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Nonlinear Ion Dynamics Enable Spike Timing Dependent
Plasticity of Electrochemical Ionic Synapses

Mantao Huang, Longlong Xu, Jesús A. del Alamo, Ju Li, and Bilge Yildiz*

Programmable synaptic devices that can achieve timing-dependent weight
updates are key components to implementing energy-efficient spiking neural
networks (SNNs). Electrochemical ionic synapses (EIS) enable the
programming of weight updates with very low energy consumption and low
variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear
dynamics of ions and charge transfer reactions in solids, are leveraged to
implement various forms of spike-timing-dependent plasticity (STDP). In
particular, protons are used as the working ion. Different forms of the STDP
function are deterministically predicted and emulated by a linear
superposition of appropriately designed pre- and post-synaptic neuron
signals. Heterogeneous STDP is also demonstrated within the array to
capture different learning rules in the same system. STDP timescales are
controllable, ranging from milliseconds to nanoseconds. The STDP resulting
from EIS has lower variability than other hardware STDP implementations,
due to the deterministic and uniform insertion of charge in the tunable
channel material. The results indicate that the ion and charge transfer
dynamics in EIS can enable bio-plausible synapses for SNN hardware with
high energy efficiency, reliability, and throughput.

1. Introduction

Artificial neural networks have shown promising applications
in a wide range of fields including image and speech recogni-
tion, natural language processing, and content generation.[1–3]
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However, such computations are becom-
ing prohibitively energy-intensive to per-
form on conventional digital computers.[4–6]

Human brains function with spiking sig-
nals from billions of neurons with tril-
lions of synaptic connections, at a power
consumption of only tens of watts.[7] In-
spired by the energy-efficient spike-based
biological systems, spiking neural networks
(SNNs) have the potential to realize sub-
stantial enhancements in the energy ef-
ficiency of computing. SNNs are spike-
driven networks that use sparse and asyn-
chronous spiking events and biologically
realistic behavior of synapses and neu-
rons for carrying out computations.[8–11]

These systems are adaptive, as they can per-
form online learning to adapt to new sit-
uations over time, while traditional neu-
ral networks need to be trained with back-
propagation in separate cycles. SNNs can
implement local learning rules, taking in-
put from pre- and post-synaptic neurons,
offering the potential for powering low-
energy smart devices with adaptive sensory

processing[12] and real-time learning.[13] Artificial spiking neu-
rons have also shown promise to interface with biochemical sig-
nals by leveraging ion-based operating mechanisms in organic
materials.[14–16]

One of the key components to implementing SNN hardware
is the synaptic device that has to emulate timing-dependent
learning rules, such as spike-timing-dependent plasticity (STDP).
STDP is an important learning rule in brain synapses.[17] Emu-
lating STDP serves as a basis for further explorations to achieve
more bio-realistic and more capable machine intelligence beyond
traditional deep neural networks.[9] STDP learning rules essen-
tially strengthen or weaken the synaptic connection between two
neurons when the spiking events of the pre-and post-synaptic
neuron take place in a specific temporal sequence.[18] The synap-
tic weight change, or conductance change, ∆G, is a function of
the relative timing, Δt, of the spiking events, and such a func-
tion is called the STDP function. One common form of STDP
is that the synaptic weight change is positive if the post-neuron
fires shortly after the pre-neuron, and negative if the pre-neuron
fires shortly after the post-neuron. The modulation strength in
this form of STDP increases when the pre-and post-synaptic neu-
rons fire close to each other, and the magnitude decreases with in-
creasing Δt between the two firing events. STDP has been shown
to enable coincidence detection,[19] latency reduction,[20] and
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supervised and unsupervised learning.[21] STDP has remarkable
diversity in the sign, symmetry, and shape of plasticity.[18] Hetero-
geneous STDP functions are also observed to occur in the same
brain region, even at synapses from the same pre-synaptic neu-
rons connecting to different post-synaptic neuron types.[22,23] For
example, in the dorsal cochlear nucleus, synapses that connect
the parallel fiber to fusiform cells follow different synaptic plastic-
ity rules compared to the synapses that connect the same parallel
fiber to the cartwheel cells.[22] Such diversity and versatility of bi-
ologically observed STDP require the hardware platform to have
the same flexibility to implement these different STDP forms.

Programmable resistors based on conductive filament
formation,[19,24–27] phase-change mechanism,[28,29] and
ferroelectricity[30–32] have been explored to implement time-
dependent update rules such as STDP for SNN hardware. The
stochasticity of the conducting filament-forming process causes
high variability in conductance updates and unreliability of
training.[33] The phase-change mechanism has been associated
with high energy consumption and conductance drift.[33,34] Fer-
roelectric tunneling junctions (FTJs) and ferroelectric field effect
transistors (FeFETs) have increased variability from the nonuni-
formity of the polycrystalline ferroelectric layer and stochastic
switching kinetics.[35] Engineering of materials, processing,
and operation protocols could improve the variability of these
devices.[36–38] The variability can also be partially compensated
by SNN design such as the homeostasis mechanism[39] using
more complex synapses and neurons. However, the variations
of the modulation characteristics such as the threshold voltage
could become a key challenge for achieving good reliability and
high performance with spiking neural networks.[19] It is highly
desirable to implement reliable time-dependent learning rules
with low variability, low energy consumption, fast operation
speed, and lean footprint.

Electrochemical ionic synapses (EIS), also known as electro-
chemical random-access memory (ECRAM), are three-terminal
programmable resistors with conductance controlled determin-
istically by electrochemical charge insertion.[40–47] The conduc-
tance of a channel material is modulated by ion and electron in-
sertion/extraction, controlled by an applied electrochemical po-
tential difference at a gate terminal with respect to the channel.[47]

Due to their low energy consumption, low variability, and de-
terministic charge-controlled conductivity modulation, EIS de-
vices are being studied and pursued for their potential to en-
able energy-efficient analog neural networks.[40,41,43] Using the
intrinsic nonlinearity of EIS devices could be one effective way
to emulate STDP in an energy-efficient and controllable man-
ner. To date, achieving STDP with EIS has not been shown in the
field, and demonstrating this is the goal of this paper. EIS devices
have a very strong nonlinear response to applied voltage.[45,42]

This arises from the nonlinear electric field dependence of ion
transport and interfacial charge transfer kinetics in EIS, as well
as the nonlinear dependence of electronic conductivity on the
concentration of ions and electrons inserted in certain channel
materials.[44,47] This nonlinear kinetics of EIS presents an oppor-
tunity to achieve timing-dependent weight updates in a synaptic
device as needed for STDP and SNNs.

In this paper, we leverage the nonlinearity of EIS to achieve
various forms of STDP learning rules. We use proton as the
working ion in the EIS devices.[44,45,48] We reliably predict and

design the form of the STDP function based on the pre-and post-
neuron signals superimposed at the gate of EIS. We show that the
timing-dependent weight update allows heterogeneous choices
of STDP function shapes in synapses from a single neuron con-
necting to different post-synaptic neurons. We control the re-
sponse timescales from milliseconds down to nanoseconds, with
lower variability and lower energy consumption than other STDP
attempts in the field. Our approach here leverages the intrinsic
nonlinearities of the EIS device, without the need for transistors
at each synapse, so the system has reduced footprint and fab-
rication complexity. These results point to the potential of EIS
to serve as programmable synapses to enable reliable hardware
implementations of SNN with high energy efficiency and high
throughput.

2. Results and Discussion

2.1. Strongly Nonlinear Response of Electrochemical Ionic
Synapses

In this study, we focus on EIS devices using protons as the work-
ing ion.[44,45,48] Figure 1a–c shows the device structure and mi-
croscope images of an example EIS device fabricated in this work
(see Experimental Section for device fabrication process). The de-
vices consist of a 10 nm thick WO3 channel, a 7–14 nm thick
yttria-stabilized zirconia (YSZ) layer as the solid-state electrolyte,
and a 15 nm thick top Pd layer as the hydrogen reservoir layer and
the gate. Source and drain contacts are made of Au with a Cr ad-
hesion layer, connecting to the side of the channel. The channel
lateral dimensions varied between 3 and 40 μm for the width and
length in different EIS devices used. The WO3 channel has tun-
able electronic conductance that is determined by the proton con-
centration in it, as we have shown in our earlier work.[44] The YSZ
electrolyte is fully oxidized, as seen from the Zr 3d and Y 3d X-
ray photoelectron emission peaks (Figure 1d,e), showing that the
Zr and Y have valences of +4 and +3, respectively. The YSZ elec-
trolyte is largely amorphous, as seen from the X-ray diffraction
pattern in Figure 1f, and this is consistent with a film deposited
at room temperature. The fully oxidized YSZ electrolyte is insu-
lating for electrons, but its amorphous and likely nanoporous
nature makes it conductive to protons through absorbed ─OH
groups.[49] The Pd layer becomes a hydrogen reservoir in the form
of PdHx when exposed to hydrogen-containing forming-gas prior
to experiments.[44]

The application of a gate voltage that is higher than the open
circuit voltage (−0.3–0 V, depending on the proton concentration
in the WO3 channel[44]) oxidizes hydrogen in PdHx and drives the
protons from the reservoir through the electrolyte into the chan-
nel layer with electrons flowing through the external circuit from
the gate to the channel. The electrons inserted into the WO3 along
with the protons, lead to the filling of in-gap states of WO3 and
increase its electronic conductivity.[44] The application of a gate
voltage lower than the open circuit voltage reverses the process.
Because of the small size of the proton and the high sensitivity
of the WO3 electronic conductivity to hydrogen concentration,[44]

the device allows for high-speed (ns regime) modulation and high
energy efficiency.[45] We have experimentally shown that these
devices could be programmed reliably with very low energy con-
sumption, close to 20 aJ per programming pulse for the proton
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Figure 1. Structure and chemical characterizations of electrochemical ionic synapses (EIS) studied for emulating STDP functions. a) Schematic device
structure with the gate (PdHx), electrolyte (yttria-stabilized zirconia, YSZ), channel (WO3), and source-drain (Au) contacts shown, and b) optical mi-
croscope image from the top of EIS devices experimentally characterized. S: source, D: drain, G: gate. The channel width and length are both 3 μm
and the gate width is 9 μm. Scalebar, 50 μm. c) Top-view false-colored scanning electron microscope image of the device. Scalebar, 10 μm. d,e) X-ray
photoelectron spectroscopy of the YSZ electrolyte centered at Zr 3d (d) and Y 3d (e). f). Grazing incidence X-ray diffraction pattern of the YSZ electrolyte
layer. Inset, zoomed-in diffraction pattern near YSZ-related features. The diffraction pattern shows that YSZ is largely amorphous.

transfer during the peak voltage of the pulses, with order of fJ
per pulse including the charging and discharging transients.[45]

We use these protonic EIS devices to experimentally quantify the
nonlinearity of the conductance change and leverage that non-
linearity to achieve timing-based conductance updates emulating
different STDP forms.

The conductance change in an EIS has a strongly nonlinear
dependence on the gate voltage when the gate voltage is away
from the open circuit potential. This nonlinear dependence is a
result of nonlinear ion transport through the electrolyte, non-
linear reaction kinetics at the interfaces as well as nonlinear
dependence of the conductance of the channel on the inserted
ion concentration.[44,47] When a strong electric field is present
across the electrolyte, the energy barrier for ion conduction is
lowered,[50] giving rise to a field-enhanced ionic conductivity, 𝜎.
The dependence of 𝜎 on the electric field, E through the elec-
trolyte is approximately proportional to sinh( qlxE

2kBT
), where q is the

ion charge, lx is the hopping distance, kB is the Boltzmann con-
stant, and T is temperature. Similarly, the reaction kinetics at the
interfaces can be described by the Butler–Volmer equation,[51]

j = j0(e
𝛼zFVi

RT − e
−(1−𝛼)zFVi

RT ), where j is the reaction current density, j0 is
the exchange current density, 𝛼 is the charge transfer coefficient
for the interface, F is the Faraday constant, R is the ideal gas con-
stant, z is the ion charge number, and Vi is the overpotential at
the interface. When 𝛼 is 0.5, the expression of j simplifies also
to a sinh dependence on the local voltage such that j ∝ sinh zFVi

2RT
.

This nonlinear voltage dependence has been experimentally ob-

served for EIS devices with various ions.[45,42] The sinh relation
has been used to explain and model the voltage dependence of
conductance modulation for our EIS devices earlier.[45,47]

Figure 2a,b shows the conductance change of a device with a
YSZ thickness (tYSZ) of 14 nm, as a function of pulse duration
(tpulse) and pulse voltage (Vpulse). For the same Vpulse, the change
in conductance achieved in each pulse, ∆G, scales nearly linearly
with tpulse, with small deviations. However, ∆G gets exponentially
larger for higher Vpulse. For example, an increase of Vpulse from
2 to 4 V speeds up (requires a lower value of tpulse) conductance
modulation by ≈60 times, and an increase from 2 to 6 V speeds up
by ≈1000 times. Figure 2c shows the rate of conductance change
(ΔĠ) as a function of pulse voltage. In addition, temperature can
introduce additional non-linearities and impact multiple aspects
of device operation (see Section SI, Supporting Information for a
discussion on the effect of temperature). Such nonlinear depen-
dence of ΔĠ on VG enables the timing-based update of conduc-
tance at the EIS, as we describe and illustrate below.

2.2. Timing-Dependent Programming of Nonlinear EIS Devices

To implement timing-dependent learning rules with EIS, we ap-
ply the linear superposition of the voltage waveforms from the
pre-and post-synaptic neurons to the gate of the EIS. The time
dependence of the pre-and post-synaptic neuron firing wave-
forms is designed to target different forms of STDP. Figure 3a
shows a simple and energy-efficient way to implement the linear

Adv. Mater. 2025, 2418484 © 2025 Wiley-VCH GmbH2418484 (3 of 12)

 15214095, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202418484 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [19/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 2. Strong nonlinear response of EIS to the applied gate voltage. a,b) Channel conductance change (∆G) as a function of pulse duration (tpulse)
and pulse voltage (Vpulse). Dashed lines are linear fits of the log-log plot of ΔG versus tpulse. (a) For Vpulse<0. (b) For Vpulse>0. c) The rate of conductance
change ΔĠ as a function of Vpulse, obtained from the intersect of the linear fit on the log-log plot in (a) and (b).

superposition. A voltage divider is formed across the voltage
waveforms from the pre-synaptic neuron (Vpre) and the post-
synaptic neuron (Vpost). For the voltage divider to produce the de-
sired linear superposition of the voltages, the resistance of the
resistors, R, needs to be much smaller than the gate resistance
of the EIS device. The requirement is trivial to satisfy because
the gate resistance of EIS devices is usually very high, for exam-
ple, more than 10 GΩ for a submicron device in ref. [45], because
the electrolyte is electronically insulating (see Section SII, Sup-
porting Information for achievable time scales). The resulting VG
waveform depends on the relative timing (Δt) of the firing of the
pre-and the post-synaptic neurons. Here we defineΔt= tpost – tpre,
where tpost and tpre are the times when the post- and pre-synaptic
neuron fire, respectively.Δt is positive when the post-neuron fires
after the pre-neuron. With an R-value sufficiently small, the gate
voltage can be approximated by the formula VG = (Vpre+Vpost)/2.
The voltage divider structure does not consume energy when the
neurons are in the resting state, and energy is only consumed
during spiking events. (See Section SIII, Supporting Information
for alternative circuit approaches).

Figure 3b–d shows an example of timing-based conductance
modulation of a single EIS synapse to implement an STDP learn-
ing rule. Here we implement a common STDP form, where the
conductance of a synapse increases for Δt > 0 and decreases for
Δt < 0. To achieve this form of STDP (Figure 3d), the Vpre and
Vpost waveform can be set to as shown in Figure 3b. The Vpre and
Vpost waveforms are designed such that they do not induce a large
conductance change of the synapse if they fire alone. The self-

compensating characteristic of Vpre and Vpost waveforms ensures
there is a significant net conductance change only when these
two signals fire close enough and overlap in time. The shape of
the Vpre and Vpost are designed to enable targeted STDP forms,
and the approach for designing such waveforms is described later
in the section on obtaining different STDP forms. Depending
on the timing of the firing of the pre-and post-synaptic neurons,
the gate voltage (VG(t) = (Vpre(t)+Vpost(t))/2) takes different wave-
forms for differentΔt values, as shown in Figure 3c. In the experi-
ments, the superimposed waveforms were calculated and applied
to the gate of the EIS device using a function generator. After the
VG(t) waveform is complete, 0 V was applied to the EIS device
as the resting potential, rather than an open circuit, for practi-
cal operation. Most of the conductance change takes place right
after the spiking event, although the ∆G quantified here is the
conductance difference between right before and 20 s after the
pre-synaptic neuron signal fires. (The delay time to read does not
reflect the timescale of the conductance modulation). The result-
ing ΔG as a function of relative timing, Δt is shown in Figure 3d.
The amplitude of modulation is highest when the pre-and post-
synaptic neurons fire close to each other (the absolute value of
Δt is small). The resulting behavior clearly emulates the canoni-
cal STDP behavior seen in biological neural circuits. The ∆G in
Figure 3 is intentionally kept small to be comparable to the STDP
in synapses of the brain, where a single spiking event introduces
only a small synaptic strength change.[17] The modulation ratio
can be tuned by starting from different conductance levels, using
waveforms with varying voltage or duration, and by continuously
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Figure 3. Timing-dependent programming of the EIS devices. a) The circuit used here to implement a linear superposition of voltage signals from the
pre- and post-synaptic neurons. b) Waveforms of Vpre(t) and Vpost(t) to achieve the canonical STDP function shown in (d). c) The waveforms at the gate
terminal (VG) for Δt = −160 ms, −20 ms, +20 ms, and +160 ms (top to bottom). d) Conductance change (∆G) after the firing of both the pre- and
post-synaptic neurons, as a function of the relative timing of firing, Δt = tpost – tpre, where tpost and tpre are the times when the post-and pre-synaptic
neuron fire, respectively. The black points are experimental data, and the dashed line is the modeled and calculated ∆G. The ∆G was calculated as the
integration of the conductance change rate at each time segment multiplied by a scaling factor of 0.7 (see text for modeling of ∆G). The colored points
correspond to the conductance change from the Δt and the VG waveforms at four different Δt values shown in (c).

spiking to cause cumulative and larger changes in conductance
as discussed in a later section. In addition, we maintain the chan-
nel conductance in the ≈nS range, as this is the desirable and
practical conductance level outlined in ref. [52]. This range pre-
vents excessive current in metal lines and achieves low energy
consumption in crossbar arrays. The devices offer flexibility in

conductance, tunable over more than seven orders of magnitude
by adjusting the ion concentration.[44] Additionally, the conduc-
tance can be adjusted by modifying the channel’s aspect ratio (see
Section SIV, Supporting Information).

The shape of the timing-dependent conductance change curve
can be qualitatively explained by the nonlinear dependence of
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the channel conductance change on the gate voltage. Because
the conductance change is much greater at higher voltage, as
explained above from the nonlinearity of the EIS, the conduc-
tance change from the portion of the VG(t) waveform with a
high voltage amplitude dominates. When Δt is close to 0 (e.g.,
Δt = 20 ms, and Δt = −20 ms in Figure 3c), the conductance
change is dominated by the large positive or negative voltage
peak. When Δt is farther away from 0, the peak voltage becomes
smaller, and the net conductance change becomes much smaller.

We model the time-dependent response of the EIS, to predict
the learning curve from different VG(t) waveforms, and to design
Vpre(t) and Vpost(t) Waveforms. The STDP function can be calcu-
lated using the nonlinear dependence of conductance change on
the gate voltage of EIS devices. If the spiking events of the pre-
and the post-synaptic neuron take place at the same time, at t =
0, the waveforms are denoted as V0

pre(t) and V0
post(t) (such as those

shown in Figure 3b). If the post-neuron spikes with a delay Δt rel-
ative to the pre-neuron, then we have Vpost(t) = V0

post(t − Δt) and
Vpre(t) = V0

pre(t). The gate voltage waveform is therefore VG(t) =
Vpre+Vpost

2
=

V0
pre(t)+V0

post(t−Δt)

2
. Assuming there is no interaction be-

tween the time segments, we can calculate the change of conduc-
tance of the EIS as an integral of the rate of conductance change
for each time segment:

ΔG = ∫ ΔĠ
(
VG (t)

)
dt = ∫ ΔĠ

(
V0

pre
(t) + V0

post
(t − Δt)

2

)
dt (1)

whereΔ Ġ(VG) is the rate of conductance change that depends on
the gate voltage, VG, and the limit of integration covers the whole
period of the two spiking events. The rate of conductance change
ΔĠ(VG) is interpolated from the experimentally measured data
in Figure 2c. The calculated time-dependence of the STDP curves
(dashed lines in Figure 3d) show good agreement with the exper-
imentally measured STDP from the EIS devices. We note that,
after the conductance change from all Δt values is calculated
through the integration in Equation (1), they are multiplied by a
common factor between 0.5 and 0.7, such that the modeled con-
ductance peak amplitude matches the experimental data. For a
given combination of V0

pre(t) and V0
post(t), a constant scaling fac-

tor is used. We attribute the discrepancy between the numerically
modeled and experimentally measured STDP amplitudes to the
complex dynamics of EIS. The conductance change of EIS can-
not be treated as a simple integration over each time segment
assumed to be non-interacting, also seen in Figure 2a,b. The be-
havior could be due to the intrinsic dynamics of the devices, in-
cluding the capacitive processes such as the accumulation of ions
at the interfaces.[47]

2.3. Implementing Different Bio-Realistic STDP Forms

The diversity and versatility of biologically observed STDP forms
demand high flexibility on the part of the hardware. We experi-
mentally demonstrate four typical STDP shapes by changing the
waveforms of Vpre and Vpost. A sketch of STDP forms that are ob-
served in the brain, the experimentally measured STDP curves
from our EIS circuit, and the Vpre and Vpost waveforms used
for each SDTP form, are shown in Figure 4. The demonstrated

STDP forms include: the conventional antisymmetric STDP
form characterized in hippocampal cultures[17] (Figure 4a), long-
term potentiation-only STDP form found at CA3–CA1 hippocam-
pal synapses[53] (Figure 4b), bidirectional symmetric STDP form
found in GABAergic hippocampal synapses[54] (Figure 4c) and
antisymmetric STDP form with a region of no plasticity in a tem-
poral range near Δt = 0, observed in inhibitory synapses in the
entorhinal cortex[55] (Figure 4d). The dashed lines in Figure 4a–d
show the simulated STDP (using the approach described above),
which is in good agreement with the experimentally measured
STDP data. The good agreement between the modeled and ex-
perimental results suggests that the timing-dependent conduc-
tance update is reliable and predictable. In biological neurons,
the electrical signals that correspond to spiking events gener-
ally take similar forms[56] although they can produce different
STDP functions. This is in contrast to the very different Vpre and
Vpost waveforms used here to capture different STDP forms. The
origin of biological synapses showing different STDP functions
from similar electrical signals has been attributed to chemical
signals such as calcium concentration transients.[57] We cannot
capture the details of chemistry at each synapse since the EIS de-
vice materials and ions used are the same for each STDP form.
Instead, we consider the Vpre and Vpost used here to represent a
convolution of the spiking electrical signal and the local chem-
istry and molecular pathways that the STDP originates from.[58]

2.4. Heterogeneous Learning Rules and Dopamine-Modulated
STDP

In biological systems, different STDP forms take place at
synapses connecting the same pre-synaptic neurons to differ-
ent post-synaptic neuron types.[22,23] In addition, the STDP form
can be altered by neuromodulators including dopamine and
acetylcholine.[59,60] We show that EIS is conducive to emulat-
ing these complex behaviors. We first emulate heterogeneous
STDP rules using our EIS circuit (Figure 5a,b). The Vpre from
the pre-synaptic neuron (labeled “Pre neuron”) is shared by two
synapses (Synapse A and B), but these synapses receive different
Vpost waveforms from different post-synaptic neurons (labeled
“Post neuron A” and “Post neuron B”). Therefore, the linear su-
perposition of the Vpre and Vpost is different in symmetry and
shape on the EIS representing Synapse A and Synapse B. As
a result, we obtain different STDP forms for the two synapses,
shown in Figure 5b. This result closely resembles, for example,
the STDP variations observed in synapses at parallel fiber inputs
onto fusiform and cartwheel cells.[22]

EIS can also be used in the emulation of dopamine-modulated
STDP behavior. A potential local circuit approach is exemplified
in Figure 5c,d, where the pre- and post-synaptic neuron signals
are multiplied by factors 𝛼pre and 𝛼post, respectively. These factors
emulate the dopamine level of each neuron. Figure 5d shows the
simulated STDP forms when 𝛼post is modulated from +1 to −1
while keeping 𝛼pre constant as 1. The input Vpre and Vpost wave-
forms from Figure 3b are used for the simulation. The results
show that the STDP shape changes from the conventional asym-
metric with 𝛼post = 1 on the right, to become symmetrical and
negative near Δt = 0 with 𝛼post = −1 on the left. A second ap-
proach is to use a third signal related to the dopamine level that

Adv. Mater. 2025, 2418484 © 2025 Wiley-VCH GmbH2418484 (6 of 12)
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Figure 4. Emulating different STDP forms observed in the brain by varying the Vpre and Vpost waveforms. a) The conventional antisymmetric STDP form
is characterized in hippocampal cultures.[17] b) Long-term potentiation only STDP form found at CA3–CA1 hippocampal synapses.[53] c) Bidirectional
symmetric STDP form, found in GABAergic hippocampal synapses.[54] d) Antisymmetric STDP form with a region of no plasticity in a temporal range
near Δt = 0, observed in inhibitory synapses in the entorhinal cortex.[55] For each type, from left to right: the sketch of the targeted STDP shape, the STDP
learning curve obtained from experimental (black points) and simulated data (dashed lines), and the Vpre and Vpost waveforms to obtain the targeted
STDP form.

can be superimposed onto the Vpre and Vpost of each synapse.
Simulated examples of dopamine-modulated STDP similar to
those in biological observations, are shown in Figures S2 and S3
(Supporting Information).

2.5. Cumulative Modulation and Consistent Cycling from STDP

Long-term potentiation (LTP) involves a persistent strengthen-
ing of synapses depending on recent patterns of activity, while
long-term depression (LTD) involves a persistent weakening of

the synapse strengths. These mechanisms are key to synaptic
plasticity, which is fundamental to learning and memory. To il-
lustrate the cumulative effect of multiple spiking events, it is
essential to examine continuous spiking in the context of LTP
and LTD. Figure 6 shows the results of EIS conductance modula-
tion from continuous spiking, where the time delay, Δt, controls
the direction of the conductance update, and the process was re-
peated for multiple cycles. Positive Δt spiking events result in a
cumulative increase in conductance, while negative Δt events re-
sult in a cumulative decrease. The results clearly demonstrate the
cumulative effect of multiple spiking events. Furthermore, the

Adv. Mater. 2025, 2418484 © 2025 Wiley-VCH GmbH2418484 (7 of 12)
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Figure 5. Heterogeneous and evolving STDP. a) Schematic configuration to implement heterogeneous STDP. Different STDP forms are obtained at two
EIS synapses (Synapse A and B) connecting the same pre-synaptic neuron (Pre neuron) to two different post-synaptic neurons (Post neuron A, and Post
neuron B). The voltage waveforms for the Vpre and Vpost of the corresponding neurons are shown. b) The resulting STDP forms at the two synapses, A
and B. c) Circuit for emulating dopamine-modulated STDP scales the pre- and post-synaptic neuron signals that are combined to serve as VG of the EIS.
d) Simulated STDP forms as a function of the scaling factor of the post-synaptic neuron (𝛼post). 𝛼post changes from −1 (i) to +1 (vi), while the scaling
factor for the pre-synaptic neuron (𝛼pre) is kept at 1.

Figure 6. Cumulative LTP and LTD from continuous spiking events. a) Conductance changes for continuous spiking events with varying Δt. The con-
ductance increases with positive Δt (LTP) and decreases with negative Δt (LTD), showing the cumulative and consistent modulation. The conductance
is cycled between low and high states through alternating LTP and LTD events over 10 cycles. b) Waveforms of Vpre(t) and Vpost(t) to generate LTP and
LTD in (a).

Adv. Mater. 2025, 2418484 © 2025 Wiley-VCH GmbH2418484 (8 of 12)
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Figure 7. Experimentally measured STDP with timescales from milliseconds down to nanoseconds. For each time scale, the ∆G versus ∆t (top) and
the waveforms for Vpre(t) and Vpost(t) (bottom) are shown. a). Time scale regime of 100 ms, with a peak voltage level of 6.5 V using a device with a
YSZ electrolyte thickness (tYSZ) of 14 nm. b) Time scale regime of 100 μs, with a peak voltage level of 10 V using a device with tYSZ = 14 nm. c) Time
scale regime of 100 ns, with a peak voltage level of 10 V using a device with tYSZ = 7 nm. d) Comparison of variability and programming timescale for
synaptic devices implementing STDP, including the EIS devices in this work, and devices based on resistive switching (RS),[26,27] phase-change materials
(PCM),[28,29] ferroelectric tunnel junctions (FTJ),[30,31] and ferroelectric field effect transistors (FeFET).[32]

conductance can be cycled between low and high states by alter-
nately applying positive (LTP) and negative (LTD) spiking events,
with a max/min ratio greater than 10x and excellent consistency.
The conductance max/min ratio can be further tuned by using
pulses of larger voltage or longer durations, as shown in Figure 2.
The versatility and consistency in the cumulative changes indi-
cate that our EIS devices can effectively emulate the long-term
plasticity observed in biological synapses, providing a robust
foundation for implementing more complex learning rules and
functionalities in SNN hardware.

2.6. Energy Efficient STDP with Low Variability and Flexible
Timescales from Milliseconds to Nanoseconds

The energy consumption, variability and speed of STDP using
our EIS circuit are important performance characteristics for im-
plementing SNN hardware. We harness the fast operation speed
of EIS devices (down to nanoseconds), low energy consumption
and the intrinsic low variability and deterministic nature of the
conductance modulation, and demonstrate that the EIS devices
can achieve a good combination of the three.

Due to the strong field enhancement of the transport and inter-
facial reaction kinetics, the timescale of the conductance modula-
tion can be tuned by the voltage amplitudes of the Vpre and Vpost
waveforms, by the thickness of the electrolyte, and by interface
chemistry. As shown in Figure 7a–c, the canonical STDP behav-
ior is implemented experimentally at a timescale ranging from
milliseconds to nanoseconds. Millisecond timescales are more
relevant for biological systems, and nanosecond timescales en-
able neuromorphic computing devices that potentially react and
learn a million times faster than biological systems.

To assess the variability of the devices, we take the ΔG ver-
sus Δt data and calculate the mean absolute difference of the
measured ΔG from the smooth curve fitted to the experimen-
tal STDP data. If the device has no variability, the resulting ex-
perimental ΔG versus Δt should follow a smooth curve, because
the VG waveform changes smoothly with Δt, and thus we should

expect 0 (zero) difference between the measured ΔG and the
smooth fitted curve. Any non-zero difference is a measure of the
variability among each VG applied to the device at each Δt. This
is akin to the cycle-to-cycle variability of memristive devices.[61]

This simple metric allows us to compare the variability of our de-
vices to other non-volatile synaptic devices with published STDP
results.[26–32] We characterize the timescales of the STDP by the
length of voltage waveforms applied. A comparison of variabil-
ity and STDP timescale, including values calculated based on the
ΔG versus Δt data of our devices in Figure 7a–c and extracted
from published results, is shown in Figure 7d. Importantly, we
consistently achieve lower variability (<5%) at all timescales with
the EIS, compared to other mechanisms (RS, PCM, FTJ, FeFET)
reported to emulate STDP in the literature. Additionally, we eval-
uated the device-to-device variability for STDP implementation
(see Section SVI, Supporting Information) and found a variability
of ≈6%. This is a remarkably low variability, given that it is quanti-
fied at the very low conductance regime (10–100 nS), much lower
than the variability of other device types, which never quantified
variability at this low of a conductance target range, as we sum-
marize in Table 1 below, and it is well below the target maximum
variability value for reliable training of networks.[52] We also be-
lieve that this variability of EIS devices can be brought down even
more by leveraging the state-of-the-art fabrication technologies in
the industry, which surpass those at university laboratories.

We estimate the energy consumption of the STDP-performing
EIS devices. Since no power is needed at rest when there are
no spiking events, the idling power consumption is zero for the
synapses. The energy associated with electrochemical proton in-
sertion is estimated to be below 1.0 fJ per spiking event, using
data for WO3 intercalation,[44] and by assuming that a peak volt-
age (10 V) is applied during the whole process. In addition, en-
ergy is consumed by the resistors, and the charging and discharg-
ing of the capacitance of the EIS gate need to be considered. We
calculated the full energy consumption of the circuit by integrat-
ing the power during the spiking events (see Section SVII, Sup-
porting Information). The calculation shows that the energy con-
sumption of each spike event is ≈27–54 fJ for the STDP behavior

Adv. Mater. 2025, 2418484 © 2025 Wiley-VCH GmbH2418484 (9 of 12)
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Table 1. Advantages of utilizing EIS to implement STDP. The comparisons are with respect to RRAM as the most commonly studied device concept, and
to other best contender device concepts.

Characteristics EIS [this work] Best contender RRAM

Device-to-device variability ≈6% (10 nS < G < 100 nS) FeFET, 40% (G ≈ 2 μS)[66] 80% (G ≈ 10 μS)[67]

Programming speed 160 ns FTJ, 100 ns[31] 1 μs[68]

Energy consumption per spiking event < 60 fJ FTJ, ≈2 pJ[31] ≈7 pJ[62]

shown in Figure 7c. We estimated the energy consumption of
STDP by other types of resistance switching devices from liter-
ature using waveforms and testing protocols extracted from the
plots, the estimated energy consumption per spiking event are:
≈7 pJ, ≈150 pJ, ≈2 pJ, and ≈0.9 nJ for RRAM,[62] PCM,[29] FTJ[31]

and FeFET,[32] respectively. The comparison shows the superior
energy efficiency of EIS for implementing STDP.

Major advantages of utilizing EIS to emulate STDP are sum-
marized in Table 1, in comparison to other device concepts that
attempted to emulate STDP in the field. The comparison shows
that EIS simultaneously provides the least variability and the
least energy consumption while being able to operate at a speed
regime of nanoseconds. Furthermore, for the protonic EIS fo-
cus of our paper, all the functional materials and fabrication pro-
cesses are CMOS-compatible. The oxides in the devices are de-
posited with scalable sputtering processes at room temperature,
and the Au layers used for electrical contacts can be replaced
with CMOS-compatible materials such as W. Pd has been used
in CMOS processes as a contact material.[63] Additionally, the Pd
top gate can be replaced with a WO3 layer to form a symmet-
ric device,[64,46] eliminating the need for Pd metal. These silicon-
compatible materials and processes facilitate integration with pe-
ripheral circuits, bringing the device closer toward commercial
applications.

3. Conclusion

We leverage nonlinear ion dynamics and charge transfer re-
actions controllably in protonic EIS, to achieve spike timing-
dependent weight programming. This allowed us to emulate dif-
ferent bio-realistic STDP functions at timescales tunable from
milliseconds down to nanoseconds. The resulting STDP has very
low energy consumption and lower variability than other hard-
ware STDP implementations in the field. The EIS circuit also al-
lows for heterogeneous STDP where the synapses from a single
neuron can have different learning rules depending on the be-
havior of the post-synaptic neurons. The strongly nonlinear be-
havior of conductance modulation is general across EIS devices
with different ions, so that a broad range of EIS ions, materials,
and devices can be applied to emulate STDP. The approach could
enable reliable SNN hardware implementations with high energy
efficiency and high throughput.

4. Experimental Section
Device Fabrication: The EIS devices were fabricated on Si substrates

with 90 nm thermal SiO2 oxide. First, the channel was patterned using
electron-beam lithography with polymethyl methacrylate (PMMA) resist.

The WO3 channel (10 nm thick) was grown by reactive sputtering using
a W target in a gas environment with an Ar:O2 ratio of 9.3:2.7 at 3 mTorr
at room temperature, followed by liftoff. The source and drain contacts
were patterned and deposited by electron-beam lithography and electron-
beam evaporation of Cr 5 nm and Au 35 nm, followed by liftoff. The YSZ
solid-state electrolyte (14 or 7 nm thick) was grown by RF sputtering from
a YSZ (8 mol.% yttrium oxide doped zirconium oxide) target with Ar:O2
ratio of 15:4 at 3 mTorr at room temperature, followed by photolithography
and ion milling. Finally, the Pd reservoir layer was patterned and deposited
with electron-beam lithography, and electron-beam evaporation followed
by liftoff. The Pd layer becomes PdHx when placed in the hydrogen-forming
gas environment during testing.

Electrical Measurements: The samples were mounted, wire bonded
to a custom-designed PCB, and placed in a gas-enclosed box with feed-
throughs for making electrical connections to the devices. The box was
filled with hydrogen-forming gas composed of 4% H2 and N2. The hy-
drogen content in PdHx under the gas environment was estimated to be
x≈0.65 at 20 °C.[65] The channel conductance was measured using a semi-
conductor analyzer (B1500A) with a bias voltage of 0.1 V, and the gate
waveforms were generated by a SIGLENT 2000X function generator. Before
each STDP measurement, the devices were first initialized to ≈1000 nS by
applying voltage pulses to the gate, to have a consistent initial conduc-
tance state in the experiments.

Conductance Change Calculation from VG Waveforms: The conduc-
tance change from a VG waveform is calculated using Equation (1). The
conductance change rate is interpolated from the experimentally mea-
sured data, such as that shown in Figure 2 in this work. To calculate the
effect of a voltage waveform from a voltage, the waveform is first numer-
ically sliced into segments of length 𝜏, which is chosen so that 𝜏 is suffi-
ciently small for each waveform. The conductance change from each time
segment is then added up to get the final expected conductance change.
After the conductance change from all Δt values is calculated, they are
multiplied by a common factor: 0.7, 0.5, 0.65, and 0.7 for Figure 4a–d,
respectively. The reason for this factor is explained in the manuscript.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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