
Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

Time mesh independent framework for learning materials constitutive
relationships
Marcello Laurenti a, Qing-Jie Li b, Ju Li b,c,∗

a Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Via Eudossiana 18, Rome, 00184, RM, Italy
b Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, United States
c Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, United States

A R T I C L E I N F O

Keywords:
Bio-inspired framework
Constitutive behavior
Uneven and noise data
Tensile testing predictions
Robustness against data unevenness

A B S T R A C T

Real-world datasets are rarely populated by evenly distributed entries; unevenness may be caused by sensor
malfunctions or randomized sampling due to the process nature. Modeling the constitutive relationship (CR)
of materials in scenarios where the temporal data available are uneven is a serious challenge for black box
approaches such as artificial neural networks. This work presents a general framework capable of modeling
uneven sampled data, which is composed of an Encoder–Decoder (ED) structure. In our framework, the Encoder
can process an uneven input sequence, thanks to an approximation of the Ordinary Differential Equations
(ODE), and project it into a lower dimensional latent space; the Decoder, on the other hand, can map the
compressed information into the output of interest, the material stress response in this work. In the proposed
temporal mesh independent framework, the Encoder is a multi-layer structure, with each layer consisting of
a Long-Short Term Memory (LSTM) layer, a Closed form Continuous Time (CfC) layer, and a Self Multi-Head
Attention Layer (MHAL) layer connected in series. The Decoder can be one Fully Connected Network (FCN)
or two FCNs in parallel; in the latter case, the Decoder is capable of giving the mean and the variance of the
output. The presented mesh-independent framework demonstrates good accuracy despite both the unevenness
and the noise of the training data, specially when its results are compared to the standard ones; thus extending
the applicability of neural-network-based black box models in real world applications.
1. Introduction

Material properties and responses under certain conditions have
long been modeled using the so-called ‘‘white box models’’, a category
of mathematical models with well-motivated analytical relations. How-
ever, such an approach requires a good understanding of the physical
process or property being studied. For processes/properties that are
difficult to understand or too complex to model with simple math-
ematical formulations, the so-called ‘‘black box model’’ approach is
often adopted, which can be viewed as an evolution of the empirical or
phenomenological approach. In this case, the relations being modeled
can be nonlinear and in a high-dimensional space, e.g., thousands of
variables may be transformed in ways that we humans are unable to
perceive straightforwardly, thus the name ‘‘black box’’. Noteworthy
examples of this kind of approach include various Machine Learning
methods and Artificial Neural Networks.

Advances in computational hardware and neural network (NN)
architectures have spurred extensive interest in NN modeling of mate-
rials properties under complex conditions. In the last decade, several

∗ Corresponding author at: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, United States.
Linkedin: marcello-laurenti-a541811b7 (M. Laurenti).
E-mail addresses: marcello.laurenti@uniroma1.it (M. Laurenti), qingjie.li219@gmail.com (Q.-J. Li), liju@mit.edu (J. Li).

research have successfully deployed Deep NNs to model a variety
of different material properties and behaviors. Li et al. (2023b) pre-
dicted the mechanical properties of carbon fibers (CF) by using a
NN composed by two heads, a Convolutional NN (CNN) and a Multi
Layer Perceptron (MLP), which were given as input the visual and the
contextual text information respectively. In their work, they achieved
promising accuracy on different CF’s mechanical properties with an
R2-value of 0.99, highlighting the architecture’s capability of predict-
ing material properties via multi-source heterogeneous data. Gholami
et al. (2023) achieved great accuracy deploying residual networks such
as ResNet (He et al., 2015) or AlexNet (Krizhevsky et al., 2012) to
predict the mechanical properties of a bio-glass (BG) collagen (COG)
composite. In their work, both NNs’ hyperparameters were tuned to
ensure great regression performances with R2-values around 0.99. Ning
et al. (2023) successfully used a Harris Hawks Optimization (HHO)
algorithm (Hussien et al., 2019) coupled with a Long Short Term
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) to ac-
curately predict the Remaining Useful Life (RUL) of super-capacitors
https://doi.org/10.1016/j.engappai.2024.109165
Received 4 October 2023; Received in revised form 29 May 2024; Accepted 17 Au
vailable online 6 September 2024
952-1976/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
gust 2024

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://www.linkedin.com/in/marcello-laurenti-a541811b7
mailto:marcello.laurenti@uniroma1.it
mailto:qingjie.li219@gmail.com
mailto:liju@mit.edu
https://doi.org/10.1016/j.engappai.2024.109165
https://doi.org/10.1016/j.engappai.2024.109165
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.109165&domain=pdf

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 1. (a) A schematic of the information flow in a generic RNN Cell. At each time 𝑡, the input 𝑥𝑡 and the ℎ𝑡−1 hidden state are used to compute the output and the next hidden
state ℎ𝑡; (b) When input points are equally distant from each other the information flows correctly from 𝑡 − 1 to 𝑡 and the network is able to learn data patterns; (c) When input
points are unevenly distributed, the information flow does not account for the different 𝛥t, thus causing poor performances; (d) When the hidden states are a function of 𝛥t, the
information flows and it accounts the differences in 𝛥t.
under different temperature settings. Marco et al. (2021) used a net-
work composed of a CNN and an MLP to assess, from a 2D image,
the interface interlocking type and its mechanical properties such as
stiffness, ultimate tensile strength and toughness. Zheng et al. (2018)
used a CNN network to learn, from the information contained in the
periodic table, both the lattice parameter and enthalpy of formation
of a compound simultaneously. In another similar work, Dai et al.
(2023) developed a highly accurate Graph NN to efficiently correlate
the crystalline structure of poly-crystalline materials with their Li-ion
3-dimensional conductivity, outperforming a linear regression model
and two baseline convolutional NN models. Hestroffer et al. (2023)
used state-of-the-art graph NN(GNN)-3D-CNN to map polycrystalline
features such as crystallographic orientation, size, and grain neighbor
connectivity information to their relative mechanical properties. In
their work the AI was capable of predicting the mechanical properties
associated with the polycrystalline structures with a mean absolute
error (MAE) lower than 1%.

As stress–strain responses are usually dependent on load histories,
neural network (NN) architectures capable of modeling temporal se-
quences have been widely explored. Marco et al. (2022) used Graph
NNs to predict strain, stress and deformation in various material sys-
tems, like fiber and stratified composites, and lattice meta-materials.
In the same sub-field, but working with more complex displacement
fields, Gorji Maysam et al. (2020) developed a Recurrent NN (RNN)-
based framework to model the large deformation response of elasto-
plastic solids subject to arbitrary multi-axial loading paths, where the
scalar time is used to parameterize both stress and strain. Recently Li
et al. (2023a) extended the RNN-based architecture into a general
encoder–decoder framework, where the encoder can be any sequence
modeling NNs such as Gated Recurrent Unit (GRU (Cho et al., 2014)),
LSTM, Temporal Convolutional Network (TCN), and Transformer, etc.
to project the high dimensional loading sequence data onto a compact
latent space, and the Decoder subsequently maps the encoded infor-
mation to stress responses. Such a flexible framework demonstrated
promising results for materials under complex loading conditions.

Although such NN frameworks can learn the dynamics of the under-
lying processes, like an animal can learn how to grab onto tree branches
2
and swing from treetop to treetop, they do not integrate explicit knowl-
edge of all the underlying physics, and thus posing several limitations.
For example, these frameworks have not been demonstrated for mod-
eling loading data with uneven/arbitrary sampling intervals, which
however is important in practical applications.

The predictive capabilities of a RNN-based model depend on how
the input sequence is processed and how the states are passed from
ti to 𝑡𝑖+1. A visual representation of this is shown in Fig. 1a. Besides
how the cell states are computed, they are simply passed to the next
unit to compute the 𝑡𝑖+1 prediction and cell states. This modus operandi
assumes some level of symmetry (Fig. 1b) in the input data, for example
if the inputs are time-dependent, so it can be expressed as a function
X(𝑡), the network implicitly assumes that between the couple X(ti),
X(𝑡𝑖+1) and X(𝑡𝑖+1), X(𝑡𝑖+2), the time differences 𝑡𝑖+1 − 𝑡𝑖 and 𝑡𝑖+2 − 𝑡𝑖+1
are (nearly) constant 𝛥t for all the input couples in the dataset. This
assumption is true in a great number of the data structures available,
for example performing a Strain-Stress test on a given material, the
sample rate of both displacement and force is often maintained constant
throughout the test. With such pattern, architectures like GRU or LSTM
are able to learn the data structure and can give accurate predictions.
Such ‘‘black box’’ models are explored in more detail in the work
done by Li et al. (2023a). Problems start to arise when this temporal
mesh symmetry is absent (Fig. 1c), because, in their inner structure,
GRU (Cho et al., 2014) and LSTM (Hochreiter and Schmidhuber, 1997)
are unable to model input unevenness. This leads to concerns about
the NN capability to make accurate predictions under more complex
time-sampling conditions.

Unevenness and noise in temporal data sampling are generally
present due to factors such as sensor malfunctions, electrical blackouts,
sensor resolutions or a nonlinear sampling rate like in a creep test
scenario. Such irregularly sampled or uneven temporal datasets still
hold very useful information, but they are hardly learnable by standard
black box models (Fig. 2a), thus limiting their applications in many
fields. In this context, having a general framework more robust against
time unevenness, or generally data unevenness, is crucial to maximizing
data utilization and information extraction, especially if data collection
is expensive. Being capable of modeling uneven data, both in time

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 2. Differences between standard black box approach (a) and proposed black box approach (b). In this work data entries are severely unevenly distributed both in space and
time. In a standard application, the observation will still conserve some degree of time symmetry.
and space (Fig. 2b) (or other dimensions) would promote the black
model approach as robust as the white box models used in ODE solvers
with adaptive (thus uneven) time-stepping or as finite element method
(FEM) solvers for partial differential equations (PDE) that use adaptive
spatial and temporal meshes, with the advantage of predicting the
system behavior without necessarily knowing its true dynamics in
closed form.

Several approaches have been explored to tackle this issue. Baytas
et al. (2017) tried to treat 𝛥t as a feature in the input sequence, but
their results showed little improvement with an accuracy comparable
to the standard RNNs structures. As time is used as an additional input
dimension to a standard RNN, this architecture lacks an inner structure
capable of approximating the time dependencies. Che et al. (2018),
instead, tried to model the cell state as a function of 𝛥t, c(𝛥t), using
an exponential decay function, however, this approach showed no
improvement when the 𝛥t between observations was very large due to
excessive decay. While an exponentially time decaying effect could be
beneficial in decorrelating two temporally-distant hidden states when
the 𝛥t are relatively small, it causes a complete destruction of the
information flow when 𝛥t are larger; thus this methodology is not
adequate to model true data unevenness. A big leap into addressing the
time-invariance problem was proposed by Chen et al. (2018) with the
introduction of Neural Ordinary Differential Equations (NODE). Their
work clearly showed how the cell state is a function of time and varies
accordingly to the 𝛥t among observations (Fig. 1d) and this is reflected
in improved accuracy with respect to any normal RNN networks. The
major limitation of this newly proposed architecture was the excessive
computation time and the added memory required to run. This was due
to the nonlinear relation between input and output, the exponential
functions involved, and the computation of an ODE. Furthermore, the
presence of more variables to optimize during the optimization process
limited the application of this architecture to small datasets or simple
networks in general. An improvement to such structures was made
by Hasani et al. (2022), with the development of the CfC structure,
an acronym that stands for Closed Form Continuous Time. CfC is a
particular approximation of the Liquid Time Constant Networks done
by Hasani et al. (2020) that can more effectively correlate observa-
tions taken with different 𝛥t. The network proposed is a variant of a
standard RNN with both an inner gating mechanism and a linear time
handling. Even though this architecture is less rigorous than NODE, it is
3
faster and requires fewer parameters, thus retaining good time-handling
capabilities.

Lechner et al. also developed a particular synapse wiring called
NCP (Lechner et al., 2020) for the CfC Network based on the Caenorhab-
ditis Elegans nervous system (Fig. 3). NCP showed two advantages
compared to the usual fully connected NN. First, the wiring in NCP
assumes that not every connection is needed to compute the output
(in contrary to a standard Fully Connected Network). A MLP is built
by connecting every neuron on the previous and next layer, however,
not every connection is needed to successfully approximate the hyper-
surface associated with the task, so during the optimization process,
many coefficients are zeroed. When the network has a simple structure,
zeroing coefficients is not a difficult task for the optimization algorithm;
however, when the network grows in complexity, the added dimension-
ality creates a more complex hyper-surface and increases the risk for
the optimization process to get permanently stuck in a local minimum,
thus increasing the error in the prediction. In NCP networks, during
the initialization, some coefficients are permanently zeroed, thus they
do not participate in the gradient descent algorithm. The NCP network
can retain a higher latent space without compromising the optimization
process by having fewer parameters to optimize, thus allowing the
modeling of more complex trajectories. The second advantage of NCP
is obtained by using this sparse connection policy on three different
layers, mimicking the real neural connections of a living organism such
as Caenorhabditis Elegans.

Although such structure can efficiently correlate hidden states with
different 𝛥t, they can suffer from a phenomenum called ‘‘data mem-
orization’’. NNs are usually composed of millions, if not billions, of
optimizable parameters, but they are used to fit a relatively smaller
number of observations from training dataset; which can lead to a
memorization of the training data distribution. This effect differs from
the standard overfit or memorization that is indicated by the divergence
between training and testing errors. The above-mentioned distribu-
tion memorization causes the performances to drop significantly when
slightly different data distribution, or noise, is used during inference of
a trained model. This effect can be also interpreted as a form of network
poisoning, and it is more evident in NNs such as Image Classifiers.
During the last years different independent researchers pointed out
how brittle Image Classifiers are against simple attacks, such as One
Pixel Attach (Su et al., 2019; Alatalo et al., 2022), Patch Attack (Sen

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 3. (a) Schematic representation of the type of neurons involved in the NCP. Sensory neurons are the source of information in a Rn space, where n is the number of features
that are carried. Inter-Neurons, Command Neurons and Motor Neurons are the proper neurons of the structure, characterized by their own synaptic connections, weight and biases;
(b) Connections in this structure are sparse, so not every neuron is connected to each other; (c) The Command Neurons layer has both sparseness in the synaptic connection
between neurons of other layers and sparseness in the recurrent connection between neurons of the same layer.
and Dasgupta, 2023) and Noise Attack (Duan et al., 2021; Sen and
Dasgupta, 2023). In those works, small changes, imperceptible to us
humans, have completely altered the prediction of otherwise very
accurate Image Classifiers.

Such brittleness extends to other types of neural architecture and it
could have very undesirable effects in Material Science. Small changes
in the data could potentially compromise the accuracy of an otherwise
well-tuned NN; thus possibly leading to catastrophic predictions if the
NNs are used in real-world scenarios. The above-mentioned changes
can easily permeate inside the data-gathering workflow, and they have
two different sources:

• Different sampling procedure:
– A sensor dissimilar from the others previously used to popu-

late the dataset could be introduced into the data-gathering
flow. The new observations, even if they seem coherent and
identical to the others, could introduce noise or skewness
into the dataset;

– The sampling procedure could be changed, thus the ob-
servations could be not equidistant between each other. It
could be, for example, a decision to change the frequency
of measurement;

– A researcher or an operator could decide to apply the model
on a different data distribution from the training one. For
example, a different sampling interval or noises may be used
during model inference.

• Different testing environment : a NN could be deployed in the real
world after being successfully trained in a simulated environment.
The new real observations would have different distributions from
the simulated ones and the model prediction could suffer a severe
decrease in accuracy.

In Materials Science field, observations are usually not cheap both
economic-wise and time-wise; thus this brittleness poses a serious
limitation to the use of deep learning modeling.

The ultimate goal of this research is to develop a robust framework
against data sparseness and noise, capable of achieving accurate results
in environments characterized by a broken time-symmetry. Such sce-
narios usually cause the non convergence of the NNs or significantly
4
decrease the model accuracy in inference mode. A secondary but equally
important goal of this research is to also achieve equal accuracy in
the aforementioned inference mode when the data distribution differs
from the training and test datasets. In this work, we achieved these
goals by using an Encoder–Decoder architecture composed of several
CfC Layers wired with NCP, each coupled with a Multi Head Attention
Layer (MHAL)(Fig. 3b, c), extending the network robustness against
data unevenness. In our proposed network the CfC layers are em-
ployed to link uneven and different data distributions using the 𝛥ti
between observations. The framework has proven to be capable of
giving accurate and reasonable predictions even when highly damaged
datasets with multiple missing values as training data and different
point distributions in inference mode have been used. Similar to the
architecture by Li et al. (2023a), we further modified the Decoder as
a dual parallel FCN to model both the mean and variance of the pre-
diction (learning data distribution). This approach is particularly useful
in cases such as mechanical testing data on the same material showing
variations (e.g., from different manufacturers), or when input data are
particularly noisy. Using a Variational Approach allows to introduce
a Confidence Region for the predicted output, jointly adding further
robustness to both noise and redundant data and giving interpretability
to the network.

2. Methods

2.1. Learning tasks

In this research, the practical approach followed is very similar
to the work done by Li et al. (2023a), but entails some substantial
differences. Inputs and outputs are functions of time, so in the case of
a strain-stress curve, the mechanical response to an applied strain must
be intended as:

𝝈(𝑡) = 𝑁𝑁[𝜺(𝑡),𝝍(𝑡)] (1)

Where NN is the neural network to be learned, 𝜺 is the strain
tensor that represents the field of deformations applied to the material,
𝝈 is the stress tensor, 𝝍 is the tensor of auxiliary information that
includes all the other conditions applied to the material or information

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 4. (a) Encoder Structure, composed of N-layers of a series of LSTM, CfC wired with NCP and a Self Multi-Head Attention Mechanism; (b) Decoder Structure, composed of M
layers of a FCN. The LSTM cells, thanks to the cell state, will learn the long-term dependencies in the train datasets; the CfC cells will use the 𝛥t to correlate uneven observations.
Jointly LSTM and CfC will learn useful and meaningful patterns from the sequence data, projecting them into a compact latent space. The retrieved information is then used by
the MLP to learn seasonal and periodic patterns as well as trend, to give accurate predictions.
about the material fabrication, such as temperature, strain rate, angle,
composition, etc. 𝝈 expanded in its components, can be written as:

𝝈(𝑡) = 𝜎1(𝑡), 𝜎2(𝑡), 𝜎3(𝑡), 𝜎4(𝑡), 𝜎5(𝑡), 𝜎6(𝑡) (2)

𝜺 can also be expanded in its components, so it can be written as:

𝜺(𝑡) = 𝜀1(𝑡), 𝜀2(𝑡), 𝜀3(𝑡), 𝜀4(𝑡), 𝜀5(𝑡), 𝜀6(𝑡) (3)

In this study, the strain-stress curves examined were taken under a
uniaxial load condition, so the latter relation simplifies in:

𝜎(𝑡) = NN[𝜀(𝑡),𝝍(𝑡)] (4)

Using a RNN approach, a sequence of input data of length n must
be provided as input. This can be represented as:

𝒔𝑡 = [𝑠𝑡−𝑛, 𝑠𝑡−𝑛+1,… , 𝑠𝑡] (5)

In this context, each si is composed as:

𝑠𝑖 = [𝜀𝑖, 𝛥𝑡𝑖,𝝍 𝑖] (6)

Where 𝛥𝑡𝑖 is the difference between the observation time of si and
𝑠𝑖−1. A RNN is particularly feasible for a learning task such as the
one presented here because it can efficiently data-mine structures in
the training database and because it is generally more robust, so the
predictions are more stable and less subject to noise.

In the current work, an architecture that can be described as an
Encoder–Decoder is used. The structure is composed of two main
blocks:

• An Encoder (Fig. 4a) block that has the role to process the
input sequences to a latent Rl subspace, effectively reducing data
dimension while keeping essential information.

• A Decoder (Fig. 4b) block that processes the compressed in-
formation, learns periodic or seasonal cycles, and computes the
output.
5
Compressing high dimensional input data to compact representation
in the latent space, or in general, information compression is a key
element to achieving not only efficient memory usage but also good
predictive performance. This structure has also been found in the brains
of high organisms (Motiwala et al., 2022), indicating its evolutionary
advantage for the high intelligence of some species.

2.2. Framework structure: Encoder

The Encoder part in the proposed framework plays a very impor-
tant role in processing unevenly spaced data. Each Encoder layer is
composed of three different sub-blocks, each one with a very specific
function that contributes to the efficiency of the network.

2.2.1. Encoder sub-block: LSTM
The first component in a single encoder layer is an LSTM NN

(Hochreiter and Schmidhuber, 1997), a particular RNN (Rumelhart and
McClelland, 1987) equipped with several gating mechanisms that allow
remembering both recent and distant sequence information. Here the
LSTM NN is used to properly model long-time dependencies. An LSTM
NN structure has two distinct internal states:

• hidden state (h).
• cell state (c).

At time 𝑡, both are functions (F) of the input at time 𝑡, 𝑥𝑡, and their
previous states at time 𝑡 − 1.

ℎ𝑡 = 𝐹 [𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1] (7)

𝑐𝑡 = 𝐹 [𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1] (8)

A schematic of its structure is shown in Fig. 5.

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 5. Schematic representation of an LSTM Cell, which has four gating mechanisms: input, cell, forget and output gate. In the figure, Linear represents a linear projection layer,
𝜎 represents the Sigmoid activation function, Tanh represents the Hyperbolic Tangent activation function and ⊙ represents the Hadamard product.
The key in this structure is the horizontal line represented by the
cell state. It has very few interactions with everything else, and it
can easily pass through without any major changes. It has only two
interactions with the entering data, represented by a Hadamard product
and a Sum. The first one is a pointwise product with the forget gate, a
gating mechanism that decides how much past cell information should
be discarded. If zero, everything is discarded; if one, everything is
retained. The forget gate is computed as:

𝑓𝑔 = 𝜎(𝑾 𝑖𝑓 ⋅ 𝑥𝑖 + 𝒃𝑖𝑓 +𝑾 ℎ𝑓 ⋅ ℎ𝑖−1 + 𝒃ℎ𝑓) (9)

𝝈 is the Sigmoid activation function; 𝑾 𝑖𝑓 and 𝑾 ℎ𝑓 are the matrices
storing the forget gate projection weights for input and hidden state,
respectively; 𝒃𝑖𝑓 and 𝒃ℎ𝑓 are the tensors storing the forget gate biases
for input and hidden state, respectively; 𝑥𝑖 is the 𝑖𝑡ℎ trajectory point
and ℎ𝑖−1 is the previous hidden state.

The Sum is responsible for adding new information to the internal
cell state. The mechanism that decides which information could be
passed through is decided by a two-step operation. The first step is
represented by the computation of the input gate, which, aside from
the coefficients involved, has the same form as the forget gate, but this
one is responsible for deciding which information can be uploaded. The
input gate is computed as:

𝑖𝑔 = 𝜎(𝑾 𝑖𝑖 ⋅ 𝑥𝑖 + 𝒃𝑖𝑖 +𝑾 ℎ𝑖 ⋅ ℎ𝑖−1 + 𝒃ℎ𝑖) (10)

𝑾 𝑖𝑖 and 𝑾 ℎ𝑖 are the matrices storing the input gate projection
weights for input and hidden state, respectively; 𝒃𝑖𝑖 and 𝒃ℎ𝑖 are the
tensors storing the input gate biases for input and hidden state, respec-
tively.

The second step creates the 𝑐 new candidate values that can be
uploaded to the cell state.

𝑐 = tanh(𝑾 𝑖𝑐 ⋅ 𝑥𝑖 + 𝒃𝑖𝑐 +𝑾 ℎ𝑐 ⋅ ℎ𝑖−1 + 𝒃ℎ𝑐) (11)

𝑾 𝑖𝑐 and 𝑾 ℎ𝑐 are the matrices storing the candidates projection
weights for input and hidden state, respectively; 𝒃𝑖𝑐 and 𝒃ℎ𝑐 are the
tensors storing the candidates biases for input and hidden state, respec-
tively.

The new cell state is then computed as:

𝑐𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑔 + 𝑐 ⊙ 𝑖𝑔 (12)

⊙ represents the Hadamard product.
The last part of the cell’s internal mechanism is the one responsible

for the actual output. It is composed of another gating mechanism, the
6
output gate, that decides which one of the cell state values should be
passed as outputs after a tanh activation.

𝑜𝑔 = 𝜎(𝑾 𝑖𝑜 ⋅ 𝑥𝑖 + 𝒃𝑖𝑜 +𝑾 ℎ𝑜 ⋅ ℎ𝑖−1 + 𝒃ℎ𝑜) (13)

ℎ𝑡 = tanh(𝑐𝑡) ⋅ 𝑜𝑔 (14)

𝑾 𝑖𝑜 and 𝑾 ℎ𝑜 are the matrices storing the output gate projection
weights for input and hidden state, respectively; 𝒃𝑖𝑜 and 𝒃ℎ𝑜 are the
tensors storing the output gate biases for input and hidden state,
respectively.

The LSTM (Hochreiter and Schmidhuber, 1997) structure has many
more variables to optimize with respect to the GRU (Cho et al., 2014),
and for this reason, it is not used often in research because it is harder
to train. In this case, however, its ability to efficiently model both
long-term and short-term time dependencies was used, thus allowing the
learning of complex patterns even using shorter sequences. This led to
faster computations and smaller memory usage during training.

2.2.2. Encoder sub-block: CfC-cell
The hidden states computed by the LSTM block at this point still

do not account for any time dependency, and thus they are unable
to address the unevenness of the passed data. In this context, the CfC
layer is employed to help model the time dependencies, adding more
robustness to the model. The simplified scheme of the CfC structure
is shown in Fig. 6. The structure resembles a RNN Cell, but in this
case the gating mechanism serves as an approximation of an ODE
equation. A complete and detailed discussion on the topic can be found
in the original paper (Hasani et al., 2022). The mathematical operation
computed in the cell can be expressed using this equation:

ℎ𝑡 = 𝜎(−𝑓 (ℎ̃𝑡, 𝑥𝑡)⊙𝛥𝑡)⊙𝑔(ℎ̃𝑡, 𝑥𝑡) + [1 − 𝜎(−𝑓 (ℎ̃𝑡, 𝑥𝑡)⊙𝛥𝑡)]⊙𝑞(ℎ̃𝑡, 𝑥𝑡) (15)

Where f, g and q are linear operations that project the information
from the Rn+m space to the Rn, meanwhile the two gating mechanisms
allow an interpolation between 𝑡 → +∞ and 𝑡 → −∞. Here ℎ̃𝑡 represents
the LSTM hidden state, 𝑥𝑡 is the original input sequence; both are
concatenated to compute the new state ℎ𝑡. This new ℎ𝑡 accounts for
the time distance between the input sequence 𝑡−1 and 𝑡, and is the key
to the robustness against data sparseness in the proposed framework.

2.2.3. Encoder sub-block: CfC-layer
In the proposed framework, each CfC Layer is realized with the

aid of NCP wiring policy (Lechner et al., 2020), so it is composed
of three stacked CfC Cells. The peculiarity of this structure is that

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 6. Schematic representation of the CfC Cell. Even if the information flows similarly as shown in Fig. 1a, this is not an ordinary RNN Cell. The two sigmoid gates perform an
ODE approximation, giving ht the ability to vary accordingly depending on 𝛥t values. In this Cell the three Linear parallel layers approximate the value of the functions f,g,h (Hasani
et al., 2022), allowing a fast computation of the ODE approximation. In the figure, Linear represents a linear projection layer, 𝜎 represents the Sigmoid activation function, Tanh
represents the Hyperbolic Tangent activation function and ⊙ represents the Hadamard product.
Fig. 7. Schematic representation of the Attention Mechanism used. Attention is performed with a dot product attention, the computations are parallelized in m heads and the
results are then concatenated and summed with the original entering tensor.
Fig. 8. (a) Proposed wiring based on NCP; (b) The LSTM hidden state is split into three tensors that will initialize the initial hidden state of three different CfC Layers, wired with
NCP; (c) Using the LSTM hidden states and the initial input sequence new temporal correlated hidden states will be computed and concatenated to have the same dimensions of the
entering LSTM hidden states.
7

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 9. Qualitative illustration of gradient related issues in deep learning modeling. (a) Loss hyper-surface of an hypothetical loss function. The presence of multiple local minima
is highlighted. (b) Evolution of models’ accuracy in function of its accuracy.
the connections between neurons in the stacked cells are not fully
connected as in a standard network, but instead sparse. The sparsity
coefficient is a hyperparameter that can be tuned during the framework
initialization by the user or by an agent. The role of the synaptic
sparseness in our work has proven to be crucial in improving the NN
accuracy because it allows the network to be wider, thus learning
more accurate and complex latent representations, without introducing
unnecessary variables that could slow down the training process and
in general compromise the predictions of the network (Fig. 9b). The
intuition behind its efficiency lies in the similarity with another mecha-
nism widely used in NN optimization, the dropout. Dropout significantly
improves both accuracy and the risk of over-fitting the train data by
stochastically zeroing the synaptic responses of a layer during training.
The masking mechanism introduced by dropout layers has two main
benefits: it allows a better generalization of the training dataset and
it detaches a portion of weight and biases from the gradient descent
algorithm at each epochs, thus lowering the risk of an unrecoverable
fall in a local minima region (Fig. 9a). The sparsity mechanism used
in our and Lechner et al. work (Lechner et al., 2020) are similar, but
with two significant differences: firstly the synaptic masking is always
the same since initialization, secondly the masking is not removed
while performing inference. While a re-initialization of the synaptic-
masking at each epoch is absent it does not lower the risk of overfitting;
it still maintains a beneficial effect towards the gradient descent al-
gorithm and it encourages the development of a more efficient and
wide synaptic layer. Similar effects can be also obtained while using
the pruning class in Pytorch, or other similar libraries. While using
generic pruning classes it allows to lower the computational burden
during both the training and inferencing processes, it does not improve
the NN accuracy. The key difference in the NCP wiring lies in how
the masking is computed and how it differentiates in every sub-layer.
The wiring(Fig. 8a) and layer width proposed are the same as used
in Lechner et al. work (Lechner et al., 2020) and are summarized as
follows:

• Three CfC layers are initialized by using as inputs the LSTM layer
width and the output dimension. The width of each CfC layer is
defined as follows:

𝐅𝐢𝐫𝐬𝐭 𝐥𝐚𝐲𝐞𝐫(𝑖𝑛𝑡𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑙𝑎𝑦𝑒𝑟) ∶= 0.6⋅(𝐿𝑆𝑇𝑀 𝑤𝑖𝑑𝑡ℎ−𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

(16)
8
𝐒𝐞𝐜𝐨𝐧𝐝 𝐥𝐚𝐲𝐞𝐫(𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑙𝑎𝑦𝑒𝑟)

∶= 0.4 ⋅ (𝐿𝑆𝑇𝑀 𝑤𝑖𝑑𝑡ℎ−𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) (17)

𝐓𝐡𝐢𝐫𝐝 𝐥𝐚𝐲𝐞𝐫(𝑚𝑜𝑡𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑙𝑎𝑦𝑒𝑟) ∶= 𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (18)

• After creating and initializing the CfC layers, p randomly chosen
synapses (where p is the sparsity coefficient, a hyperparameter
that could vary from 0.1 to 0.9) are cut off from each layer
by both zeroing their coefficients and excluding them from the
Gradient Descent algorithm, thus assigning them a constant value
through training.

• The second layer neurons are then randomly connected between
each other with a number of synapses calculated with the equa-
tion:

𝐑𝐞𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐒𝐲𝐧𝐚𝐩𝐬𝐞𝐬 ∶= 0.8 ⋅ (𝐿𝑆𝑇𝑀 𝑤𝑖𝑑𝑡ℎ− 𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) ⋅ (1−𝑝)

(19)

The LSTM neurons are equal in numbers to the sum of the three
CfC layers neurons, according to the rules introduced in the previous
paragraph, so when the LSTM hidden state is passed, it is divided into
three tensors, one for each cell Fig. 8b. The dimension of each tensor
is equal to the dimension of the corresponding CfC layer. Each cell
then takes the output of the previous cell and the LSTM split tensor
as input, as shown in Fig. 8c. After the computation, the ℎ̃t states are
retrieved and concatenated to give the final ODE approximate hidden
state ht (Fig. 8c). Thanks to this innovative sparseness mechanism, our
neural architecture was able to achieve a better generalization of the
train dataset, even when we artificially removed data entries from it.

2.2.4. Encoder sub-block: Self multi-head attention mechanism
After the CfC Layer, the output sequence has encoded all the in-

formation previously passed by the input sequence, including time
information. However, to further improve the framework accuracy a
Self Multi-Head Attention Mechanism (Vaswani et al., 2017) is added.
This architecture is capable of weighing and giving importance to the
most relevant part of the output sequence. The attention mechanism,
by doing so, can better use the information flow obtained in the RNN
structure and generally this feature is used to prevent memory issues
using long sequences. In this research, even if the sequence length does

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
not cause this kind of issue, we found that the deployment of such
architecture generally improves the overall accuracy. Such behavior
could be explained by the improved learning efficiency that focused
the learning efforts on important data structures/sequences in the train
dataset, similarly to the well known mechanism in language models
when any kind of attention is used (DeRose et al., 2021; Niu et al.,
2021). The dataset used here is not composed of words but data entries,
but they still have positional and contextual importance as if they were.
In material science, the mechanical properties exhibited by a material
are intimately connected between each other, but the high dimension-
ality possessed by the input data could undermine the development of a
valid constitutive law that correlates them. By using an attention mech-
anism, the model could focus on the important feature, relationship
across the dataset, avoiding unnecessary noise and uncorrelated data.
The mechanism used here is based on the Self Attention Mechanism
concept (Vaswani et al., 2017), so the input sequence is Query, Value
and Key (Q, V, K). The structure of the Layer is shown in Fig. 7. Even
though the computational burden of this type of attention is high,
its impact is significantly lower on both training time and resource
utilization when compared to that of LSTM and CfC blocks; thus, in
this work other faster alternatives (Wu et al., 2022; Zhou et al., 2020;
Dao et al., 2022; Dao, 2023) have not been used. The mathematical
operation computed in each head computation can be expressed using
the equation:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = sof tmax

(

𝑄 ⋅𝐾𝑇
√

𝑑𝑘

)

⋅ 𝑉 (20)

In this equation 𝑑𝑘 is the dimension used for the heads, it regularize
the attention output and it has been proven effective during training
in Vaswani et al. (2017).

The information retrieved from each head is then concatenated and
projected using a Linear Layer to give the contextual information; this
tensor will be summed to the original entering hidden state sequence
and this new, much more representative, hidden state will be used in
the next Encoder block.

2.3. Framework structure: Decoder

The Decoder part in the proposed framework is very similar to the
one used in Li et al. (2023a) work. In the current scenario, however,
we proposed a variant that uses two parallel FCN to output, at the
same time, the target’s Mean and Variance. This is particularly useful
when the data are scarce, noisy, or with multiple outputs for the same
inputs, where the framework can output uncertainty for the prediction.
This could inform us whether the model performs well or not, in the
interpolation or extrapolation domain. We can further leverage this
important feature to perform active learning for experiment planning
or efficient data sampling. The full framework structure is shown in
Fig. 10.

2.4. Datasets and their implementation

2.4.1. Datasets
Six datasets were used to test the model performances. The data

shown in the next sections increases progressively in dimensionality,
data sparseness and noise, thus proving the framework robustness
against a large variety of hard to model scenarios. All the dataset that
have been used in this research, except the first one kindly provided
by Li et al. (2023a), are currently available online to the public.

• The first dataset was obtained from uniaxial tensile tests of
aluminum sheet samples (Li et al., 2023a). The specimen design
and experimental setup are shown in Fig. 11a and in Fig. 11b.
The test procedure followed the American Society for Testing and
Materials (ASTM) E8/8M-21 standard (ASTM, 2022) for tensile
testing of metallic materials. The material testing was performed
9
Fig. 10. Full Representation of the proposed Framework. (a) In this variant of the
framework, the information after being encoded in a Rp latent space, is decoded using
two parallel Fully Connected Network built with the same structure. This approach is
particularly useful when the data are redundant, because the learned representation is
less susceptible to small input variation and can learn a better generalization of the
observed phenomena (Iba, 2020). (b) This is the main structure of the framework. It
was mainly used in this research. For its simplicity, if the input data are not noisy or
redundant or in general if they do not pose any critical issues, it was often preferred
against the Variational one.

by both monotonically increasing the load and multiple loading–
unloading tests, as shown in Fig. 11c and Fig. 11d. The data
used in this study refer only to the multiple loading–unloading
scenarios, since the task was more difficult and harder to learn.

• The second dataset was obtained from several uniaxial strain-
stress curves of AISI 316L stainless steel at different temperatures
and strain rates. All the curves used were synthetically obtained
by using the Hooke’s Law to model the elastic behavior of the de-
formation and the Johnson and Cook’s Law coefficients obtained
by Umbrello et al. (Umbrello et al., 2007) to model its plastic
behavior. Since elastic rigidity also varies with temperature, the
temperature and elastic constant of the material were correlated
using a simple Fully Connected Network, to be able to generate
better elastic constant estimates. A visual representation of the
temperature and strain-rate values used is shown in Fig. A.1.
The entry points are randomly distributed, which differs from
previous work by Li et al. (2023a) and was designed to add
further complexity to the learning task.

• The third dataset was obtained from uniaxial tensile tests of Al-
6061 (Weaver et al., 2016) under different testing angles and
aging temperatures (Table B.1) (Weaver et al., 2016). In this

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 11. Experimental tensile tests (a) specimen geometry and (b) experimental setup. Engineering stress and strain curves of (c) monotonically increasing and (d) multiple
loading–unloading test specimens. [Taken from Fig. 9 of Li et al. (2023a) with permission].
e

dataset, a form of anisotropy in the analyzed sample is present,
due to the rolling process to manufacture the final specimen. This
anisotropy, however, is absent in the aged samples due to the
crystal structure relaxation induced by the reheating process. The
material mechanical response in this scenario varies significantly,
depending on whether the sample is aged or not. This dataset was
used to test the framework’s ability to correctly model multiple
uncorrelated system dynamics.

• The fourth dataset was obtained from uniaxial tensile tests of
Al-6061 at different temperatures (Aakash et al., 2019). In this
scenario, however, the available grid values were unbalanced
(Table B.2), so the learning task was more difficult. Furthermore,
the compositions of the samples (Table B.3) were available, so this
dataset was also used to further test the framework’s robustness
against a high-dimensional dataset.

• The fifth dataset was obtained from uniaxial tensile tests of laser
3D-printed Inconel 625 at different angles (0◦, 30◦, 45◦, 60◦,
90◦) and they showed high variance between each other due the
high anisotropy of the printing process Benzing et al. (2022). This
dataset was used to develop the Variance approach to efficiently
tackle the multiple-entries scenario where high variance exists
in multiple mechanical tests for material printed at the same
conditions.

• The sixth dataset was obtained from uniaxial compression tests
of Steel spring grade at different temperatures and strain rates (Vod
et al., 2019). The entries in this case were much sparser grid-
wise (Fig. A.2) and each curve was characterized by a very high
noise, so a Savitzky–Golay filter (Press and Teukolsky, 1990) was
necessary to smooth its entries. This dataset was used to test the
framework’s error handling when trained on scarce and highly
noisy datasets.

All the data used were artificially damaged since usually strain-
stress tests are performed under controlled and constant sample time.
To artificially induce a time sparseness inside the data, a uniform
random function ℜ (0,1) was used to sample, without replacement
from the original dataset, a number of observations smaller than the
original one (Fig. 12a). In a typical used dataset, the observations
were more than eight thousand points per stress–strain curve, from
which one thousand entries were taken to build the damaged dataset.
Some exceptions are present however, but in those cases, the data
10
were sparse and noisy to begin with, so artificial damage was not
necessary (e.g., the sixth dataset). In every dataset the loading history
contained 100 observations and a zero-padding was added for the first
zero strain (Fig. 12b). The zero padding, or padding in general, is
not a standard while working with time series because it can easily
insert dangerous biases inside the dataset. In this research, the above-
mentioned procedure has been used since every set of observations
starts with a point characterized by 𝜀 = 0 and 𝜎 = 0; thus, using padding
composed of zero values does not introduce any biases in the learning
procedure. Its usage, moreover, allows the exploitation of the first part
of the sequence that would be otherwise lost and not learned.

2.4.2. Train/test/validation splits
Each dataset was split into three groups of train, test, validation

subsets. The boundary values from the dataset were chosen to test the
model accuracy on the extrapolation region and to validate the model
performances. Since most of the time the entry data were redundant or,
as in the sixth dataset, data points were too scarce to survive further
pauperization, artificial entries were created; their performances were
evaluated by comparing the output with neighbors’ ground truth. The
train–test–validation sets were obtained following the criteria described
above, leading to the following subsets:

• First dataset: the training subset was obtained by performing a
random split with a ratio 2:1:1 on 3000 unevenly spaced entries.

• Second dataset: the training subset was obtained by generating
100 random curves inside the 30 ◦C–400 ◦C and 10−3 s−1–105 s−1

intervals; the test subset was obtained by using the 4 corners of
the training domain; the validation subset was obtained by gener-
ating 49 random curves inside the 20 ◦C–450 ◦C and 10−4 s−1–106

s−1 interval, but out of the training domain. As shown in Fig. A.1
the train domain is smaller than the validation one, this has been
made to evaluate the model behavior in an extrapolation region
far away from the train subset, thus avoiding data-memorization
problems. This dataset has been generated using Johnson and
Cook’s coefficients found in Umbrello et al. (2007). The Tempera-
ture and Strain rate points have been chosen by sampling without
replacement inside a grid of defined values (inside the validity
intervals of Umbrello et al. (2007)), thus testing the framework
in a scenario where both spatial and temporal symmetry were
absent. In this dataset the ratio between train:test:valid partitions

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 12. (a) Damaging procedure. In this research to test the network robustness against a broken time-symmetry, every dataset has been damaged by sampling using a uniform
distribution and without replacement 𝑁 observations (normally 𝑁 is [1

5
, 1
10
] of the original dataset length); (b) Zero padding mechanism to generate better input sequences.
Fig. 13. Schematic representation of the pipeline for the data-retrieving, pre-processing, model training and performance evaluation of each dataset. (a) Each dataset is searched
and downloaded from a publicly available repository; (b) Retrieved data is pre-processed, filtered if necessary, and re-scaled in the [0,1] interval to help the Gradient Descend
Function to converge; (c) Processed data is divided into Train–Test–Validation subsets when possible. In case of scarcity only Train–Test sub-datasets were created from the original
data, meanwhile the Validation was synthesized artificially by using the same data structure of the original dataset; (d) Multiple parallel runs were launched on several remote
computers and their Test-Performances sent to an external Agent (e) which based on that, decided the new hyperparameters set for the next runs; (f) After a user termination
criterion (normally time or Test Performance), the model with the best Test-Performance was loaded with the Validation subset and the real performance was evaluated.
is 29:1:3. Each curve was composed of 1000 entries, unevenly
spaced for training and testing and equally spaced for validation.

• Third dataset: the train–test subsets were obtained by using the
Aged samples at 204.4 ◦C, 413 ◦C and the Not Aged samples at
0◦, 45◦ and 90◦ angles as test subset, the remaining as training
subset with a ratio train:test:valid equal to 5.7:1:1.8. Due to the
redundancy of the entries, a standard validation subset was not
obtained by split to avoid biased evaluations; instead, synthetic
entries at 375 ◦C, 315 ◦C, 250 ◦C and 230 ◦C were generated to
evaluate the performances on the Aged scenario, and synthetic
entries at 15◦, 30◦, 60◦ and 75◦ to evaluate the performances
on the Not Aged scenario. Due to the scarcity of entries, data
augmentation using a simple linear interpolation between each
couple of points was applied and a random sampling of 1000
entries was performed. The validation subset, being artificial, was
11
generated using:

𝛥𝜀mean = 4.37 × 10−5 𝛥𝜀max = 7.23 × 10−2 �̇� = 1.31 × 10−5

(21)

Here no damaging procedure was performed, so the validation
subset has evenly distributed entries.

• Fourth dataset: the train-test subsets were obtained by using the
200 ◦C Lot A, 100 ◦C Lot D, 150 ◦C Lot G, 300◦ Lot I curves as test
subset and the rest as training subset; due to the redundancy of
the entries in some regions and the scarcity in others, validation
subset was not obtained by split to avoid biased evaluations
and generally worse performance; instead synthetic entries were
generated at 10 ◦C, 50 ◦C, 75 ◦C, 125 ◦C, 175 ◦C, 225 ◦C, 275 ◦C,
310 ◦C, 330 ◦C with a random composition at the boundaries of
the dataset used (Table B.3). In this dataset the ratio between

M. Laurenti et al.

2

t
l
t
a
d
a
o
a
t
T
2
t
p
c
a
u
u
A

3

3

t

o
l
r
F
a
p
3
a
v
n
b
b
s

t
h
t
p
a
t
i
v
p
t
v
f

t
t
d
t
d
e
m
t

r
p
E
c
h
c
e

f
l
s
p
t
s
t
d
a
s

m
b
e
s
i
a
w
T
i
t

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
train:test:valid partitions is 3.8:1:1. The damaging procedure was
performed on Train and Test subsets using a random sampling of
1000 entries. The validation subset was generated with 𝛥𝜀mean,
𝜀max and �̇� different for each temperature, their values are jointly
reported in Appendix B with their random composition values.
Here no damaging procedure was performed, so the validation
subset has evenly distributed entries.

• Fifth dataset: the train-test subsets were obtained by using one
curve at each angle (0◦, 30◦, 45◦, 60◦, 90◦) as the test subset
and the rest as the training subset; due to the high redundancy
of the entries a standard validation subset was not obtained by
split to avoid biased evaluations, instead synthetic entries at 0◦,
7◦, 15◦, 30◦, 45◦, 60◦, 75◦, 82◦, 90◦ were generated. In this
dataset the ratio between train:test:valid partitions is 10:1:1.4.
The damaging procedure was performed on Train and Test subsets
using a random sampling of 1000 entries. The validation subset
was generated by using:

�̇� = 4.36 × 10−5 until 𝜀 = 3.5 × 10−3 to have 162 data points. (22)

�̇� = 2.53 × 10−5 until 𝜀 = 0.17 to have 838 data points. (23)

Here no damaging procedure was performed, so the validation
subset has evenly distributed entries.

• Sixth dataset: the train-test subsets were obtained by using the
4 corners of the domain as test curves (Fig. A.2), the rest as
training subset; due to the scarcity of the entries, the validation
subset was not obtained by split to avoid worsening the model
performances, instead curves at 1025 ◦C 10−1.5 s−1, 1175 ◦C
10−1.5 s−1, 1025 ◦C 100.5 s−1, 1175 ◦C 100.5 s−1 were generated.
Due to the scarcity of entries, data augmentation by using a
simple linear interpolation between each couple of points was
applied and after that a random sampling of 1000 entries was
performed. The validation subset, being artificial, was generated
by using:

𝛥𝜀mean = 2.28 × 10−4 𝜀max = 0.35 (24)

In this dataset the ratio between train:test:valid partitions is
3.9:1:1. Here no damaging procedure was performed, so the
validation subset has evenly distributed entries.

.4.3. Training procedure
To ensure a better convergence and an easier and more effective

raining a rescaling in the [0,1] interval was performed. In case of
ogarithmic distributed data such as in the strain rate case, in which
he values vary from 10−4 to 106, they were further rescaled by using

base ten logarithmic function before the normal rescaling proce-
ure. To implement the proposed framework Python (Python, 2023a)
nd Pytorch (Pytorch, 2023b) were used. Due to the large number
f hyperparameters involved in the initialization of this framework,
Python library named WandB (Wandb, 2023c) was used to better

rack and manage their value by using a Bayesian optimizing agent.
he operation pipeline is shown in Fig. 13. For each dataset at least
000 runs have been performed, to guarantee the convergence on
he hyperparameters optimization. Unless otherwise stated, the models
erformed 500 epochs each. To test the performance of the two ar-
hitectures proposed, the same training procedure described has been
pplied to both Encoder–Decoder and Variational Encoder–Decoder by
sing the same pre-processed data. The actual hyperparameter values
sed to generate the results shown in this research can be found in
ppendix C.

. Results

.1. Performance of dataset 1: analysis on unseen loading path

The results of the first dataset follow the same criteria presented in

he work by Li et al. (2023a), i.e., validating the model performances u

12
n the validation subset and by testing further its capabilities on unseen
oading scenarios with uniform and random data distribution. The
esults of both Variational and Normal Encoder–Decoder are shown in
ig. A.4, Fig. A.5 (Normal Encoder Decoder), Fig. 14, Fig. 16 (Vari-
tional Encoder Decoder). In this task, the sparseness in time was
articularly abundant, as the 14,000 original entries were reduced to
000 after being damaged and they were further reduced to 1000 after
random train–test–validation split. This process introduces a wide

ariety in 𝛥t. In this challenging contest, the model convergence was
ot trivial because there was a very high variance in time and in space
etween entries. Despite the time and space symmetry being highly
roken, the model still demonstrated the ability to predict the material
tress–strain behavior in the artificial validation subset.

The predicted behavior in Fig. A.4 and Fig. 14 is very similar to
he ground truth, the Variational approach was also able to predict
igh uncertainty at the end of the resuming loading path (Fig. 14b),
hus indicating that such unload–reload transition behavior is not easily
redictable and requires further training data in this region. In those
reas, both ED and VED networks were unable to successfully predict
he transient spikes between elastic and plastic behaviors, in Fig. 14b
t can be seen how the Confidence Region (faint red area) has higher
alues in this regions. In those areas the network fails to accurately
redict the transient peaks between the two regions but, at the same
ime, it is capable of being conscious about its errors, giving high
alue for the output variance in those areas; thus extending the model
orecast and signaling the inaccuracy of the prediction.

It should be noted that despite different data structures in the syn-
hetic validation/test set, the model was still able to correctly predict
he deformation behavior, which is not a trivial result. Normally when
ata is fed to the model, if it has a different distribution compared to the
raining subset, e.g., if the point density is different, predictions could
eteriorate. In this case, even though the synthetic data is denser and
venly distributed in the generated path, which was not seen by the
odel during training, the obtained predictions were valid, suggesting

he robustness of the proposed framework.
Uneven highly sparse data was used as input to further prove its

obustness, and the results are shown in Fig. A.5 and in Fig. 16. The
rediction here shows similar behavior to the one made by the Normal
ncoder–Decoder network, but it also shows the uncertainty estimation
apability previously highlighted in Fig. 14b. It can be seen here
ow the areas in which the confidence region is higher are the ones
haracterized by bigger error; thus further demonstrating the network
rror handling capabilities.

Despite the time–space symmetry being highly broken and different
rom the training dataset, both models were able to predict both mono-
oading and multi-loading scenarios similarly to the evenly distributed
cenarios (Figs. 14 and A.4). The predicted behaviors are noisier com-
ared to the evenly distributed scenarios, but the general shape of
he curves is intact, thus further indicating the robustness against data
parsity. Variational approach was also able, in this challenging task,
o output high variance in areas where the prediction accuracy was
eteriorating (Figs. 16a and 16b), indicating a promising self-analysis
bility that can help to better evaluate predictions in challenging
cenarios.

Comparative results have also been generated by using two opti-
ized NNs with an Encoder composed by 3 GRU layers (Fig. 15b) and

y 3 LSTM layers (Fig. 15a) respectively. Both networks were unable to
fficiently learn the material behavior by using the training data, as it is
hown in Figs. A.6a, A.6b, A.7a, A.7b. The GRU Net shows a reduction
n accuracy on the elastic path when uniform data is used; the loading
nd unloading paths predicted in Fig. A.6b are too wide and unrealistic
hen compared to the experimental ground truth (A.6a, Fig. A.6b).
hese findings were expected, because the time-symmetry was absent

n the training dataset, thus the network was unable to efficiently
ime-correlate its hidden states. The network behavior worsens when an

neven data distribution is used, in Fig. A.6c, Fig. A.6d the network

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 14. Variational Encoder–Decoder predictions on the first dataset. (a) VED Prediction on the synthetic unseen mono-load path; (b) VED Prediction on the synthetic unseen
multi-load path. Here both mono and multi-loading paths have a different distribution (as it can be seen in the purple highlighted sub-plot), from the training dataset, similarly
at what it has been shown in Fig. A.4.
Fig. 15. Comparative RNN architectures. (a) LSTM model architecture; (a) GRU model architecture. The difference between them and the architecture proposed in this work lies
on the absence of both MHAL and CfC layers.
fails to model the material elastic behavior, and the overall predictions
are very noisy. Interestingly the LSTM Net performed worse than the
GRU one (Figs. A.7a, A.7b) and this could be caused by its more
complex and hard to optimize structure. In (Fig. A.7c, Fig. A.7d) this
effect is more evident, because the data distribution, was even less
uniform than the training one. The predictions here are noisy, and
the model fails to accurately predict both the material elastic and
plastic behavior, thus indicating the CfC Layers as the main contributors
for the accuracy showed by the models used in this work. Since the
standard RNN architectures were unable to model one of the easiest
time-independent data structures, it is proofed their inability to model
such scenarios. As such, comparative results will not be shown for the
other five datasets.
13
3.2. Performance of dataset 2: analysis in extrapolation region

For dataset 2 task, the model was tested by exposing it to unseen
test conditions, namely: Temperature and Strain Rate. To faithfully
test the extrapolation capabilities, the validation domain was chosen
to be out of the training domain. 49 validation curves were used for
evaluation (the extended results can be found in the GitHub repository).
Here we only show the 4 areas near the corners of the validation
domain 20 ◦C 10−4 s−1, 20 ◦C 106 s−1, 450 ◦C 10−4 s−1, 450 ◦C 106

s−1 (Fig. A.1). As it is shown in A.1, the artificial dataset used for the
task, is composed of sparse and random temperature and strain rate
entries, so some areas are characterized by a high level of sparseness,

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 16. Variational Encoder–Decoder predictions on the first dataset. (a) VED Prediction on synthetic unseen not uniform mono-load path; (b) VED Prediction on synthetic unseen
not uniform multi-load path; (c) Mono-load 𝛥t distribution; (d) Multi-load 𝛥t distribution. Here both mono and multi-loading paths have a different distribution (as it can be
seen in the purple highlighted sub-plot and in the sub-figures (c) and (d)), from both training dataset and Fig. 14 validation paths. They have a 𝛥t characterized by a very high
variance, similarly at Fig. A.5; in those validation paths 𝛥t spans from 10 s to 10−10s.
such as in the right lower corner near 20 ◦C 106 s−1 and in the left
lower corner near 20 ◦C 10−4 s−1. Such large sparseness in training
data, together with the fast-changing behavior of the material at low
temperatures, led to a severe loss in model accuracy, highlighting the
need for more training data in those areas. Even if the framework can
handle high levels of sparseness as input, the training dataset must be
denser in areas intrinsically difficult to model.

The results are shown in Fig. 17 and refer to the Variational
Encoder–Decoder, which performed better in this task. As shown in
Fig. 17 the prediction are characterized by a good accuracy at higher
temperatures (Figs. 17a and 17b), but by a lower accuracy at lower
temperatures (Figs. 17c and 17d). In Fig. 17a at both 400 ◦C and
450 ◦C at 10−4, can also be seen a reduction in accuracy at the
beginning of the curve compared to the whole high-temperature points
cluster. This behavior was expected, because mechanical responses
change very quickly with Temperature and Strain Rate and in this
particular scenario, both the lower and the left edge of the domain are
not densely populated enough due to the grid generation stochasticity
(Fig. A.1). While at high temperatures the observations population were
denser enough to compensate for the sparseness at lower strain rates,
at lower temperatures the sparsity of the observation in both fields
caused a sudden accuracy drop. In this case, however, the network
accuracy could be easily fixed by populating those dataset regions with
more observations. Despite those considerations, the model was able
to predict a good mechanical response until 0.15 strain for 20 ◦C at
10−4 and 10−3 s−1 and 0.25 for 105 and 106 s−1, highlighting model
robustness against data sparsity even when used to predict out of
domain conditions.

3.3. Performance of dataset 3: analysis on different dynamics

For dataset 3 task, the model was tested on unseen test conditions,
namely: Aging Temperature and Angle of Testing. In this task only
14
the Variational approach gives accurate predictions in the evaluation
procedure, therefore we only discuss the results from the variation
approach. As we do not have the ground truth behind the prediction,
forecasting validity was examined by comparing the predictions and
their available neighbors in the original dataset.

The model performance is shown in Fig. 18 and in Fig. A.8. In
Fig. 18a, at an aging temperature of 230 ◦C, the prediction has a shape
consistent with the 4 nearest curves. Moreover, the prediction values
are also consistent with the trend exhibited by the aged samples. In
the proposed dataset, higher aging temperatures are associated with
lower stress levels; this trend is visible in Fig. 18. The prediction at
230 ◦C has values between that of 204 ◦C and 274 ◦C curves, which can
be considered plausible and coherent with the real-world observations.
The same argument can be made for all the other predictions shown
in Fig. 18. Fig. A.8 shows the results of the non-aged predictions. In
this case, the properties vary in a much smaller domain, but the same
argument can be made as before. In this case, the lowest registered
mechanical properties were associated with a testing angle of 45◦, with
a maximum at 90◦ and a mean value at 0◦. The predictions (Fig. A.8) in
this scenario are consistent with the shape of the neighbors, with stress
values always greater than the minimum at 45◦ and lower than the
maximum at 90◦. Being more specific, the prediction at 15◦ (Fig. A.8a)
is close to the mean value at 0◦; the prediction at 30◦ (Fig. A.8b) is close
to the minimum boundary at 45◦; and the prediction at 60◦ and 75◦

(Figs. A.8c and A.8d) are also close to the maximum boundary at 90◦.
In conclusion, the predicted behavior of the material in the Non-Aged
scenario is consistent with the ground-truth observations.

Some artifacts are, however, present at the very beginning of the
curves. This is due to the absence of data in that region of the training
curves. This uncertainty was also captured by the model, e.g., the Confi-
dence Region is wider, so the model itself is aware of the untruthfulness
of its predictions in that domain. Such a problem can be, however,

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 17. VED prediction on the corners of evaluation subset. In order in the figure is shown the 450 ◦C–400 ◦C and 10−4–10−3 s−1 corner area (a), the 450 ◦C–400 ◦C and 105–106

s−1 corner area (b), the 30 ◦C–20 ◦C and 10−4–10−3 s−1 corner area (c), the 30 ◦C–20 ◦C and 105–106 s−1 corner area (d).
easily solved by feeding the network with better data in the affected
area. It is worth noting that the Variational Encoder–Decoder was also
able to capture some degree of uncertainty near the material yield,
due to the high variance of the training sample in that region. This
behavior is stronger in the Non-Aged scenario, because the variance of
the training samples was higher. This is an important result because the
model is capable of estimating uncertainty changes in relation to the
strain values, Aging Temperature and Testing Angles, fully capturing
the complex real system dynamics.
15
3.4. Performance of dataset 4: analysis on unbalanced dataset and high
dimensional inputs

Models for the dataset 4 task are tested on unseen test conditions
Test Temperature and Composition. The temperature in the evalua-
tion dataset was specified in Section 2.4.2, meanwhile the compositions
were chosen by randomly sampling in the boundary of the dataset
domain. The values of the compositions for each curve can be found
in Table B.3. This task was particularly difficult for the framework,

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 18. Variational Encoder–Decoder prediction on the third dataset evaluation subset in Aging conditions. (a) Prediction at 230 ◦C; (b) Prediction at 250 ◦C; (c) Prediction at
315 ◦C; (d) Prediction at 375 ◦C. Here it can be seen in every sub-plot how the model has successfully modeled the mechanical behavior of the material; each of the predictions
has a shape consistent with one of its neighbors and correlated with its Temperature. The Confidence Region also has higher values near the yield zone in each of the predicted
curves, accordingly with the variance expressed by the training samples in the same area.
due to the high dimensionality of the input tensor, and an unbalanced
dataset with zones characterized by multiple entries with high variance
and different curve lengths. The performances are shown in Fig. A.9
and in Fig. 19, for both the Encoder–Decoder framework, and the
Variational one. Similar to the dataset 3 task, the ground truth behind
the prediction is unavailable, therefore the predictions were examined
by comparing them to their available neighbors in the original dataset.

As shown in Figs. 19 and A.9, the overall shape of the predictions
is consistent with that of the real curves. Specifically, in Fig. A.9d at
the temperature of 125 ◦C, the predictions are between the real curves
at 100 ◦C and 150◦. In Fig. A.9a, at the temperature of 10 ◦C, the
predicted values are bigger than the real ones at 20 ◦C, suggesting
that the framework is able to extrapolate properly. These results further
demonstrate that the model predictions closely follow the real system
dynamics. We note that the predictions from the normal Encoder–
Decoder are more accurate, which probably is due to the smaller
number of variables employed and consequently a better convergence
during the optimizing process.

The Variational Encoder–Decoder, on the other hand, has less pre-
cise predictions compared to that of the Normal Encoder–Decoder;
however, the uncertainty handling allows evaluating a Confidence
Region around ground-truth observations, in this case, high variances
(Fig. A.9). In Fig. 19, the Variational approach has a very large variance
compared to the one exhibited in Fig. A.9 thus indicating that the
predictions are not correct and thus labeling the domain region as
potential sampling region in an active learning process. The compro-
mised framework capabilities may be caused by the very high variance
16
and fewer data points exhibited by the real curves in that domain
region. While the Normal Encoder–Decoder performed better than the
Variational one, the high variance from the latter is also useful in a
practical scenario. For example, a high predicted variance may indicate
an untruthful prediction (Fig. 19), or scattered testing/samples quality,
etc., which will help the research team to plan for the next experiment.
This finding further assess what it has been shown in Section 3.1 in
Fig. 14b.

3.5. Performance of dataset 5: analysis on redundant and high variance
inputs

We examined the model performance for dataset 5 task, by testing
the model on unseen Angles, which are specified in Section 2.4.2. This
dataset was used to evaluate and develop the Variational Encoder–
Decoder in a scenario where numerous entries are available for nom-
inally the same loading conditions. In this context, the data collected
refer to Inconel 625 samples obtained by Laser Printing. This process,
even if conducted in a controlled environment, generates samples
characterized by a certain level of variance caused by the intrinsically
high number of random variables. The high value of variance in the
samples cannot be then ignored and must be reported and used in
future uses and real applications. In this context, having a framework
able to model the behavior of the material jointly with its uncertainty
in unseen scenarios is crucial.

The model performances are shown in Fig. A.10 and Fig. 20, since
this task was intended for a Variational approach, only the results

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. 19. Variational(black) and Normal (green) Encoder–Decoder prediction on the fourth dataset evaluation subset. (a) Random composition at 175 ◦C; (b) Random composition
at 225 ◦C; (c) Random composition at 275 ◦C; (d) Random composition at 310 ◦C; (e) Random composition at 330 ◦C. Here the predictions show consistency with their neighbors
both in shape and temperature-dependent mechanical behavior, however the VED network shows a significant accuracy loss when compared to the standard ED.
obtained with the Variational Encoder–Decoder are shown. Fig. A.10
shows the performances on the artificial strain path, with angles that
the model has already seen during the training procedure. Even though
the data distribution is different for inference respect to the training
one, the predictions are consistent. The model in this scenario can
precisely predict both the mean value and the variance present at
different angles.

Fig. 20 shows the model predictions on artificial strain paths at
unseen angles. Again, due to the lack of ground truth observations, we
did a sanity check on the predictions by comparing them with their
available neighbors in the original dataset. It can be seen that the stress
level has a maximum at 90◦, and it worsens when the angle becomes
smaller until it reaches its minimum at 0◦. In this context, the model
17
predictions are consistent both in shape and in values because they
always follow both the trend and the variance as discussed, suggesting
the framework validity in this task.

3.6. Performance of dataset 6: analysis on scarce and very noisy inputs

Finally, we test the models for dataset 6 task on unseen test condi-
tions: Test Temperature and Strain Rate. See Section 2.4.2. for more
details on the evaluation dataset (both temperatures and strain rates).
The task associated with this dataset is conceptually very similar to that
for dataset 2, but it differs in some crucial aspects:

• Data entries used in this task are intrinsically noisier and dataset
6 represents a very noisy case that requires a Savitzky–Golay

M. Laurenti et al.

Fig. 20. Variational Encoder–Decoder prediction on the fifth dataset evaluation subset. Only the angle values absent in the real dataset are shown. Real observations are also
reported so as to allow practical considerations between the predictions and their neighbors. In order predictions at 7◦ (a), 15◦ (b), 75◦ (c), 82◦ (d) are reported. In the subplots
it can be seen how the network predictions are consistent in shape, trend and variance with the ground truth observations.

Fig. 21. Variational (orange red) and Normal (dark blue) Encoder–Decoder prediction on the sixth dataset evaluation subset. Being completely artificial, the neighbors ground
truths (Fig. A.3) are also shown in the figure to allow a practical evaluation. In order prediction at 1025 ◦C and 10−1.5 s−1(a), 1175 ◦C and 10−1.5 s−1 (b), 1025 ◦C and 100.5 s−1

(c), 1175 ◦C and 100.5 s−1 (d) are reported.

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165

18

M. Laurenti et al.

r
c
b
i

D
h
i
t
a
h
c
n
t

e
a
t
i
u

S

L
u
T
s
r
t
d
t
t
i
c
S
s
l
h
u
g
a
l
c
e
i
t
(
b
i
i
a
p
e
f
h
a

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
filter (Press and Teukolsky, 1990) to smooth and eliminate the
excessive variance.

• Even if data Grid entries of Temperatures and Strain Rates are
regular, they were fewer, making the task more difficult to learn.

Due to the above challenges, the model accuracy for this task is
elatively lower compared to the other scenarios. However, the model
an still be considered to have good prediction capabilities, as justified
y comparing the predictions with their available neighbors (Fig. A.3)
n the original dataset.

The results are shown in Fig. 21, for both the standard Encoder–
ecoder framework and the Variational one. The predictions made
ave a consistent shape with their neighbors and the value predicted
s consistent with the trend exhibited by the ground truth observa-
ions, where for lower temperatures and faster strain rates is noted
n increase in mechanical response from the material. In this scenario
owever, due to both scarceness and noisiness of the data, ED fails to
apture the correct elastic behavior of the material. This problem does
ot affect VED, thus highlighting how the deployment of two heads in
he decoder helps the model to understand noisier observations.

The overall performances for both approaches are very similar; how-
ver, the Variational framework was able to give a smoother transition
t the beginning of the predicted strain-stress curve. In addition, even
hough the Variational framework has more complexity in architecture,
t showed better convergence during training, thus suggesting better
sage of the data, especially if the data is noisy, as in this case.

ummary

Based on the previous encoder–decoder approach by
i et al. (2023a), we have proposed a new framework to tackle the
nevenness in input data sequence for constitutive relation modeling.
he proposed framework utilizes CfC (Hasani et al., 2022) with a new
ynapse wiring technique NCP (Lechner et al., 2020) to mimic the
ole of Ordinary Differential Equations, and can make predictions on
he mean and variance of stresses. The proposed network has been
emonstrated on six different datasets with various complex data struc-
ures and noise levels. The results (summarized in Fig. A.11)suggest
hat our framework is able to model data distributions with uneven
nput sequences in every dimension, thus further extending NN-based
onstitutive modeling to the domain with non-structured datasets.
pecifically, the framework was trained, validated, and tested using
ix different strain-stress datasets, each characterized by its own chal-
enges, respectively, multiple loading paths, out of domain inference,
ighly sparse inputs, high-dimensionality inputs, redundant inputs, and
nbalanced and noisy dataset. To further prove its robustness and
eneralization capability, the same framework structure has been used
cross every dataset, only varying the hyperparameters of the various
ayers. The models for every dataset not only showed good training
onvergence but also demonstrated reasonably good (quantified error
stimation is unavailable due to the lack of ground truth) predictions
n the extrapolation regions. The capability of being able to predict
he mean and variance allows the modeling of source data distribution
such as in 3D printed materials with high variance even in the same
atch printed material) as well as uncertainty estimation in prediction
tself, which will benefit scenarios with noisy data entries and potential
ntegration into an active learning/Bayesian optimization process. Such

feature could accelerate the materials development/optimization
rocess by informed decision-making that balances exploration and
xploitation. Finally, from a practical point of view, the proposed
ramework demonstrated robustness in dealing with tough data such as
eavily damaged, temporally uncorrelated, noisy and uneven datasets,
s well as different data distribution in inference mode, thus allowing

better data usage and increasing the applicability and reliability of
NN-based constitutive modeling in real-world applications where a
uniform sampling with high signal to noise ratio in both time and space
19
cannot be achieved and where data abundance is absent due to the cost
associated with the data acquisition process.

In future research the time-adaptive capabilities of the CfC net-
work could be further explored by combining NCP wiring and Genetic
Algorithm (Tomczak, 2022). In the current work both the fanin and
fanout of sensory, inter, command and motor neurons as well as their
numbers have been maintained fixed in each sub-block to limit the
hyperparameter search space and to allow the Bayesian Optimization
Algorithm to converge faster. However, Genetic Algorithms can remove
the above restrictions and provide an efficient hyperparameter space
navigation, thus allowing faster and better convergence. By using such
techniques, the aforementioned wiring information could be encoded
within a chromosome for each sub-block separately,thus allowing more
flexibility and better performances both in computational time and
accuracy. Similar workflows have been successfully applied to au-
tomatically searching and building hyper-optimized NNs for Image
classification (Loshchilov and Hutter, 2016; Sun et al., 2020, 2019;
Bakhshi et al., 2019) or Image Generation (David and Greental, 2014).
Furthermore, even CfC cell structure could be improved or completely
revolutionized by using Genetic Programming (GP). In recent years,
several works (Chapter 9 and 10 of Tomczak (2022)) have successfully
used genetic programming in Deep Learning (Galván and Mooney,
2021; Gavrilescu et al., 2022) to develop cells with an unseen gating
mechanism and structure capable of outperforming all ever discovered
RNNs. These new developments provide new oppurtunities to create
NNs even faster and more robust to noise, temporal irregularities, and
data distribution.

Code availability

The code used in this paper is under the Apache 2.0 Licence and
can be found in the publicly available repository on GitHub at: https:
//github.com/Marcelaus98/CfC-for-Material-Science.

CRediT authorship contribution statement

Marcello Laurenti: Writing – review & editing, Writing – orig-
inal draft, Validation, Software, Methodology, Data curation. Qing-
Jie Li: Writing – review & editing, Supervision, Conceptualization.
Ju Li: Writing – review & editing, Validation, Supervision, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared both data and code on my Github page. The link was
shared in the appropriate section in the paper.

Acknowledgments

We acknowledge support by Eni S.p.A. through the MIT Energy
Initiative.

Marcello Laurenti acknowledges support by AIDIC (Associazione

Italiana di Ingegneria Chimica).

https://github.com/Marcelaus98/CfC-for-Material-Science
https://github.com/Marcelaus98/CfC-for-Material-Science
https://github.com/Marcelaus98/CfC-for-Material-Science

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Appendix A. Auxiliary figures

See Figs. A.1–A.11

Fig. A.1. Visual representation of the train/test/valid for the second dataset: the
horizontal axis shows the logarithm of the strain rate, the vertical axis the temperature
in Celsius.

Fig. A.2. Visual representation of the train/test/valid for the sixth dataset. The
horizontal axis shows the logarithm of the strain rate, the vertical axis the temperature
in Celsius. In this case the dataset was real, so the observation are equally spaced in
both Temperature and Strain Rate.
20
Fig. A.3. Practical representation of the sixth dataset methodology for evaluating
validation subset predictions by using the neighbors’ ground truths. In order, in the
light shaded areas there are the dominia used for the evaluation of the predictions at
1175 ◦C and 10−1.5 s−1 (a), 1175 ◦C and 100.5 s−1 (b), 1025 ◦C and 10−1.5 s−1 (c),
1025 ◦C and 100.5 s−1 (d).

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.4. Normal Encoder–Decoder predictions on the first dataset. (a) ED Prediction on synthetic unseen uniform mono-load path; (b) ED Prediction on synthetic unseen uniform
multi-load path. Here both mono and multi-loading paths have a different distribution (as it can be seen in the purple highlighted sub-plot), from the training dataset. The
prediction accuracy while using these validation paths is very high and highlight how, thanks to the CfC cells, the network was able to successfully reconstruct and learn the time
dependencies present in the train dataset.

Fig. A.5. Normal Encoder–Decoder predictions on the first dataset. (a) ED Prediction on synthetic unseen not uniform mono-load path; (b) ED Prediction on synthetic unseen not
uniform multi-load path; (c) Mono-load 𝛥t distribution; (d) Multi-load 𝛥t distribution. Here both mono and multi-loading paths have a different distribution (as it can be seen in
the purple highlighted sub-plot and in the sub-figures (c) and (d)), from both training dataset and Fig. A.4 validation paths. They have a 𝛥t characterized by a very high variance;
in those validation paths 𝛥t spans from 10 s to 10−10s. The prediction accuracy here, while noisier compared to Fig. A.4, is still high, further demonstrating how the network is
very robust to extreme unevenness during both training and inference mode.
21

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.6. (a) GRU Net prediction on synthetic unseen uniform mono-load path; (b) GRU Net Prediction on synthetic unseen uniform multi-load path; (c) GRU Net prediction on
synthetic unseen not uniform mono-load path; (d) GRU Net Prediction on synthetic unseen not uniform multi-load path.
22

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.7. (a) LSTM Net prediction on synthetic unseen uniform mono-load path; (b) LSTM Net Prediction on synthetic unseen uniform multi-load path; (c) LSTM Net prediction
on synthetic unseen not uniform mono-load path; (d) LSTM Net Prediction on synthetic unseen not uniform multi-load path.
23

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.8. Variational Encoder–Decoder prediction on the third dataset evaluation subset in Not Aging conditions. (a) Prediction at 15◦; (b) Prediction at 30◦; (c) Prediction at
60◦; (d) Prediction at 75◦.
24

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.9. Variational (black) and Normal (green) Encoder–Decoder prediction on the fourth dataset evaluation subset. (a) Random composition at 10 ◦C; (b) Random composition
at 50 ◦C; (c) Random composition at 75 ◦C; (d) Random composition at 125 ◦C.
25

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.10. Variational Encoder–Decoder prediction on the fifth dataset evaluation subset. Only the angle values existing in the real dataset are shown. Each image has the prediction
at a specific angle coupled with ground-truth observations. In order there are predictions at 0◦ (a), 30◦ (b), 45◦ (c), 60◦ (d), 90◦ (e). In the subplots it can be seen how the
network can correctly model both the shape and the variance of the ground truth observations.
26

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Fig. A.11. Summary of the predictions obtained by both ED and VED on the six datasets. The networks predictions are overall good, despite the heavy and noisy training datasets.
27

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Appendix B. Auxiliary tables

See Tables B.1–B.4.

Table B.1
Third dataset data composition. The Angle of Testing is 0◦ in the aged temperatures
due to the reheating process and subsequent internal stress relaxation that removed
any anisotropy from the sample.

Number of curves Aging temperature Angles of testing

5 25 ◦C 45◦

5 25 ◦C 0◦

5 25 ◦C 90◦

5 204.4 ◦C 0◦ (aged)
5 274 ◦C 0◦ (aged)
5 343 ◦C 0◦ (aged)
5 413 ◦C 0◦ (aged)

Table B.2
Data distribution in the fourth dataset.

Temperature 20 ◦C 100 ◦C 150 ◦C 200 ◦C 250 ◦C 300 ◦C
Lot

A 3 3 0 3 0 3
D 3 3 2 3 2 3
G 1 1 1 1 1 1
I 1 1 1 1 1 1

Table B.3
Compositions of the various Lots in the fourth dataset.

Lot Composition

Si Fe Cu Mn Mg Cr Zn Ti

A 0.56 0.23 0.18 0.07 0.86 0.06 0.02 0.01
D 0.67 0.28 0.23 0.05 0.90 0.05 0.03 0.02
G 0.61 0.15 0.17 0.02 0.88 0.05 0.01 0.01
I 0.68 0.23 0.20 0.04 0.87 0.05 0.02 0.02

Table B.4
Third validation subset composition. Here the composition, strain rate and maximum
strain were chosen by sampling from the statistical distribution defined by the training
samples.

Temp 10 ◦C 50 ◦C 75 ◦C 125 ◦C 175 ◦C

𝜀𝑚𝑎𝑥 4.55 × 10-2 4.55 × 10-2 4.55 × 10-2 6.45 × 10-2 2.26 × 10-2

𝛥𝜀 1.26 × 10-4 1.26 × 10-4 1.26 × 10-4 1.58 × 10-4 6.88 × 10-5

Si (%) 0.567 0.664 0.632 0.645 0.562
Fe (%) 0.158 0.263 0.228 0.242 0.153
Cu (%) 0.173 0.222 0.206 0.212 0.171
Mn (%) 0.023 0.063 0.050 0.055 0.021
Mg (%) 0.862 0.895 0.884 0.888 0.861
Cr (%) 0.051 0.059 0.056 0.057 0.050
Zn (%) 0.011 0.027 0.022 0.024 0.010
Ti (%) 0.011 0.019 0.016 0.017 0.010

Temp 225 ◦C 275 ◦C 310 ◦C 330 ◦C

𝜀𝑚𝑎𝑥 7.81 × 10-3 6.05 × 10-3 6.99 × 10-3 7.00 × 10-3

𝛥𝜀 2.04 × 10-5 2.04 × 10-5 2.60 × 10-5 2.60 × 10-5

Si (%) 0.676 0.660 0.585 0.581
Fe (%) 0.276 0.258 0.178 0.174
Cu (%) 0.228 0.220 0.183 0.181
Mn (%) 0.068 0.061 0.031 0.029
Mg (%) 0.899 0.893 0.868 0.867
Cr (%) 0.060 0.058 0.052 0.052
Zn (%) 0.029 0.026 0.014 0.014
Ti (%) 0.020 0.018 0.012 0.012
28
Appendix C. Dataset hyperparameters

See Tables C.1 and C.2.

Table C.1
First, Second and Third dataset hyperparameters.

Hyperparameters First dataset Second dataset Third dataset

VED ED VED VED

motor_neurons 4 8 4 8
total_neurons 35 40 35 25
sparsity 0.303 0.335 0.563 0.422
n_layers_cfc 1 3 1 1
key_size 4 8 4 8
query_size 4 8 4 8
value_size 4 8 4 8
heads 2 2 2 2
dropout 0.0734 0.0728 0.154 0.104
layers_fcn 5 5 4 3
width_fcn 8 128 16 128
decay_fcn 1 1 2 2
norm True True True True
activation sigmoid sigmoid sigmoid relu
lr 8.1 × 10-3 3.7 × 10-3 7.0 × 10-3 3.8 × 10-3

gamma 0.995 0.998 0.981 0.965
epochs 500 500 500 500

Table C.2
Fourth, Fifth and Sixth dataset hyperparameters.

Hyperparameters Fourth dataset Fifth dataset Sixth dataset

VED ED VED VED ED

motor_neurons 4 8 8 6 8
total_neurons 35 25 25 30 40
sparsity 0.528 0.441 0.413 0.478 0.508
n_layers_cfc 1 1 1 2 2
key_size 4 8 8 6 8
query_size 4 8 8 6 8
value_size 4 8 8 6 8
heads 2 2 2 2 2
dropout 0.124 0.154 0.149 0.043 0.139
layers_fcn 4 6 5 3 3
width_fcn 32 8 64 16 8
decay_fcn 2 1 1 2 1
norm True False True False False
activation sigmoid sigmoid sigmoid sigmoid sigmoid
lr 5.4 × 10-3 2.7 × 10-3 7.8 × 10-3 7.1 × 10-4 9.7 × 10-3

gamma 0.975 0.990 0.966 0.986 0.968
epochs 500 500 500 500 500

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
References

Aakash, B., Connors, J., Shields, M.D., 2019. Stress-strain data for aluminum 6061-T651
from 9 lots at 6 temperatures under uniaxial and plane strain tension. Data Brief
25, 104085. http://dx.doi.org/10.1016/j.dib.2019.104085.

Alatalo, J., Korpihalkola, J., Sipola, T., Kokkonen, T., 2022. Chromatic and spatial
analys. In: Networked Systems. Springer, pp. 303–316. http://dx.doi.org/10.1007/
978-3-031-17436-0_20.

ASTM, 2022. Test Methods for Tension Testing of Metallic Materials. ASTM
International, http://dx.doi.org/10.1520/e0008_e0008m-22.

Bakhshi, A., Noman, N., Chen, Z., Zamani, M., Chalup, S., 2019. Fast automatic
optimisation of CNN architectures for image classification using genetic algorithm.
In: 2019 IEEE Congress on Evolutionary Computation. CEC, pp. 1283–1290. http:
//dx.doi.org/10.1109/CEC.2019.8790197.

Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J., 2017. Patient
subtyping via time-aware LSTM networks. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, pp.
65–74. http://dx.doi.org/10.1145/3097983.3097997.

Benzing, J., Moser, N., Kafka, O., Weaver, J., Derimow, N., Hrabe, N., 2022. AM Bench
2022 challenge Macroscale Tensile Tests at Different Orientations (CHAL-AMB2022-
04-MaTTO). National Institute of Standards and Technology, http://dx.doi.org/10.
18434/MDS2-2588, URL https://data.nist.gov/od/id/mds2-2588.

Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y., 2018. Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8 (1), http://dx.doi.org/
10.1038/s41598-018-24271-9.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D., 2018. Neural ordinary
differential equations. http://dx.doi.org/10.48550/ARXIV.1806.07366, arXiv URL
https://arxiv.org/abs/1806.07366.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. http://dx.doi.org/10.48550/ARXIV.1406.1078,
arXiv URL https://arxiv.org/abs/1406.1078.

Dai, M., Demirel, M.F., Liu, X., Liang, Y., Hu, J.-M., 2023. Graph neural network
for predicting the effective properties of polycrystalline materials: A compre-
hensive analysis. Comput. Mater. Sci. 230, 112461. http://dx.doi.org/10.1016/
j.commatsci.2023.112461, URL https://www.sciencedirect.com/science/article/pii/
S092702562300455X.

Dao, T., 2023. FlashAttention-2: Faster attention with better parallelism and work
partitioning. http://dx.doi.org/10.48550/arXiv.2307.08691, arXiv.

Dao, T., Fu, D.Y., Ermon, S., Rudra, A., Ré, C., 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. http://dx.doi.org/10.48550/
arXiv.2205.14135, arXiv.

David, O.E., Greental, I., 2014. Genetic algorithms for evolving deep neural networks.
In: Proceedings of the Companion Publication of the 2014 Annual Conference on
Genetic and Evolutionary Computation. Association for Computing Machinery, pp.
1451–1452. http://dx.doi.org/10.1145/2598394.2602287.

DeRose, J.F., Wang, J., Berger, M., 2021. Attention flows: Analyzing and comparing
attention mechanisms in language models. IEEE Trans. Vis. Comput. Graphics 27
(2), 1160–1170. http://dx.doi.org/10.1109/TVCG.2020.3028976.

Duan, Y., Zhou, X., Zou, J., Qiu, J., Zhang, J., Pan, Z., 2021. Mask-guided noise re-
striction adversarial attacks for image classification. Comput. Secur. 100, http://dx.
doi.org/10.1016/j.cose.2020.102111, URL https://www.sciencedirect.com/science/
article/pii/S0167404820303849.

Galván, E., Mooney, P., 2021. Neuroevolution in deep neural networks: Current trends
and future challenges. IEEE Trans. Artif. Intell. 2 (6), 476–493. http://dx.doi.org/
10.1109/TAI.2021.3067574.

Gavrilescu, M., Floria, S.-A., Leon, F., Curteanu, S., 2022. A hybrid competitive evolu-
tionary neural network optimization algorithm for a regression problem in chemical
engineering. Mathematics 10 (19), http://dx.doi.org/10.3390/math10193581, URL
https://www.mdpi.com/2227-7390/10/19/3581.

Gholami, K., Ege, F., Barzegar, R., 2023. Prediction of composite mechanical properties:
Integration of deep neural network methods and finite element analysis. J. Compos.
Sci. 7 (2), http://dx.doi.org/10.3390/jcs7020054, URL https://www.mdpi.com/
2504-477X/7/2/54.

Gorji Maysam, B., Mojitaba, M., Heidenreich Julian, N., Jian, C., Dirk, M., 2020. On
the potential of recurrent neural networks for modeling path dependent plasticity.
J. Mech. Phys. Solids 143, 103972. http://dx.doi.org/10.1016/j.jmps.2020.103972.

Hasani, R., Lechner, M., Amini, A., Liebenwein, L., Ray, A., Tschaikowski, M.,
Teschl, G., Rus, D., 2022. Closed-form continuous-time neural networks. Nat. Mach.
Intell. 4 (11), 992–1003. http://dx.doi.org/10.1038/s42256-022-00556-7.

Hasani, R., Lechner, M., Amini, A., Rus, D., Grosu, R., 2020. Liquid time-constant
networks. http://dx.doi.org/10.48550/ARXIV.2006.04439, arXiv URL https://arxiv.
org/abs/2006.04439.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition.

arXiv:1512.03385.

29
Hestroffer, J.M., Charpagne, M.-A., Latypov, M.I., Beyerlein, I.J., 2023. Graph neural
networks for efficient learning of mechanical properties of polycrystals. Comput.
Mater. Sci. 217, 111894. http://dx.doi.org/10.1016/j.commatsci.2022.111894, URL
https://www.sciencedirect.com/science/article/pii/S092702562200605X.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hussien, A.G., Abualigah, L., Abu Zitar, R., Hashim, F.A., Amin, M., Saber, A.,
Almotairi, K.H., Gandomi, A.H., 2019. One pixel attack for fooling deep neural
networks. arXiv URL https://www.mdpi.com/2079-9292/11/12/1919.

Iba, H., 2020. Deep Neural Evolution. Springer.
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep

convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K.
(Eds.), Advances in Neural Information Processing Systems, Vol. 25. Curran
Associates, Inc., URL https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Lechner, M., Hasani, R., Amini, A., Henzinger, T.A., Rus, D., Grosu, R., 2020. Neural
circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2 (10), 642–652.
http://dx.doi.org/10.1038/s42256-020-00237-3.

Li, Q.-J., Cinbiz, M.N., Zhang, Y., He, Q., Beausoleil, G., Li, J., 2023a. Robust deep
learning framework for constitutive relations modeling. Acta Mater. 254, 118959.
http://dx.doi.org/10.1016/j.actamat.2023.118959.

Li, M., Li, S., Tian, Y., Fu, Y., Pei, Y., Zhu, W., Ke, Y., 2023b. A deep learning
convolutional neural network and multi-layer perceptron hybrid fusion model for
predicting the mechanical properties of carbon fiber. Mater. Des. 227, 111760.
http://dx.doi.org/10.1016/j.matdes.2023.111760, URL https://www.sciencedirect.
com/science/article/pii/S0264127523001752.

Loshchilov, I., Hutter, F., 2016. CMA-ES for hyperparameter optimization of deep neural
networks. http://dx.doi.org/10.48550/arXiv.1604.07269, arXiv.

Marco, M., Chao, G., Filippo, B., 2021. Interlocking mechanism design based on
deep-learning methods. Appl. Eng. Sci. 7, http://dx.doi.org/10.1016/j.apples.2021.
100056.

Marco, M., Chao, G., Filippo, B., 2022. Predicting stress, strain and deformation
fields in materials and structures with graph neural networks. Sci. Rep. 12, http:
//dx.doi.org/10.1038/s41598-022-26424-3.

Motiwala, A., Soares, S., Atallah, B.V., Paton, J.J., Machens, C.K., 2022. Efficient coding
of cognitive variables underlies dopamine response and choice behavior. Nature
Neurosci. 25 (6), 738–748. http://dx.doi.org/10.1038/s41593-022-01085-7.

Ning, M., Huaixian, Y., Kai, W., 2023. Prediction of the remaining useful life of
supercapacitors at different temperatures based on improved long short-term
memory. Energies 16 (14), http://dx.doi.org/10.3390/en16145240.

Niu, Z., Zhong, G., Yu, H., 2021. A review on the attention mechanism of deep learn-
ing. Neurocomputing 452, 48–62. http://dx.doi.org/10.1016/j.neucom.2021.03.
091, URL https://www.sciencedirect.com/science/article/pii/S092523122100477X.

Press, W.H., Teukolsky, S.A., 1990. Savitzky-golay smoothing filters. Comput. Phys. 4
(6), 669. http://dx.doi.org/10.1063/1.4822961.

Python, 2023a. Python 3.10. URL https://www.python.org/.
Pytorch, 2023b. Pytorch 1.13.1. URL https://pytorch.org/.
Rumelhart, D.E., McClelland, J.L., 1987. Learning internal representations by error

propagation. In: Parallel Distributed Processing: Explorations in the Microstructure
of Cognition: Foundations. MIT Press, pp. 318–362, URL http://ieeexplore.ieee.org/
document/6302929.

Sen, J., Dasgupta, S., 2023. Adversarial attacks on image classification models – FGSM
and patch attacks and their impact. http://dx.doi.org/10.48550/arXiv.2307.02055.

Su, J., Vargas, D.V., Sakurai, K., 2019. One pixel attack for fooling deep neural
networks. IEEE Trans. Evol. Comput. 23 (5), 828–841. http://dx.doi.org/10.1109/
TEVC.2019.2890858, URL https://ieeexplore.ieee.org/document/8601309.

Sun, Y., Xue, B., Zhang, M., Yen, G.G., 2019. Automatically evolving CNN architectures
based on blocks. http://dx.doi.org/10.48550/arXiv.1810.11875, arXiv.

Sun, Y., Xue, B., Zhang, M., Yen, G.G., Lv, J., 2020. Automatically designing CNN
architectures using the genetic algorithm for image classification. IEEE Trans.
Cybern. 50 (9), 3840–3854. http://dx.doi.org/10.1109/tcyb.2020.2983860.

Tomczak, J.M., 2022. Deep Generative Modeling. Springer.
Umbrello, D., M’Saoubi, R., Outeiro, J., 2007. The influence of Johnson–Cook material

constants on finite element simulation of machining of AISI 316l steel. Int. J. Mach.
Tools Manuf. 47 (3–4), 462–470. http://dx.doi.org/10.1016/j.ijmachtools.2006.06.
006.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017. Attention is all you need. http://dx.doi.org/10.48550/ARXIV.
1706.03762, arXiv URL https://arxiv.org/abs/1706.03762.

Vode, F., Malej, S., Arh, B., Tehovnik, F., Podgornik, B., 2019. Description of hot
compressive stress-strain curves using transfer functions. Metals 9 (3), 290. http:
//dx.doi.org/10.3390/met9030290.

Wandb, 2023c. Weight and biases (wandb). URL https://wandb.ai/site.
Weaver, J.S., Khosravani, A., Castillo, A., Kalidindi, S.R., 2016. High throughput

exploration of process-property linkages in Al-6061 using instrumented spherical
microindentation and microstructurally graded samples. Integr. Mater. Manuf.

Innov. 5 (1), 192–211. http://dx.doi.org/10.1186/s40192-016-0054-3.

http://dx.doi.org/10.1016/j.dib.2019.104085
http://dx.doi.org/10.1007/978-3-031-17436-0_20
http://dx.doi.org/10.1007/978-3-031-17436-0_20
http://dx.doi.org/10.1007/978-3-031-17436-0_20
http://dx.doi.org/10.1520/e0008_e0008m-22
http://dx.doi.org/10.1109/CEC.2019.8790197
http://dx.doi.org/10.1109/CEC.2019.8790197
http://dx.doi.org/10.1109/CEC.2019.8790197
http://dx.doi.org/10.1145/3097983.3097997
http://dx.doi.org/10.18434/MDS2-2588
http://dx.doi.org/10.18434/MDS2-2588
http://dx.doi.org/10.18434/MDS2-2588
https://data.nist.gov/od/id/mds2-2588
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.48550/ARXIV.1806.07366
https://arxiv.org/abs/1806.07366
http://dx.doi.org/10.48550/ARXIV.1406.1078
https://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1016/j.commatsci.2023.112461
http://dx.doi.org/10.1016/j.commatsci.2023.112461
http://dx.doi.org/10.1016/j.commatsci.2023.112461
https://www.sciencedirect.com/science/article/pii/S092702562300455X
https://www.sciencedirect.com/science/article/pii/S092702562300455X
https://www.sciencedirect.com/science/article/pii/S092702562300455X
http://dx.doi.org/10.48550/arXiv.2307.08691
http://dx.doi.org/10.48550/arXiv.2205.14135
http://dx.doi.org/10.48550/arXiv.2205.14135
http://dx.doi.org/10.48550/arXiv.2205.14135
http://dx.doi.org/10.1145/2598394.2602287
http://dx.doi.org/10.1109/TVCG.2020.3028976
http://dx.doi.org/10.1016/j.cose.2020.102111
http://dx.doi.org/10.1016/j.cose.2020.102111
http://dx.doi.org/10.1016/j.cose.2020.102111
https://www.sciencedirect.com/science/article/pii/S0167404820303849
https://www.sciencedirect.com/science/article/pii/S0167404820303849
https://www.sciencedirect.com/science/article/pii/S0167404820303849
http://dx.doi.org/10.1109/TAI.2021.3067574
http://dx.doi.org/10.1109/TAI.2021.3067574
http://dx.doi.org/10.1109/TAI.2021.3067574
http://dx.doi.org/10.3390/math10193581
https://www.mdpi.com/2227-7390/10/19/3581
http://dx.doi.org/10.3390/jcs7020054
https://www.mdpi.com/2504-477X/7/2/54
https://www.mdpi.com/2504-477X/7/2/54
https://www.mdpi.com/2504-477X/7/2/54
http://dx.doi.org/10.1016/j.jmps.2020.103972
http://dx.doi.org/10.1038/s42256-022-00556-7
http://dx.doi.org/10.48550/ARXIV.2006.04439
https://arxiv.org/abs/2006.04439
https://arxiv.org/abs/2006.04439
https://arxiv.org/abs/2006.04439
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1016/j.commatsci.2022.111894
https://www.sciencedirect.com/science/article/pii/S092702562200605X
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.mdpi.com/2079-9292/11/12/1919
http://refhub.elsevier.com/S0952-1976(24)01323-X/sb26
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://dx.doi.org/10.1038/s42256-020-00237-3
http://dx.doi.org/10.1016/j.actamat.2023.118959
http://dx.doi.org/10.1016/j.matdes.2023.111760
https://www.sciencedirect.com/science/article/pii/S0264127523001752
https://www.sciencedirect.com/science/article/pii/S0264127523001752
https://www.sciencedirect.com/science/article/pii/S0264127523001752
http://dx.doi.org/10.48550/arXiv.1604.07269
http://dx.doi.org/10.1016/j.apples.2021.100056
http://dx.doi.org/10.1016/j.apples.2021.100056
http://dx.doi.org/10.1016/j.apples.2021.100056
http://dx.doi.org/10.1038/s41598-022-26424-3
http://dx.doi.org/10.1038/s41598-022-26424-3
http://dx.doi.org/10.1038/s41598-022-26424-3
http://dx.doi.org/10.1038/s41593-022-01085-7
http://dx.doi.org/10.3390/en16145240
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1016/j.neucom.2021.03.091
https://www.sciencedirect.com/science/article/pii/S092523122100477X
http://dx.doi.org/10.1063/1.4822961
https://www.python.org/
https://pytorch.org/
http://ieeexplore.ieee.org/document/6302929
http://ieeexplore.ieee.org/document/6302929
http://ieeexplore.ieee.org/document/6302929
http://dx.doi.org/10.48550/arXiv.2307.02055
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1109/TEVC.2019.2890858
https://ieeexplore.ieee.org/document/8601309
http://dx.doi.org/10.48550/arXiv.1810.11875
http://dx.doi.org/10.1109/tcyb.2020.2983860
http://refhub.elsevier.com/S0952-1976(24)01323-X/sb45
http://dx.doi.org/10.1016/j.ijmachtools.2006.06.006
http://dx.doi.org/10.1016/j.ijmachtools.2006.06.006
http://dx.doi.org/10.1016/j.ijmachtools.2006.06.006
http://dx.doi.org/10.48550/ARXIV.1706.03762
http://dx.doi.org/10.48550/ARXIV.1706.03762
http://dx.doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.3390/met9030290
http://dx.doi.org/10.3390/met9030290
http://dx.doi.org/10.3390/met9030290
https://wandb.ai/site
http://dx.doi.org/10.1186/s40192-016-0054-3

M. Laurenti et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109165
Wu, H., Xu, J., Wang, J., Long, M., 2022. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. http://dx.doi.org/10.48550/arXiv.
2106.13008, arXiv.

Zheng, X., Zheng, P., Zhang, R.-Z., 2018. Machine learning material properties from
the periodic table using convolutional neural networks. Chem. Sci. 9, 8426–8432.
http://dx.doi.org/10.1039/C8SC02648C.
30
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W., 2020. Informer:
Beyond efficient transformer for long sequence time-series forecasting. http://dx.
doi.org/10.48550/arXiv.2012.07436, arXiv.

http://dx.doi.org/10.48550/arXiv.2106.13008
http://dx.doi.org/10.48550/arXiv.2106.13008
http://dx.doi.org/10.48550/arXiv.2106.13008
http://dx.doi.org/10.1039/C8SC02648C
http://dx.doi.org/10.48550/arXiv.2012.07436
http://dx.doi.org/10.48550/arXiv.2012.07436
http://dx.doi.org/10.48550/arXiv.2012.07436

	Time mesh independent framework for learning materials constitutive relationships
	Introduction
	Methods
	Learning Tasks
	Framework Structure: Encoder
	Encoder Sub-block: LSTM
	Encoder Sub-block: CfC-Cell
	Encoder Sub-block: CfC-Layer
	Encoder Sub-block: Self Multi-Head Attention Mechanism

	Framework Structure: Decoder
	Datasets and their implementation
	Datasets
	Train/Test/Validation splits
	Training Procedure

	Results
	Performance of dataset 1: analysis on unseen loading path
	Performance of dataset 2: analysis in extrapolation region
	Performance of dataset 3: analysis on different dynamics
	Performance of dataset 4: analysis on unbalanced dataset and high dimensional inputs
	Performance of dataset 5: analysis on redundant and high variance inputs
	Performance of dataset 6: analysis on scarce and very noisy inputs

	Summary
	Code Availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Auxiliary figures
	Appendix B. Auxiliary Tables
	Appendix C. Dataset Hyperparameters
	References

