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Distributed quantum computing is a promising computational paradigm for performing computations
that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is
critical for maintaining confidentiality and protecting the data in the presence of untrusted computing
nodes. In this Letter, we introduce novel blind quantum machine learning protocols based on the quantum
bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the
privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving
mechanisms with low computational overhead that do not require complex cryptographic techniques.
We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our
findings pave the way for advancements in distributed quantum computing, opening up new possibilities
for privacy-aware machine learning applications in the era of quantum technologies.
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Introduction—Quantum computation that leverages the
principles of quantum mechanics has the potential to tackle
problems that are beyond the reach of classical computers,
revolutionizing fields ranging from cryptography [1] to
finance [2] and drug discovery [3]. Distributed quantum
computing has attracted a lot of attention in recent years
[4–11] due to the rapid progress in quantum communica-
tion technologies. In distributed quantum computing,
multiple quantum processors are connected over a network,
enabling collaborative computation and resource sharing.
This approach is crucial for scaling up quantum computing
power and overcoming the limitations of individual quan-
tum systems. Exploiting distributed quantum resources
enables tackling larger and more computationally complex
problems in domains such as optimization, simulation and
quantum machine learning (QML). QML is especially
suitable for distributed computation due to the need to
process large datasets.
Privacy in distributed computing plays a vital role in

ensuring the confidentiality and security of sensitive
information processed by multiple parties. Distributed
quantum computation involves sharing and transmitting

of quantum states across multiple nodes, making it para-
mount to protect the privacy of data and prevent unau-
thorized access. Furthermore, in practice, addressing
privacy concerns in distributed quantum computing is
essential for facilitating applications in fields such as
finance and healthcare, where preserving the privacy of
sensitive data is of utmost importance.
A number of protocols have been proposed in recent years

that aim to implement private distributed quantum comput-
ing. For example, blind quantum computing [12–14]
enables the client to execute a quantum computation using
one or more remote quantum servers while keeping the
structure of the computation hidden. Meanwhile, reducing
the overhead in communication over blind quantum com-
putation protocols has been an active research area since the
first proposal of universal blind quantum computation [12].
However, for distributed quantum computing problems such
as QML, ensuring the privacy of data from a certain party
while reducing the overhead in both quantum communica-
tion and computation remains a challenge.
In this Letter, we introduce novel protocols for blind

distributed quantum machine learning based on quantum
bipartite correlator algorithm that can perform inner prod-
uct estimation task, a core subroutine in many common
machine learning applications including linear regression
as we will show. Our protocols are communication-efficient
compared with state-of-the-art classical and quantum blind
distributed machine learning algorithms. Particularly, for
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the task of distributed inner product estimation, the pro-
tocols involve a communication complexity OðlogN=ϵÞ
with N and ϵ being the size of the vectors and standard
estimation error, respectively. We demonstrate how our
protocols allow the client to conceal its data from the server,
and vice versa. We provide a detailed resource analysis for
both communication and computation costs of our meth-
ods. Our Letter paves the way for performing quantum
machine learning with an untrusted device, while main-
taining the privacy and keeping the resource overhead low.
Formalism—We start by presenting the problem state-

ment in distributed quantum computation. The basic setting
includes two parties, Alice and Bob. We assume that Alice
has more quantum computational resources than Bob, such
as a larger number of qubits. In many distributed quantum
computation applications such as a delegated computation
setting, Alice can be considered as a quantum server with
Bob being a client. Furthermore, there is a quantum channel
where qubits can be transmitted between the two parties.
For the distributed QML tasks studied in this Letter, we
assume that X and y are only held locally by Alice and Bob,
respectively. For example, in supervised learning, X and y
could be feature data and labels, respectively [15], while in
unsupervised learning, both X and y can be feature data
with the objective to cluster them based on distance
estimation [16].
We consider the task of blind quantum machine learning,

such as linear regression or classification [17–20]. In
machine learning, evaluating the inner product between
two vectors is an important algorithmic building block, with
applications in both linear and nonlinear fitting, as well as in
the evaluation of cost functions within distributed neural
networks [21]. The server holds the data vector X of size N
and the number of features for each data point isM, and the
client holds a one-dimensional bitstring ywith the same size
N. Note that transmitting the data classically to the server
would introduce OðNÞ complexity in communication.
In classical settings, the goal of achieving distributed

machine learning with privacy can be approached using
various techniques, such as homomorphic encryption
[22,23], which allows computation over encrypted data.
Specifically, for distributed bipartite correlation estimation,
many methods could be employed, including linearly
homomorphic encryption [24,25], noninteractive inner
product protocols [26] and oblivious-transfer-based secure
computation [27]. However, it is important to note that
these classical methods often introduce considerable over-
head in terms of computation and communication complex-
ity. Particularly, a communication cost of OðNÞ would be a
minimum requisite [26]. As a result, their practical appli-
cations become limited, especially when dealing with large
data sizes.
Quantumbipartite correlator algorithmand its privacy—

We briefly introduce the quantum bipartite correlator
(QBC) algorithm that can estimate the correlation between

two bitstrings held by remote parties [8]. As discussed,
estimating bipartite correlation including inner product
serves as the building block of a general class of machine
learning problems [21,28,29]. Without loss of generality,
we consider binary floating point numbers. We take
the feature dimension M ¼ 1 for simplicity hereafter
unless specified. For two vectors x; y≡ ½x1; � � � xN �T;
½y1; � � � yN �T ∈ f0; 1gN , we are interested in evaluating xy ¼
ð1=NÞPN

i¼1 xiyi within a standard deviation error ϵ. To
begin with, we assume that the two parties Alice and Bob
hold a local oracle that can encode their own data using a
unitary transformation. That is, for Alice, one has
Ûx⃗∶ jiinj0i ↦ jiinjxii that encodes the data xi, where
jiin is an n≡ ⌈ log2ðNÞ⌉-qubit (called index qubit here-
after) state ji1i2 � � � ini, representing the index of the
queried component with ik ∈ f0; 1g, k∈ ½N�, and jxii is a
single-qubit state. Similarly, Bob has an oracle Ûy⃗ of the
same type that encodes his local data yi. These oracle
operators, as well as the ones introduced later, could be
implemented with various techniques such as quantum
random access memory [30].
QBC is based on the quantum counting algorithm,

where Alice and Bob send qubits via quantum channels
and communicate with each other to realize the phase
oracle [8,31], as shown in the top of Fig. 1. The quantum

FIG. 1. Diagram for blind QBC with an untrusted server. The
upper diagram shows the quantum counting algorithm consisting
Grover phase oracles Ĝx⃗;y⃗ and inverse QFT, while the lower box
panel shows the realization details of each phase oracle. Com-
pared to the original QBC algorithm, we introduce an ancillary
qubit o3 on the client’s side to add a phase gi during the
computation process. The phase can be introduced via applying
a phase gate on qubit o3, which encodes a bitstring that is random
and unknown to the server. The detailed phase encoding rule is
explained in the text. The quantum state at the star point is shown
in the inset of the figure. After the server finishes the quantum
circuit, it sends the extracted modified bipartite correlation
ð1=NÞPN

i ðxiyi þ giÞ to the client via a classical communication
channel. We omit the normalization factor for index qubit states
in the figures hereafter for simplicity.
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counting algorithm consists of a Grover operator Ĝx⃗;y⃗ ≡
Ĥ⊗nð2j0inh0jn − ÎÞĤ⊗nÛxy, where Ûxy is a unitary oper-
ator that encodes information of both parties as we
will introduce below, and inverse quantum Fourier trans-
form (QFT†) on register qubits j·it. When measuring
the t register, one can project it into a state jjit with phase
2πj · 2−t which encodes either θ̂ or 2π − θ̂, where
θ ¼ 2 arcsin

ffiffiffiffiffi
xy

p
, with equivalent standard deviation:

Δθ̂ ¼ 2−tþ1 [8].
During the phase oracle Ĝx⃗;y⃗, the following unitary

circuit is applied to achieve encoding of xi and yi

Ûxyjiinj00io1o2 ¼ ð−1Þxiyi jiinj00io1o2 ; ð1Þ

where o1, o2 are two qubits locally held by Alice and Bob,
respectively. The above unitary operator can be
implemented with the local oracles that Alice and Bob
hold, i.e., Ûx⃗ and Ûy⃗. Specifically, Alice encodes her local
information x into qubit o1 via Ûx⃗ operator and sends the
(nþ 1)-qubit state ð1= ffiffiffiffi

N
p ÞPN

i jiinjxiio1 to Bob via a
quantum channel. After Bob applies his oracle and gen-
erates the state ð1= ffiffiffiffi

N
p ÞPN

i jiinjxiio1 jyiio2 , a controlled-Z
(CZ) gate between qubit o1 and o2 is applied to encode the
correlation information into the phase of the quantum state.
That is, the bipartite quantum state is described by
ð1= ffiffiffiffi

N
p ÞPN

i ð−1Þxiyi jiinjxiio1 jyiio2 . The following local

oracles would then yield the desired state ð1= ffiffiffiffi
N

p ÞP
N
i ð−1Þxiyi jiin for Eq. (1). We note that the CZ gate might

be replaced with a different set of gates to estimate other
types of correlations such as Hamming distance between x
and y [8].
In the QBC algorithm, the communication complexity,

i.e., the qubits transmitted during the overall process, is
given by the Grover operation’s 2ðnþ 1Þ qubits commu-
nication repeated for 2t − 1 iterations:

Ccomm ¼ 2ðnþ 1Þð2t − 1Þ ¼ O

�
log2ðNÞ

ϵ

�
; ð2Þ

where the number of register qubits t is chosen to satisfy the
desired error bound ϵ. We remark that the above commu-
nication complexity is advantageous compared with the
SWAP-test-based algorithm that has a scaling of
Oðlog2ðNÞ=ϵ2Þ [32] or LOCC-based algorithms with a
scaling of Oðlog2ðNÞmaxf1=ϵ2; ffiffiffiffi

N
p

=ϵgÞ [33]. This ad-
vantage is achieved by utilizing the distributed Grover
operations. The computational complexity, on the other
hand, is the total number of oracle calls by Alice and
Bob Ccomp ¼ 4ð2t − 1Þ ¼ Oð1=ϵÞ.
We now examine data privacy within the QBC algorithm

discussed previously, designating Alice as the server and
Bob as the client. We first focus on safeguarding client
information y against a semihonest adversary. In this

scenario, the honest-but-curious server adheres to the
protocol without malicious intent yet attempts to compro-
mise the privacy of the client’s input by infering y from the
estimated ð1=NÞPN

i xiyi. In the trivial case when xi ¼ 0,
∀ i ≤ N, we have xy ¼ 0 no matter what y is and the
protocol has the best privacy. While in the worst case where
the xi ¼ 1, ∀ i ≤ N and xy ¼ 1, the server could infer that
yi ¼ 1, ∀ i ≤ N. In general, for x with Hamming weight
dx, the probability that the server gets the exact y (that is,
the Hamming distance between extracted and exact bit-
string is d0 ¼ 0) is given by

PrðdxÞ ¼
1

2N−dx

Qdx
i¼1 iQNxy

i¼1 i
Qdx−Nxy

i¼1 i
; ð3Þ

where the factor ð1=2N−dxÞ comes from the server having a
random guess on the indices j that satisfies xj ¼ 0.
Blind QBC with an untrusted server—In addition to the

semihonest adversary scenario discussed above, we
note that in the original QBC algorithm, the preservation
of privacy is not assured when we consider a malicious
server Alice. The server has the capability to acquire, to
a certain extent, Bob’s strings y by deviating from the
expected quantum operations. One example is that the
server could perform quantum gate operations and
measurements to extract the phase information instead
of following the expected Grover steps after receiving
ð1= ffiffiffiffi

N
p ÞPN

i ð−1Þxiyi jiinjxiio1 from the client Bob.
Alternatively, a malicious server could potentially manipu-
late the state of qubit o1 sent to the client, rather than
genuinely encoding the information of x. With the 2t − 1 ¼
Oð1=ϵÞ Grover iterations, the server could get Oð1=ϵÞ bits
of information in y [21,34]. While it is possible to employ a
redundant encoding strategy to decrease the probability that
the server attains a specific yi corresponding to an intended
index, this approach comes at the expense of increased
communication complexity, as detailed in Sec. II of [21].
We thus consider a revised QBC algorithm to counteract

the aforementioned attack by the malicious server and
protect the privacy of information held by the honest client.
A desired protocol for remote blind QBC should have
(i) less overhead in quantum communication, (ii) fewer
requirements in the computational power of client, (iii) a
certified estimation result with error ϵ.
As shown in Fig. 1, inspired by a quantum one-time

pad [12], the proposed protocol utilizes phase padding to
preserve privacy. The client Bob now has one or more
qubits at hand, where he can encode a bit string jgii that is
blind to the server. That is, the client has an oracle Ûg⃗ for
the extra qubit (denoted as o3 hereafter), and the modified
phase oracle of Eq. (1) reads as

Ûxygjiinj000io1o2o3 ¼ ð−1Þxiyiþgi jiinj000io1o2o3 : ð4Þ
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To implement the above unitary Ûxyg, similar to the Ûxy,
the client performs Ûy⃗ and Ûg⃗ oracle after receiving state
from the server to create the state ð1= ffiffiffiffi

N
p ÞPN

i jiinjxiio1
jyiio2 jgiio3 , followed by a controlled-Z gate between o1 and
o2. Then a local Z gate can be applied on qubit o3 to add the
phase ð−1Þgi that is random to the server.
Since the phase term ð−1Þxiyiþgi is binary here with

modular addition between xiyi and gi, we design the
following rule for the application of random phase gi.
For a given index i, when yi ¼ 0, the client chooses a
random number from f0; 1g; while when yi ¼ 1, the client
sets gi ¼ 0. Under this setting, the server cannot get yi in
general from direct measurement of the parity at each
Grover step, even if the server knows exactly the circuit that
the client performs.
The above phase encoding rule on gi guarantees that

xiyi þ gi ∈ f0; 1g. The quantum counting algorithm can
then estimate ð1=NÞPN

i ðxiyi þ giÞ ¼ ð1=NÞPN
i ðxiyi þ

gi mod 2Þ with error bound ϵ. Finally, after the measure-
ment, the server sends the estimated result back to the
client via a classical channel, from which the client can
extract ð1=NÞPN

i xiyi using his local information of
ð1=NÞPN

i gi. Alternatively, depending on the specific
use cases, the client could directly share ð1=NÞPN

i gi with
the server and let it extract the bipartite correlation between
x and y.
We emphasize that in principle, the aforementioned

protocol could still inadvertently leak a portion of the
information in y to the server. As can be seen from the
scheme, in the case where xj ¼ 1 and the final phase term is
xjyj þ gj ¼ 0, if the server knows the above application
rule of gi and extracts the phase corresponding to the index
qubit jiii¼j, it could infer that yj ¼ 0. We consider the
worst scenario where the malicious server picks xi ¼ 1,
∀ i ≤ N and has the client’s local phase encoding rule. The
server’s attack strategy is to measure the phase of a
randomly picked index jii to extract xiyi þ gi at each
Grover iteration. Then, for y with Hamming weight dy, the
probability that the server extracts a bit string y0 that is d0
close (d0 ≤ dy) to y using the information of the measured
phases and without doing random guess is simply given by

Prðdðy; y0Þ ¼ d0Þ

¼ Cðdy; d0ÞC½N − dy;minð2t − 1; dyÞ − d0�
C½N;minð2t − 1; dyÞ�

; ð5Þ

where Cð·; ·Þ denotes the binomial coefficient. As can be
seen from the analysis above, even in the worst case, the
probability that the server can successfully extract part of y
information becomes considerably low when the data size
becomes large, particularly when N ≥ 2t − 1, while in the
original QBC a malicious server could get 2t − 1 bits of
information from the client during the communication

round. Note that the iteration number 2t − 1 yields the
standard deviation of the estimated correlation, that is,
2t − 1 ¼ Oð1=ϵÞ. A less tight error bound ϵ will reduce the
number of communication rounds between server and
client, thus increasing the privacy of the client’s data.
We remark that the quantum communication complexity

of the aforementioned algorithm for a blind server is
Cbscomm ¼ O½log2ðNÞ=ϵ�, which is the same as the original
QBC as depicted in Eq. (2). Moreover, akin to the QBC
algorithm, a classical communication channel is needed at
the end of QBC to deliver estimation results to the client. In
terms of computational overhead experienced by the client,
introducing the ancilla qubit o3 only adds Oð1=ϵÞ number
of two-qubit phase gates and as a result, does not alter the
inherent computational complexity. To this end, the blind
QBC protocol proposed here could enable communication-
efficient blind distributed machine learning tasks between a
server and a client without presupposing substantial quan-
tum resources on the client.
Blind QBC with an untrusted client—We now discuss

the scenario where the server would like to estimate
ð1=NÞPN

i xiyi while keeping x hidden from the client
at all times during the process. In practical applications
such as model-as-a-service platforms [35,36], the server’s
information, including the model’s parameters or training
data, should remain hidden from the clients. By hiding the
server-side information, they can prevent the client from
reverse engineering or extracting valuable information
about the underlying model architecture or training data.
Under this setting, the protocol should be secure against not
only an honest-but-curious client, but also a malicious
client who tries to get x by deviating from the original
quantum algorithm.
Here we assume an honest server that follows the

protocol exactly without trying to get the label information
y. The goal is then to encode xwhen the server sends qubits
to the client while running the QBC algorithm. That is, we
are interested in designing a privacy-preserving operator
Ôf such that

Ôf
1ffiffiffiffi
N

p
XN
i

jiinj00io1o2 ¼
1ffiffiffiffi
N

p
XN
i

ð−1Þxiyi jiinj00io1o2 : ð6Þ

Inspired by quantum key distribution protocols [37] such as
BB84 [38], we consider a modified local oracle operator
ÛX1

held by the server, where the data information x is
encoded in a different basis (Fig. 2). Specifically, at each
iteration of quantum counting algorithm, for a given index
i, the server chooses a random number Ri from f0; 1g.
When Ri ¼ 0, the server encodes xi using the Z basis, i.e.,
jiinj0io1 or jiinj1io1, depending on whether xi being 0 or 1;
if Ri ¼ 1, xi is encoded in the X basis and now the state
reads jiinjþio1 or jiinj−io1. Here jþð−Þi ¼ 1

2
ðj0i � j1iÞ

are the eigenstates of Pauli X operator. This oracle ÛX1
can
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be implemented with the original oracle Ûx⃗ with Hadamard
gates on o1 conditioned on index jiin.
Then, the state received by the client at each time reads

as ð1= ffiffiffiffi
N

p ÞPN
i jiinjXiio1 with Xi being 1(0) or þð−Þ. As

the client does not know which basis the server chooses for
given i, at each Grover iteration, measurement of qubit o1
on index jii will have the probability of yielding both 0 or
1, hence the client cannot infer the xi information from the
single copy of the received ð1= ffiffiffiffi

N
p ÞPN

i jiinjXiio1 state.
Note that the server could pick different random numbers
Ri at different communication rounds when executing the
QBC algorithm. As shown in Fig. 2, in order to achieve the
target Ôf operator, we utilize oracle operators ÛX2;3;4

to
generate the phase term ð−1Þxiyi while hiding xi from the
client via random basis encoding and phase padding (see
detailed descriptions in the Appendix).
The scheme is based on a random encoding of x and is

information-theoretic secure against an untrusted client,
with the proof of security following directly from the
corresponding proof for the BB84 protocol [38,39]. The
total number of oracle calls by server and client only
increases by a constant at each iteration, thus leading to the
same computation complexity Oð1=ϵÞ as in the original
QBC algorithm. The total communication cost of this blind
client scheme is given by

Cbccomm ¼ 4ðnþ 1Þð2t − 1Þ ¼ O

�
log2ðNÞ

ϵ

�
; ð7Þ

which has the same complexity scaling as the original QBC
algorithm.

Discussions—We emphasize that our proposed algo-
rithms exhibit direct applicability within the domain of
distributed blind machine learning tasks, particularly in
scenarios involving matrix or vector multiplication oper-
ations. In the Supplemental Material [21], we present
examples demonstrating how the blind QBC algorithms
can be applied to both linear and nonlinear fitting problems
involving continuous label data y. These algorithms can
further be utilized to evaluate fitting performance by
estimating the mean square error cost function.
Additionally, for classification tasks where the label data
is discrete, the proposed algorithms are suitable for esti-
mating the cross-entropy cost function. Furthermore, these
algorithms can be generalized to multiparty settings
[21,40–42] and find applications in distributed QML tasks
such as quantum federated learning [21,43–46]. These
applications have demonstrated the broad applicability of
secure and communication-efficient inner product estima-
tion, paving the way for future practical implementations in
blind quantum machine learning.
We further remark that the proposed quantum algorithms

offer many benefits for practical applications with large
data sizes. Notably, the quantum communication cost in
estimating the bipartite correlation scales as OðlogN=ϵÞ
and additionally, the discussed data privacy mechanism
does not impose any additional overhead in terms of
communication cost. Furthermore, the protocols eliminate
the need for a trusted third party and necessitate only a
minimal quantum resource allocation from the participating
clients, encompassing the number of qubits and gate
operations. The protocols can be naturally integrated with
standard quantum communication techniques [37,47] to
address privacy concerns from a third party [21].
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FIG. 2. Grover operator Ĥ⊗nð2j0inh0jn − ÎÞĤ⊗nÔf for blind
quantum bipartite correlator protocol to hide server data x from
client. The operator starts with an oracle held by server (Alice)
that encodes x with random basis (oracle ÛX1

). After receiving
the state returned by client (Bob), the server extracts the desired
phase term ð−1Þxiyi (ÛX2

) and returns an encoded state back to
client (ÛX3

) to remove the phase in o1 qubit that the server does
not know. Finally, the server reaches the target state
ð1= ffiffiffiffi

N
p ÞPN

i ð−1Þxiyi jiin by decoupling o1 qubit with index
qubits (ÛX4

).
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End Matter

Appendix: On oracle operators in untrusted client
scenario—We describe the detailed implementation of
the Ôf operator in the untrusted client scenario. As
mentioned in the main text, the server first sends the
state with random basis encoding to the client. Then, as
in the original QBC algorithm, the client performs CZ

gate between the received qubit o1 and local qubit o2
sandwiched by Ûy⃗ operators. Then, the state received by
the server from the quantum channel is
ð1= ffiffiffiffi

N
p ÞPN

i jiinðaij0i þ bið−1Þyi j1iÞo1 , where aiðbiÞ is
decided by xi and the encoding basis Ri thus is known
to the server. We next discuss how the server could
perform operations to reach the target state
ð1= ffiffiffiffi

N
p ÞPN

i ð−1Þxiyi jii for running the follow-up QBC
algorithm. We consider a second oracle operator held by
the server ÛX2

:

ÛX2

1ffiffiffiffi
N

p
XN
i

jiinðaij0i þ bið−1Þyi j1iÞo1

¼ 1ffiffiffiffi
N

p
XN
i

ð−1Þxiyi jiinðaij0i þ bið−1Þyi j1iÞo1 : ðA1Þ

This can be achieved via the help of an additional qubit
oa held by the server that encodes the x information in
the normal Z basis (see Ref. [21] for details of circuit
implementation).
Note that the server cannot decouple the o1 qubit with an

unknown state, as the honest server only has the informa-
tion of ai and bi but doesn’t have the information of y. In
order to reset the state of qubit o1, the server could return
the state back to client to have the client remove the phase
ð−1Þyi . Before doing so, the server would like to first hide
its information by adding a random phase padding by
applying ÛX3

which is defined as

ÛX3

1ffiffiffiffi
N

p
XN
i

ð−1Þxiyi jiinðaij0i þ bið−1Þyi j1iÞo1

¼ 1ffiffiffiffi
N

p
XN
i

ð−1Þxiyiþhi jiinðaij0i þ bið−1Þyi j1iÞo1 : ðA2Þ

Here, hi ∈ f0; 1g is blind to the client and could change in
different communication rounds, therefore the client would
not be able to extract xi information. The client performs a
controlled-Z gate again between its local qubit o2 and the
received qubit o1, after which the phase term ð−1Þyi
becomes ð−1Þyiþyi ¼ 1. Then, the server receives the state
ð1= ffiffiffiffi

N
p ÞPN

i ð−1Þxiyiþhi jiinðaij0i þ bij1iÞo1 from client

and performs oracle ÛX4
:

ÛX4

1ffiffiffiffi
N

p
XN
i

ð−1Þxiyiþhi jiinðaij0i þ bij1iÞo1

¼ 1ffiffiffiffi
N

p
XN
i

ð−1Þxiyi jiinj0io1 : ðA3Þ

It can be easily seen that to implement ÛX4
, the server could

simply perform ÛX3
again to remove the added random

phase term ð−1Þhi and then reset the qubit o1 to j0io1 as the
server knows the all coefficients ai and bi.
We remark that the random numbers Ri and hi can

change in different Grover iterations. That is, the client will
not get useful information by performing measurements on
each iteration and using the joint results from a sequence of
measurements to infer x. The privacy of x is guaranteed by
the fact that measuring a single copy in a given basis cannot
reveal both the basis information Ri and the data informa-
tion xi. The probability that the client gets x0 that is d0 close
to the true x would simply be the same as a random guess.
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