strain for failure. Once a site is activated, it will tend
to link up with neighboring activated sites, thus giv-
ing rise to different behavior between the amorphous
and nanocrystalline samples.

3. Unifying Born’s Melting and Stability Cri-
teria

In 1939 Born set forth a simple criterion for crystal

melting by postulating that melting should be accom-
panied by the loss of shear rigidity [22]. Expressed in
terms of the shear modulus G for a cubic crystal, the
melting point Tm is the temperature at which,

G(Tm) = 0. (6)

A year later he extended this stability concept to lat-
tice deformation [4] by deriving the well-known condi-
tions for mechanical stability, valid for cubic crystals,

C11 + 2C12 > 0, C11 − C12 > 0, C44 > 0, (7)

where C11, C12 and C44 (= G) are the three distinct
elastic constants (in Voigt notation).

In this section we will examine the basis on which
Born’s two criteria may be considered to be valid.
Shortly after Eq.(6) was proposed, experimental re-
sults obtained on NaCl single crystals were presented
showing that the two shear constants, C44 and C11 −
C12, have nonzero values at the melting point [23].
Moreover, it was not clear how this criterion could ex-
plain the existence of latent heat and volume change
in a first-order thermodynamic phase transition. In
contrast, the stability criteria Eq.(7) seem to be gen-
erally accepted, with neither stringent tests having
been performed nor qualifications concerning its pos-
sible limitations discussed. The challenge of ascertain-
ing whether such criteria are capable of predicting the
actual onset of an instability is considerable. The dif-
ficulty, on the theoretical side, has been that stability
analyses have been formulated in different ways [9,10],
and few explicit calculations of elastic constants at the
critical condition have been reported to make possi-
ble an unambiguous test. On the experimental side,
competing effects frequently render the determination
of the triggering instability uncertain. Thus, while
the shortcomings of Eq.(7) are well known, the use of
Eq.(7) to define structural resistance to thermal agi-
tation has gone unnoticed.

Our interest is to test Eq.(7) through molecular dy-
namics simulation of melting instead of testing Eq.(6)
using experimental data. By performing simulation of
isobaric heating to melting at zero pressure of a per-
fect crystal without surfaces or defects of any kind, we
achieve an unambiguous test since without an exter-
nal stress Eq.(7) would be equivalent to Eq.(5). As
we will see below, simulation shows that at the onset
of melting one of the shear constants indeed vanishes,
although it is C11−C12 rather than C44. The observed
melting temperature, or equivalently the critical lat-
tice strain, is in remarkable agreement with the predic-
tions based on the stability criteria. Since the system
is initially a defect- and surface-free lattice, the homo-
geneous melting observed here is to be distinguished
from the conventional melting which is a free-energy



based heterogeneous process of nucleation and growth.
The latter process, if not kinetically suppressed in sim-
ulation by eliminating all defects and surfaces, would
set in at a lower temperature, the conventional melting
point of the material, and preclude the melting pro-
cess associated with an elastic instability. Allowing for
these modifications, the melting and stability criteria
proposed by Born are reconciled. The qualification
which is nontrivial is that the concept of thermoelas-
tic mechanism of melting indeed applies to a form of
melting, but it is melting in the sense of mechanical
stability against thermal excitation as opposed to the
conventional thermodynamic process which is always
defect mediated and therefore heterogeneous.

Given that the generalized criteria Eq.(5) obvi-
ously reduce to Born’s results in the limit of zero load,
Eq.(7) is a valid description of lattice stability in the
special case of a cubic crystal being heated to melt-
ing at zero pressure. For the simulation we use an
interatomic potential model for Au [24] (details of the
potential are of no interest in this discussion) and a
simulation cell containing 1, 372 atoms with periodic
border conditions imposed in the manner of Parrinello
and Rahman [25]. A series of isobaric-isothermal sim-
ulations are carried out at various temperatures. At
each temperature the atomic trajectories generated
are used to compute the elastic constants at the cur-
rent state using appropriate fluctuation formulas [26].

Figure 3: Variation of lattice strain a/a0 with tem-
perature along three Cartesian directions in the sim-
ulation of an isobaric (P = 0) heating process.

Fig. 3 shows the variation with temperature of
the lattice strain a/a0 along the three cubic symme-
try directions [27]. The slight increase with increasing
temperature merely indicates the lattice is expanding
normally with temperature, and the results for the
three directions are the same as they should be. At
T = 1350K one sees a sharp bifurcation in the lat-
tice dimension where the system elongates in two di-

Figure 4: Variation of BT , G, and G′ with lattice
strain a/a0 in the isobaric (P = 0) heating process.

rections and contracts in the third. This is a clear
sign of symmetry change, in the present case from
cubic to tetragonal. To see whether the simulation
results are in agreement with the prediction based on
Eq.(7), we show in Fig. 4 the variation of the elastic
moduli with temperature, or equivalently the lattice
strain since there is a one-to-one correspondence as
indicated in Fig. 3; the three moduli of interest are
the bulk modulus BT = (C11 + 2C12)/3, tetragonal
shear modulus G′ = (C11 − C12)/2, and rhombohe-
dral shear modulus G = C44. On the basis of Fig. 4
one would predict the incipient instability to be the
vanishing of G′, occurring at the theoretical or pre-
dicted lattice strain of (a/a0)theory = 1.025. From
the simulation at T = 1350K the observed strain is
(a/a0)observed = 1.024. Thus, we can conclude that
the vanishing of tetragonal shear is responsible for the
structural behavior.

For more details of the system behavior at T =
1350K we show in Fig. 5 the time evolution of the lat-
tice strain, the off-diagonal elements of the cell matrix
H, and the system volume. It is clear from Fig. 5(a)
that the onset of the G′ = 0 instability triggers both
a shear (cf. Fig. 5(b)) and a lattice decohesion (Fig.
5(c)), the latter providing the characteristic volume
expansion associated with melting. This sequence of
behavior, which has not been recognized previously,
implies that the signature of a first-order transition,
namely, latent volume change, is not necessarily asso-
ciated with the incipient instability. Our results also
provide evidence supporting Born’s picture of melting
being driven by a thermoelastic instability [22], later
reinterpreted by Boyer [28] to involve a combination
of loss of shear rigidity and vanishing of the compress-
ibility. Moreover, it is essential to recognize that this
thermoelastic mechanism can only be applied to the
process of mechanical instability (homogeneous melt-



Figure 5: Time responses of (a) lattice strain along
three initially cubic directions, (b) off-diagonal ele-
ments of the cell matrix H, H12, H13, H23, (c) nor-
malized system volume. Arrow indicate the onset of
Born instability in (a), shear instability in (b), and
lattice decohesion in (c).

ing) of a crystal lattice without defects, and not to
the coexistence of solid and liquid phases at a specific
temperature (heterogeneous melting) [29,30].

It is perhaps worthwhile emphasizing again what
the combination of stability analysis and molecular
dynamics simulation has contributed to the under-
standing of Born’s two criteria. That the stability
criteria Eq.(7) are valid only under vanishing external
load is quite clear, both theoretically and in simulation
studies. Since it is often advantageous to be able to
predict a priori the critical stress or strain for the on-
set of instability, the availability of Eq.(5) could facil-
itate more quantitative analysis of simulation results.
Although our results for an fcc lattice with metallic
interactions show that homogeneous melting is trig-

gered by G′ = 0 and not Eq.(6), nevertheless, they
constitute clear-cut evidence that a shear instability is
responsible for initiating the transition. The fact that
simulation reveals a sequence of responses apparently
linked to the competing modes of instabilities (cf. Fig.
5) implies that it is no longer necessary to explain all
the known characteristic features of melting on the
basis of the vanishing of a single modulus. In other
words, independent of whether G′ = 0 is the initiat-
ing mechanism, the system will in any event undergo
volume change and latent heat release in sufficiently
rapid order (on the time scale of physical observation)
that these processes are all identified as part of the
melting phenomenon. Generalizing this observation
further, one may entertain the notion of a hierarchy of
interrelated stability catastrophes of different origins,
elastic, thermodynamic, vibrational, and entropic [31].

Finally it may be mentioned that in several stud-
ies over the last few years, the stability criteria Eq.(5)
have lead to precise identifications of the elastic insta-
bility triggering a particular structural transition. In
hydrostatic compression of Si, the instability which
causes the transition from diamond cubic to β-tin
structure is the vanishing of G′(P ) = (C11 − C12 −
2P )/2 [17]. In contrast, compression of crystalline
SiC in the zinc blende structure results in an amor-
phization transition associated with the vanishing of
G(P ) = C44 − P [20]. This is discussed further in the
next section. For behavior under tension, crack nu-
cleation in SiC [18] and cavitation in a model binary
intermetallic [19], both triggered by the spinodal in-
stability, vanishing of BT (P ) = (C11 + 2C12 + P )/3,
are results which are analogous to the observations re-
ported here. Notice also that in the present study a
crossover from spinodal to shear instability can take
place at sufficiently high temperature [9].

4. Competing Mechanisms in Pressure-
Induced Structural Transitions

When a homogeneous lattice without defects of
any kind is driven to structural instability by hydro-
static compression, two types of responses generally
can be expected, a polymorphic transition to another
lattice structure, or a transition to a disordered state,
a phenomenon known as solid-state amorphization.
Molecular dynamics simulations of compression load-
ing on Si [17] and cubic SiC (β-phase) [20] using es-
sentially the same many-body interatomic interaction
model have shown that the former undergoes a transi-
tion from diamond cubic to β-tin tetragonal structure,
while the latter undergoes amorphization. The behav-
ior of stability criteria in these two studies are shown
in Fig. 6, where one sees that the two transitions in-
volve different instability modes, the vanishing of the



Figure 6: Variation of the elastic moduli, K, G, and
G′, with lattice strain under hydrostatic loading at
0K, (a) β-SiC, (b) Si. r/r0 = 1 denotes the condition
of zero stress.

tetragonal shear modulus G′ and the rhombohedral
shear modulus G, respectively. The potential models
from which the elastic constants are calculated are of
the same bond-order form proposed by J. Tersoff [32]
for covalent crystals. In both cases, the critical strains
predicted in Fig. 6 agreed with what was observed in
the direct simulations. The question then arises as to
what is the underlying cause of the different structural
consequences of shear instability.

Table 1: Calculated properties of the Tersoff model
for β-SiC and its two modifications [20].

Tersoff Model I Model II
lattice constant[Å] 4.32 4.34 4.32

cohesive energy[eV] -6.18 -6.03 -6.18
bulk modulus[GPa] 225 218 225

C11[GPa] 436 419 331
C12[GPa] 120 117 172
C44[GPa] 255 242 161

C11 − C12[GPa] 316 302 159

It is apparent that an obvious difference between
the two lattices is that one is an elemental system
while the other is a binary (AB) compound. Thus in
SiC there are chemical ordering effects which are not
present in Si. Since in the context of chemical order-
ing a distinction is made between atomic size effects
and chemical bonding effects, it is of interest to as-
sess which effect is more responsible for the observed
amorphization. For this analysis one can manipulate

the description of interatomic interactions to inten-
tionally suppress one effect or the other. Two mod-
ified forms of the Tersoff potential model have been
produced, in one variant chemical bond preference is
suppressed through an adjustment of the interaction
between atoms of different species (model I), and in
another variant size effects are suppressed by adjusting
the bond-order parameter and cross interaction at the
same time to leave heat of mixing unchanged (model
II) [33]. The relevant physical properties of the Ter-
soff potential for β-SiC and its two modifications are
shown in Table I. It is clearly seen that elimination
of chemical bonding preference has little effect (model
I), whereas all three elastic constants are significantly
altered in the absence of atomic size difference. Al-
though both C11 − C12 and C44 are appreciably re-
duced, the lowering of the former is more drastic such
that in model II the instability mode becomes the van-
ishing of G′. Thus one may deduce that not only is the
presence of size effects responsible for the rhombohe-
dral shear instability in β-SiC, but also their absence
allows the tetragonal shear to vanish first in Si. To ex-
plicitly verify that these interpretations are correct, a
simulation of model II under compression was carried
out, indeed revealing a transition from zinc-blende to
rock salt structure triggered by a tetragonal shear in-
stability. This is an illustration of the use of modified
or manipulated interatomic interaction in simulation;
it can be a potentially very useful device for isolating
cause-and-effect in probing complex phenomena.

We have demonstrated that in terms of the com-
petition between instability modes, in this case the
vanishing of the two shear moduli, one can gain some
insight into the underlying nature of polymorphic and
crystal to amorphous transitions. With regard to the
experimental implications of our results on β-SiC, we
note that amorphization of β-SiC single crystals in-
duced by electron irradiation have been reported [34],
the data revealing chemical disordering to take place
below a critical temperature of 340◦C. On the other
hand, the structural transition in β-SiC under com-
pression is found by X-ray diffraction to be polymor-
phic, from zinc-blende to a rock salt-type structure at
100 GPA [35]. The reason that the simulation pre-
dictions do not match precisely with the experimental
findings can be attributed to two factors. First is that
the empirical classical interatomic potential descrip-
tion is likely not adequate to correctly resolve com-
peting mechanisms involving subtle effects of chemical
bonding. Secondly, the role of crystal defects in con-
trolling the experimental observations has not been
quantitatively assessed, while for the simulations one
knows for sure that no defects were initially present.
These uncertainties aside, it is noteworthy that both
amorphization and polymorphic transitions have been



observed in β-SiC. Apparently, under the relatively
“gentle” driving force of pressure the latter, associated
with G′ = 0, prevails over the former which entails
G = 0. The driving force induced by electron irra-
diation is the destabilizing effect of point defect pro-
duction; under this condition β-SiC undergoes amor-
phization rather than transforming to another crystal
structure.

Even though in β-SiC pressure-induced amorphiza-
tion appears to be precluded by a polymorphic transi-
tion, several experimental studies of this phenomenon
in AB compounds can be cited to provide further in-
sights into the kinetics of competing transitions. X-ray
measurements show that Nb2O5 becomes amorphous
at 19.2 GPa at 300 K which is novel because the ox-
ide is simultaneously reduced in the process [36]; the
competing polymorphic transition is believed to be ki-
netically impeded. In BAs a transformation from zinc
blende to amorphous structure was observed at 125
GPa, just slightly above the calculated equilibrium
transition pressure to the rock salt phase, and inter-
preted as signifying a kinetically frustrated process
[37]. In more complicated systems, such as CaSiO3

an MgSiO3 perovskites, it has been conjectured that
stress-induced amorphization arises from the near si-
multaneous accessibility of multiple modes of instabil-
ity [38]. The amorphization of α-quartz under pres-
sure is a particularly well-known case where molecu-
lar dynamics simulation gives a transition pressure in
agreement with experiment [39]. The physical mech-
anism underlying the elastic instability was first iden-
tified as the softening of a phonon mode [40]; later
a dynamic instability associated with a soft phonon
mode at one wave vector was found [41]. These de-
velopments are not surprising in view of our discus-
sions in Section 2. It is interesting that the dynamic
instability in α-quartz precede the elastic instability,
occurring at 21.5 GPa and 25 GPa respectively.

5. Dislocation Mobility in Silicon

How the motion of a single dislocation in silicon is
affected by temperature and stress is a longstanding
question in crystal plasticity [42]. Much of our present
understanding is based on a semi-empirical theory of
kink diffusion [43] which does not properly account for
important mechanistic details of the processes govern-
ing dislocation glide. For example, the effects of in-
teractions between partial dislocations in dislocations
that have dissociated have been appreciated for some
time [44], but we still do not know how to interpret
their quantitative effects on the measured data. Re-
cently, atomistic studies have revealed the existence
of kink multiplicity [45–47], giving further impetus
to seek extension beyond the standard treatment of

dislocation glide via the double kink mechanism [43].
Finally, atomistic calculations ranging from empirical
potential models [48,49] to electronic structure meth-
ods based on tight-binding approximation [47] and
first principles methods [50, 51] are starting to give
kink formation and migration activation energies, in-
cluding results specific to detailed kink structures. If
these results are to be used in predicting dislocation
mobility, a method is needed to relate the microscopic
details on the angstrom length scale to existing mo-
bility data measured on the micron scale.

From the standpoint of analyzing dislocation mo-
bility on the experimental spatial and time scales,
1 − 100 microns and 1 − 100 milliseconds, a direct
simulation using discrete atoms is well beyond the cur-
rent computational capabilities. On the other hand,
it is quite feasible to represent a dislocation by a large
number of line segments, which individually can be al-
lowed to evolve under the influence of temperature and
applied stress. For the model to be capable of giving
quantitative results, a mechanism for the displacement
of an individual line segment has to be prescribed. In
this discussion we will adopt the well-known mecha-
nism of double kink nucleation and migration as the
underlying process for dislocation mobility [43].

Figure 7: Kink mechanism of dislocation glide involv-
ing activation of a dislocation segment over two Peierls
energy barriers, Ek and Wm, for kink nucleation and
migration, respectively.

The physical picture illustrating the kink mecha-
nism of dislocation glide is displacement of a single
dislocation line on a potential energy surface with pe-
riodic barriers as shown in Fig. 7. The surface is seen
to be corrugated along two directions; the heights of
the barrier along the direction of displacement con-
trolling kink nucleation and that along the transverse
direction controlling kink expansion (migration) are
denoted as Ek and Wm respectively. Backward ac-
tivations are allowed so that a narrow double kink
can annihilate, or one of the two ledges of the dou-
ble kink can contract. The displacement of the entire
dislocation line over arbitrary number of Ek barriers
is realized by dividing the line into a large number of
segments with each segment undergoing the unit glide



process depicted in Fig. 7.
The application of Monte Carlo as an energy-based

method for efficiently sampling a large number of such
unit events is potentially a practical solution to the
time scale problem of relating mobility events occur-
ring over periods of seconds to the underlying mech-
anistic processes which take place over picoseconds.
At present it is still somewhat of an open question
whether reasonable behavior of dislocation mobility
seen by experiments can be produced by treating
stochastically a large number of the unit events. The
essence of the kinetic Monte Carlo, in contrast to sam-
pling statistical ensembles for calculations of equilib-
rium properties, lies simply in expressing activation
energy barriers for defect mobility as a rate in tran-
sition state theory which is to be sampled with every
step in the simulation.

For the operation of the kink mechanism it follows
there are two such rates, one for nucleation and an-
other independent one for migration. We write the
nucleation rate as,

jdk(1) = ω0 exp

(
−Eemb + (±γSF − ~τ ·~bα)A/2

kBT

)
,

(8)
where ω0 is the sampling frequency factor, which we
will set equal to the Debye frequency, ~τ = (σyz,−σxy)
is the applied stress, ~bα = (bz, bx)α, α = 0, 1 are the
Burgers vectors of the leading and trailing partials,
~b0 = (b/2, b

√
3/6) and ~b1 = (b/2,−b

√
3/6) , A = ±bh

is the area swept out by the dislocation during such
transformation, with“+” or “−” sign for upward or
downward nucleation respectively, kB is the Boltz-
mann’s constant and T is the temperature. The sign
before γSF takes “+” or “−” for leading and trailing
partials. The factor of 1/2 appears because we assume
that in the saddle point configuration the dislocation
has swept out half of the total area A. A similar ex-
pression, with appropriate modifications, holds for the
kink migration rate.

For the implementation of our kinetic Monte Carlo
model we refer the readers to our previous reports
[52, 53], here we will discuss further the physical con-
tent of the simulation and the mechanistic insights
that can be extracted from the analysis. One should
note that there are a total of four energies entering in
our description, the activation energies for kink nucle-
ation and migration, Ek and Wm, the stacking fault
energy, γSF, and the elastic interaction energy between
a given segment and all the other segments and the
applied stress (so-called Peach-Koehler interaction),
EPK. The first two are necessary for describing the
displacement of a straight dislocation line through the
double-kink mechanism, the third appears because the
dislocation is dissociated so the line is actually an elas-

tic ribbon, and finally the elastic interaction is needed
to account for the local dislocation microstructure as
well as the external applied stress. With kink nucle-
ation or migration coupled to expansion or contraction
of the stacking-fault ribbon, and the elastic interac-
tions, our model can be expected to be able to account
for nontrivial behavior of the dislocation velocity.

Table 2: Kink’s formation energy Ek and migration
barrier Wm (in eV) on 30◦ and 90◦ partials in sili-
con obtained from atomistic calculations using EDIP
potential, tight-binding (TB) and density functional
theory (DFT), and experimental measurements using
transmission electron microscopy (TEM) and high res-
olution electron microscopy (HREM).

30◦ 90◦

Ek Wm Ek Wm

EDIP [60] 0.52 0.89 0.70 0.62
TB [47] 0.82 1.52 0.12 1.62
DFT [61] 2.1
DFT [50] 0.1 1.8
DFT [51] 0.04 1.09
TEM [62] ≥0.4 ≤1.2
TEM [63] 1∼1.2 1∼1.2
HREM [64] 0.8 1.55 0.74 1.55

Of the four energies in our formulation, the de-
termination of the kink nucleation and migration ac-
tivation energies poses the most direct challenge to
atomistic simulation. In Table 2 we list the literature
values, experimental and calculated, for Ek and Wm.
Very little agreement is seen among the theoretical
predictions, which range from empirical interatomic
potentials to electronic structure calculations. At the
same time the experimental data also are not conclu-
sive. Given this situation, we consider all the available
information in Table 2 without favoring any particular
result, and in this way arrive at a set of “effective” or
estimated values, Ek = 0.7 eV and Wm = 1.2 eV [53].
By adopting these estimates, along with a reasonable
ω0 and a typical value for the entropy, we find disloca-
tion velocities given by the kinetic Monte Carlo simu-
lation are of the same magnitude as the measurements
with satisfactory agreement in the temperature varia-
tion over a considerable range. While we are cautious
in giving too much significance to this agreement, we
do believe that this is an encouraging and useful result
providing a guide for future calculations and measure-
ments of kink energetics.

It could be said that obtaining the correct tem-
perature dependence of the dislocation velocity is not
a stringent test of the model, since temperature ap-
pears only as a multiplicative factor in the exponent.
Without changing any parameter in our description,
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Figure 8: Stress variation of the velocity of a screw
dislocation in Si at T = 1000 K. kMC predictions are
shown in closed symbols, diamond for the commensu-
rate condition and circle for the non-commensurate
condition, while experimental data showing corre-
sponding behavior are shown in open symbols [52].
Solid lines are drawn to guide the eye.

we now turn to examine the stress variation and find
a somewhat subtle effect of the mobility of a dissoci-
ated dislocation that had not been previously appre-
ciated. The origin of this effect lies in the coupling
between the leading and trailing partials which itself
involves the interplay of three factors, the Peierls bar-
rier for a unit displacement of a partial (same as the
barrier Ek for kink nucleation in Fig. 7), the cohesive
action of the stacking fault ribbon between the par-
tials, and the elastic interactions between the moving
segment of partial and its local environment in the
presence of an applied stress. To describe the cou-
pling in more details, it is helpful to consider that, in
the absence of the Peierls barrier, the ideal separation
between the two partials would be This separation,
which we denote as X0, is given by the expression
X0 = µb2α/(γSF−σxybx), where µ is the shear modu-
lus, α = (1/4− 1/12(1− ν))/2π, bx = b

√
3/6, and ν is

the Poisson ratio. The significance of X0 is that when
it is a multiple of the period of the Peierls barrier (the
kink height in Fig. 7), it becomes a characteristic sep-
aration distance between the two partials with the par-
tials strongly confined to their lowest energy configu-
ration at the valley of the Peierls potential. We will
refer to this as the commensurate condition, since at
this separation for one partial to move to the next val-
ley, the only way to avoid the inherent energy penalty

is for the other partial to move in unison. Under this
circumstance, the reduced mobility of the unit event
may be expected to manifest in low values for the dis-
location velocity at low stress on experimental scale
and a sublinear variation with stress. This behavior
indeed has been observed as well as measurements of
a linear variation, both shown in Fig. 8.

The reasoning we have just given for the strong
coupling between the partials allows, in a self-
consistent manner, for a different type of mobility be-
havior when X0 is not commensurate with the period
of the Peierls barrier. Then the two partials can be
expected to behave much more independently of each
other. This can be seen by considering X0 to be half
integral multiple of the period, in which case the low-
est energy state of the dissociated dislocation is dou-
bly degenerate. Now each partial can migrate inde-
pendently to the adjacent valley without penalty, pro-
vided the displacements follow appropriate sequence
such that with each unit displacement the separation
between the nucleated double kink and the other par-
tial is again at the low energy state.

The simulation results in Fig. 8 demonstrate that
one indeed obtains significantly different stress vari-
ations, essentially a sublinear behavior when X0 is
multiple and a linear behavior when it is half-integral
multiple of the period of the Peierls barrier. Com-
pared to the experimental data we see rather good
agreement in the case of linear stress variation, and
qualitatively similar behavior for the threshold effect.
The latter is not unreasonable given that the measure-
ments are necessarily averages over a range of local
conditions whereas the prediction is strictly for the
case of commensurate barrier. We should also add
that the threshold effect should manifest only at low
stresses since potential barriers become less important
at higher stresses. Based on our model we can esti-
mate the critical stress where the transition may be
expected, obtaining a value of 16.8 MPa, which is what
is seen in Fig. 8 and compatible with another estimate
based on different considerations [54].

We close this section with a final comment. The
effect of coupling between the partials has been consid-
ered in the theoretical analysis of mobility of a straight
dislocation [55–57]. What we have shown here is that
the distinction between integral and half-integral sep-
aration applies equally well to the dislocation mobility
by kink mechanism. The precise value of X0 is deter-
mined by a number of physical properties, the stacking
fault energy, the elastic constant, or any other factor
which affects the dissociation width. In reality it is
likely that the value of X0 will experience significant
local variations over the length of the dislocation line
due to intrinsic lattice defects, dopants, impurities,
stress gradients, etc., all of which can affect the lo-



cal condition of partial-partial interaction. Our sim-
ulations indicate that in locations where X0 is near
half-integer value, kinks can form and glide indepen-
dently on each partial, while in other locations where
X0 is near integral value, kink formation and migra-
tion can only occur simultaneously on both partials, in
the low-stress regime. Since the rates of the strongly-
coupled processes are much lower, in the overall sce-
nario of dislocation motion, kink nucleation will occur
at weak or “uncorrelated” sites, followed kink propa-
gation and arrest at the strong or “correlated” sites.
An arrested kink can still pass through the strong seg-
ment if pushed from behind by kinks piling up on the
same partial. Alternatively, the kink can capture a
partner kink on another partial, at which point the
hard segment becomes penetrable for the coupled mi-
gration of the newly formed kink pair. In either case,
such “correlated” segments act as effective obstacles to
kink migration. This line of argument provides a nat-
ural explanation of the “weak obstacle” effect, a con-
cept which had been advanced to explain the unusual
dislocation behavior observed in semiconductors [58].

6. Defect Driving Force - Search for a Local
Invariant

In the present examination of how atomistic struc-
tures and interactions affect strength and deformation
on the microscopic level, it is clear the system response
is governed by the defects or microstructure present.
By studying the stability of a single crystal, a system
without microstructure, one obtains the upper limit
or theoretical strength of the lattice, as discussed in
Secs. 2 through 4. In real solids where defects are in-
variably present, the stress-strain response is expected
to show considerably lower strength and usually more
complex deformation than simple linear or nonlinear
elasticity. Dislocation mobility, discussed in Sec. 5,
plays an important role in providing an estimate of
a lower limit to strength. A fundamental question
here is the local force acting on a defect, whether it
is the dislocation core or a crack tip, that causes it
to move. This conceptually simple quantity is central
to any physical description of mechanical behavior,
yet it is surprisingly difficult to calculate. To see the
bottleneck, one should rephrase the problem by ask-
ing for the force to move an isolated defect. While
a single defect in an infinite and otherwise defect-free
crystal is easy to imagine, it is not at all simple to
realize this condition in practice. In other words, if
one were to determine this force by a simulation, the
result must be independent of the system size. Too
often in simulation studies this invariance property is
not demonstrated, thus rendering the resulting defect
driving force suspicious.

It is intuitive to expect that the invariance of the
driving force is intimately connected to the question
of how local are the interactions between the defect
and its immediate surrounding in the system. If the
effects are sufficiently local on the scale of separation
distances between defects, then it is likely that a finite
simulation cell with one or more defects is adequate
to give the desired defect driving force. In any event
it is clear that to establish invariance or study local-
ity, one can perform simulation on cells of increasing
size. Then the question is, what quantity should one
calculate?

We propose to take a thermodynamic approach to
this issue and consider a free-energy formulation [21].
We imagine separating our system into a core region
(C) of interest with a buffer layer (L) between it and
the remainder of the system (A). The interaction en-
ergy for the system then can be written as,

Utot(qN ) = U(qA) + U(qA,qL) + U(qL,qC) + U(qC),
(9)

where an argument denotes the degrees of freedom in
that particular region. Notice that regions C and A
are coupled to the buffer region through the second
and third terms respectively. With this decomposi-
tion one can evaluate the partition function by hold-
ing L fixed and integrating over C and A so that the
Helmholtz free-energy becomes,

Ftot = FC(qL) + FA(qL), (10)

Now we consider a defect moving from one poten-
tial valley to the next (cf. Fig. 7) so that the energy
change between initial and final configurations can be
expressed as,

∆GC ≡ ∆Ftot = ∆FC(qL)−
∑

i∈L

〈f ext
i 〉 ·∆〈qL

i 〉, (11)

where 〈〉 denotes ensemble average, and GC is the local
(atomistic) Gibbs free energy which depends explicitly
only on local knowledges of qC and qL, not qA. In
writing Eq.(11) we have approximated the change in
FA to first order in the displacement qL; f ext

i being
the force acting on L due to A.

Now we want to show that ∆GC can play the role
of an invariant with a specific example [21]. Consider
a dumbbell self-interstitial in a bcc lattice of Fe atoms
placed just 14Åaway from a surface, as shown in Fig.
9. The free surface provides a driving force for the
interstitial to move toward the surface. The exact
energy change for the interstitial to move one lattice
constant, a repeat distance of 2.85Å, is calculated by
performing full relaxations for the entire system be-
fore and after the move. The result is quite small,
−0.00013921 eV. In Table 3 we show the results ob-
tained by using Eq.(11) with various sizes for region C



Figure 9: Migration of a 〈110〉 dumbbell self-
interstitial in α-Fe near a (100) surface. [21]

and corresponding radius of the buffer region L. One
can see that the convergence is quite satisfactory for a
core size of 506 atoms. We have also obtained results
for the energy change for a crack tip in the vicinity of
a spherical hole, and a screw dislocation in the vicin-
ity of another dislocation or a notch [21]. In all theses
cases of a defect in the presence another defect, the
exact energy change can be obtained to high accuracy
using Eq.(11), with convergence achieved with region
C containing no more than several hundred atoms.
The implication is that the free-energy change formu-
lated above is an appropriate measure of local defect
driving force; it has the desired invariant property and
is more robust and easier to use in practice than the
conventional (local) stress approach for studying de-
fect mobility by atomistic calculations.

7. Outlook

It is perhaps worthwhile to point out again that the
importance of materials technology in our society com-
bined with the advent of high performance computing
has given rise to the current focus on multiscale mate-
rials modeling as a new component of computational
materials research. This in turn provides exciting op-
portunities for the investigation of longstanding seem-
ingly simple but fundamentally enduring issues where

r [Å] C atoms [eV]
8 170 -0.00022667
9 265 -0.00012683
10 338 -0.00013634
11 506 -0.00014005
12 610 -0.00013860
13 776 -0.00013856
14 952 -0.00013859
15 1240 -0.00013866

Table 3: Convergence of approximate free-energy
change calculation for migration of a 〈110〉 dumbbell
self-interstitial near a (100) surface in α-Fe [21]. Exact
value is −0.00013921 eV.

atomistic inputs can lead to significant new insights.
In this Commentary we have discussed illustrative re-
sults on strength and deformation which clearly bring
out the important role of defect microstructure at the
atomistic level. Three more examples may be briefly
cited to emphasize that this type of development will
be of growing interest.

For the predictive simulation of crystal plasticity
a key question is how can quantitative knowledge of
the dislocation core and atomistic methods for ana-
lyzing dislocation interactions be used to develop a
mechanism-based description of strain hardening? In
a large-scale molecular dynamics simulation of crack
propagation, it was observed that a Lomer-Cottrell
lock, formed by two intersecting Shockley partials, can
be destroyed by the action of another partial nearby
[65]. The critical stress for unzipping (destroying) the
junction was estimated to be about 15 MPa, which
is consistent with values previously deduced from ex-
perimental data, thus demonstrating the feasibility of
linking molecular dynamics and dislocation dynamics
simulations and eliminating the need for intermediate
experimental input.

Atomistic simulation can play a similar role in our
understanding of brittle-ductile behavior in fracture.
The current continuum approach is to introduce an in-
terplanar potential, equivalent to specifying a stress-
displacement constitutive relation on the slip plane,
associated with rigid block sliding in a homogeneous
lattice. Through this potential one may introduce cer-
tain atomic-scale effects and therefore make the ap-
proach a continuum-atomistic hybrid. This strategy
has been implemented, in part, in a molecular dy-
namics simulation in which dislocation emission from
a crack tip under an applied tensile stress has been iso-
lated and analyzed to produce the stress-displacement
relation on activated slip plane before and after nucle-
ation [66]. The results revealed clearly the essential



role of surface steps in the nucleation event and the
effects of crack-tip shielding once the dislocation is
emitted.

Another emerging and significant challenge for
atomistic simulations is plastic flow in polycrystalline
solids where the understanding of how crystal grains
deform on decreasing length scales is needed [67]. It
has been found recently from simulations of deform-
ing nanocrystals that the well-known Hall-Petch effect
where strength increases with decreasing grain size
(in the micrometer range) does not hold in nanocrys-
tals where the grain size is only a few nanometers;
instead, a reverse Hall-Petch behavior was observed
which could be attributed to small-scale sliding in
the grain boundaries. This suggests the existence of
a critical size separating the two types of behavior,
which in turn implies that as grain size is reduced
across this critical value, the deformation mechanism
changes from the intragranular processes of disloca-
tion nucleation and pile-up to intergranular sliding. A
similar transition may occur in nanometer-scale elec-
tronic components, such as epitaxial films and quan-
tum dots. In these heterostructures, the lattice mis-
match between different materials induces strain, and
how it relaxes during fabrication will determine the
material structure, and hence its properties. Again,
one expects competition between processes mediated
by misfit defects such as dislocations, and surfaced-
based processes such as roughening or morphological
changes.

We conclude by returning to the opening theme
of our discussion and noting from the Summary of
the Report on National workshop on Advanced Sci-
entific Computing, July 1998 [1], that success in any
grand challenge enterprise will require not only science
and technology, but also integration and partnership
among its participants. We believe the field of mate-
rials science will be continually enriched as it expands
to include scientists and engineers from a multidisci-
plinary range of background and interest, from physics
and engineering, to chemistry, and to biology.
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