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1. Introduction

The key to making successful predictions
has always been the accuracy and rigidity
of the required input data and a well-
defined mechanism for producing predic-
tions. Input data, such as microscopy
images or tabular data, have been the major
component of recent successful applica-
tions in machine learning. In materials sci-
ence, it has been known for decades that
structure-process-property relationships
represent the key to any predictions of
material properties. More generally, sci-
ence in all of its forms, advances in time
through empirical, in-context relations
(“gentle” vs. “strong” pot stirring), which
eventually evolve into actual mathematical
relationships after many reincarnations in
the scientific literature. Thus, it is natural

to hypothesize that novel concepts and relationships exist, in
nascent form, in current publications, in fuzzy, unstructured
manners. The importance of identifying these emerging con-
cepts and relationships cannot be overstated. In this work, we
demonstrate how large language models (LLMs) can be used
to develop a predictive tool for such identification, in the context
of nuclear materials research, as it is expressed in the publica-
tions of the Journal of Nuclear Materials across the last two
decades.

LLMs have recently revolutionized the understanding and
generation of text that is produced by the use of naturally utilized
languages, such as human-spoken or/and coding.[1–3] A key
focus is the application of LLMs on scientific literature analysis.[4]

A number of benchmarks and criteria have been developed for
the assessment of LLM proficiency in a particular knowledge
domain,[5,6] such as memorization, comprehension, and reason-
ing in scientific concepts. However, the understanding of higher-
level proficiency of LLMs in scientific domains requires the
development of tools that characterize the whole concept struc-
ture of the model.

Measures for the quality of LLMs are promoted through
benchmarks for assessing their capabilities. General bench-
marks can be used for models’ world knowledge across diverse
domains.[5] Additionally, one could use benchmarks for assess-
ing the alignment with factual information.[7] However, in sci-
ence subjects, such benchmarks are clearly insufficient for the
understanding and reasoning of scientific literature. In this con-
text, recent models have focused on text-mining and integrating
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generated knowledge graphs with more than 2� 105 nodes and 3.3� 105 links
are analyzed per publication year, and temporal tracking leads to the identi-
fication of criteria for publication innovation, controversy, influence, and future
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information across multiple documents.[8,9] Here, we focus on an
alternative approach, in terms of creating benchmarks of com-
plete knowledge graphs (KGs) constructed by LLMs on a large
sequence of scientific publications, that may outperform tradi-
tional benchmarks in terms of multimodal content and overall
contextual interpretation.

KGs, as opposed to word clouds (Figure 1), are concrete,
structured, directional networks that represent data in a
graphical form, especially events and entities as nodes, and
the relationships between them as edges. While the impor-
tance of such a network is critical in domain knowledge
understanding, its construction has been costly and time-
consuming. LLMs have accelerated such KG constructions
significantly,[10,11] providing insights to the context of scientif-
ically written paragraphs. In this work, we develop KGs
of more than 10 000 publications in Journal of Nuclear
Materials (JNM) and then analyze such complex network prop-
erties and features.

The focus of this work is the investigation of domain knowl-
edge KGs, viewed in physics as complex networks, and their sta-
tistical properties. The investigation of complex networks using
statistical physics has led to major discoveries in the last two dec-
ades[12,13] on the content and dynamics of networks such as cities
or the internet. In this article, we investigate in detail the tem-
poral evolution of KG networks as they form by gradually includ-
ing text of a particular journal, JNM. We use three LLMs,
pretrained in dialog tasks, for the construction of the KGs,
and then investigate the network structure with time. Using
GPT performance as a benchmark, we first compare three differ-
ent LLMs using both standard measures and statistical differen-
ces of produced KGs features, such as the degree and rank,
number of nodes and internodal shortest path (SP) length,
and numerical distance in the word embeddings space
(Word2Vec).[14] Then, we identify the semantic similarity dis-
tance distributions between the most central KG nodes and all
other nodes, and we capture the exponential form, both for mutu-
ally “common” and “irrelevant” concept pairs. These two distri-
butions appear to be universal across concepts. We also develop
an index formed by the number of new nodes introduced by a
newly added manuscript and the citations it receives in the future
that can identify in a unique way its innovative or controversial
character. Finally, we investigate the SP between distinct popular
nodes/concepts in the network, and we investigate its temporal
evolution. We identify a constitutive exponential law that charac-
terizes the temporal evolution of internodal SPs, and through

this pathway, we develop a predictive tool for future interweaving
of interdisciplinary research topics.

2. Experimental Section

2.1. Knowledge-Graph Construction

2.1.1. GPT-3.5-Turbo

GPT-3.5-turbo[1] represents a significant evolution in the
Generative Pretrained Transformer series.[15,16] This model
was distinguished by its enhanced efficiency and scalability in
generating human-like text. The training process of GPT-3.5-
turbo involves unsupervised learning, where the model predicts
the next token in a sequence, followed by supervised fine-tuning
on specific tasks. Using reinforcement learning from human
feedback,[17] the model was fine-tuned to follow instructions.

2.1.2. Llama-2-7b-Chat-Hf

Llama-2-7b-chat-hf,[18] a product of Meta AI’s research, was
another advanced language model that excels in conversational
AI tasks. The architectural foundation of Llama-2-7b-chat-hf
was also based on the transformer model, benefiting from exten-
sive pretraining on conversational datasets.

2.1.3. Mixtral-8�7B-v0.1

Mixtral-8�7B-v0.1[19] was a state-of-the-art LLM developed by
Mistral AI. It was designed as a Sparse Mixture of Experts
(SMoE), utilizing an architecture where each layer contains
multiple experts, specifically eight feedforward blocks. During
inference, a router network selects two experts per layer to pro-
cess the input, making the model efficient and powerful.

We use abbreviations GPT, LLaMA2, and Mixtral to note the
above models. Additionally, we tested a fine-tuned version of
Mixtral on our data, which we label as Mixtral-FT. We developed
all the code using Python libraries, including OpenAI API and
open-source NLP libraries such as HuggingFace.[20]

We focus on the journal JNM, which includes in a self-
contained manner the evolution of research in the field of
nuclear materials over the two preceding decades. After down-
loading all the literature published in JNM from 2003 to 2022,
each article was split into chunks with 1,000 words for training.
The open-source models are fine-tuned for text reproduction task

Figure 1. An example of a) a generated knowledge graph and b) a word cloud from literature published in the Journal of Nuclear Materials.
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on the divided text. It is important to stress that the dialog tasks
for which the models have been pretrained include, for example,
text reproduction and question-answer pairs. Here we test a sim-
ple fine-tuning solution of such models on JNM content, which
does not cover question-answer. We then test transferrability
improvements to zero-shot KGs generation, a capability inher-
ited by their pretraining on instruction following but for which
the models are not specifically fine-tuned on in the context of this
work. After a first evaluation of performance metrics on the pre-
trained and fine-tuned LLaMA andMixtral models, selected mod-
els are implemented in KG generation from the provided
paragraph chunks. In the prompt (Figure A9), models are asked
to extract concepts in the text and describe connections between
those concepts. Detailed analysis of the resulting KGs allows us
to assess the usefulness of perplexity as a measure to estimate
both the model capability to reproduce the text and to extract
its essential components. For the GPT case, the perplexity could
not be computed due to the limited access to the model through
the API.

The text data was produced by using the Elsevier API. Elsevier
API is available under license for noncommercial and research
purposes (https://dev.elsevier.com/). Full texts can be accessed
from the Science Direct database upon a call through the API.
A variable number of papers was accessed in JNM from 2003
to 2022 (see Figure A1 of the Appendix), and they are sequentially
extracted into KGs per year.

2.2. Evaluation Metrics and Statistical Procedures

To assess both language-model fidelity and the faithfulness of
extracted KGs, we employ four complementary groups of
metrics, outlined below.

2.2.1. Language-Model Quality

Perplexity: Given a token sequence x1..T, the perplexity is defined
by

perplexity ≡
YT
t¼1

PLM xtjx<tð Þ�1

 !
1=T

(1)

where T is the total number of words, PLM is the probability
function of the language model. A lower value indicates higher
likelihood (and thus better fit) of the held-out JNM text. Perplexity
for GPT-3.5-turbo was unavailable because the OpenAI API does
not expose token-wise log-probs; for LLaMA-2 and Mixtral
variants, we compute it with the HuggingFace perplexity script
on the same 1,000-word chunks used during fine-tuning.

2.2.2. Knowledge-Graph Topology

Degree Distribution and Rank Plot: We treat each concept node as
unweighted and directed and compute the out-degree k. Rank–
degree plots were fitted with the discrete power-law P kð Þ ∝ k�γ

using Clauset’s MLE routine, revealing the expected scale-free
behavior for GPT-3.5.

SP Length: For every yearly KG, we calculate the unweighted,
directed SP between all reachable node pairs via Dijkstra’s
algorithm as implemented in NetworkX.[21]

Graph Spectrum: Real eigenvalues of the adjacencymatrix were
obtained with SciPy.[22] The multiplicity of low-modulus eigen-
values acts as a proxy for redundancy—pronounced spikes
denote simpler, more repetitive KGs.

2.2.3. Embedding-Space Semantics

We train a 200-dimensional word2vec model (skip-gram,
window= 5, min-count= 3) on the full JNM corpus. Euclidean
distances between the top-5 central nodes and every other node
produce bimodal histograms, each fitted with the sum of two
Gaussians (Equation (1) and Table 1). These fits separate mutu-
ally common from mutually irrelevant concept pairs.

2.2.4. Temporal Impact Indices

Innovation–Controversy Quadrant: For each manuscript we log (i)
the number of new nodes it adds to the cumulative KG and (ii)
citations accrued up to the 2024-12 Scopus snapshot. The scatter
is partitioned into four empirically chosen quadrants, enabling
rapid classification of a paper’s community impact.

Shortest-Path Decay Model: Let t be years since the two nodes
first become connected. We fit

SP tð Þ ¼ a exp �btð Þ þ c (2)

with ‘curve_fit’ (SciPy) over all node pairs whose manuscripts
jointly exceed 200 citations.

3. Results

3.1. LLM-Derived KGs

First, we investigate the perplexity of LLMs (see Equation (1)), a
standard measure for the characterization of their associated
uncertainty in the predictions. As seen in Figure 2, both
LLaMA and Mixtral models show lower perplexity values in their
fine-tuned states. However, the pretrained version of Mixtral
model seems already very close to its optimal fine-tuned state.

We investigate basic structural features of the final KGs, being
the cumulative product of years 2003–2022 (Figure 4). During
the production of KGs, the LLaMA-FTmodel was found not capa-
ble of reproducing meaningful KGs. The reason for such an out-
come should be matter of further investigation: while one could
argue it to be found in the fine-tuning procedure, which, as
explained above, does not focus on KGs generation, it was inter-
esting to notice how the fine-tuned Mixtral model succeeds in the

Table 1. Values of fitted parameters for GPT-3.5-turbo.

# A μ σ

1 156.21 300.30 0.97

2 135.66 320.55 22.01
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Figure 2. Article length in the dataset and perplexity of the utilized LLMs in this work: a) Token count distribution in processed text chunks and
b) Perplexity values of pretrained (left bars) and fine-tuned(right bars) models.

Figure 3. Biggest component of a GPT graphmade from a single paper and degree of centrality of the main nodes. The whole article graph is shown in the
lower-right inset.
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task. An example of generated KG with GPT model for a single
article from the database is shown in Figure 3, focusing on the
biggest graph component and the centrality degree of its nodes.
It was possible to notice how the model highlights and connects
physically meaningful concepts: the highest centrality belongs to
the most general concept of alloy, which then connects to more
specific experimental characterization techniques and materials
science concepts. Moreover, the smaller components of the graph
were distributed as small disconnected satellites, implying that the
model was capable of identifying a core structure in the article.

In the Appendix Figure A2–A6, we also report a detailed exam-
ple of progressive building of KGs from text. In Figure 4, the
degree distributions of the KGs display a power-law structure,
with GPT3.5 signifying a scale-free property. While Mixtral sig-
nificantly approaches the GPT baseline in both its pretrained and
fine-tuned versions, the LLaMAmodel stands as an outlier, show-
ing higher degree and rank, which implies higher number of
nodes and shorter paths in the generated KGs, signatures of pos-
sible worse building of connections. A similar shape in the path
lengths (Figure 4c) and Word2Vec space distances (Figure 4d)
histograms suggests that the constructed KGs are encoding
meaningful information.

3.2. Spectral Signatures of Redundancy in Extracted Graphs

We also investigate the graphs spectra from the different KGs,
another standard measure of network structure characterization
Figure 5. The presence of very pronounced peaks at a specific

Figure 4. Comparison of graphs from different LLMs: a) Degree rank plot, b) Degree histogram, c) Path lengths histogram, and d) Euclidean distances in
Word2Vec space histogram.

Figure 5. Graph Spectrum: histogram of real eigenvalues for GPT,
LlaMA2, Mixtral, and Mixtral-FT.
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small set of eigenvalues represents a signature of more redun-
dant and simple extracted graphs’ structures. The majority of
counts is found for the central eigenvalue 1, with LlaMA display-
ing the largest differences among the models, but a pattern
similarity is present in the comparison.

3.3. Estimation of the Publication Impact

Then, we proceed to identify predictive tools, based on these KGs.
For this purpose, we first focus on the most central nodes of the
graph and investigate the semantic similarity to all other nodes. In
Figure 6, we report an example of similarity analysis in word2vec

space with GPT, involving concepts which include: temperature
(a state parameter), irradiation (a process), hydrogen and tungsten
(chemistry-related terms), samples (a grouping concept, meaning
a more generic term). We do observe the expected vicinity of tem-
perature and irradiation, two strongly related though distinct con-
cepts. We also identify a highly universal structure close to the
node location, with exponential fits applicable to both small and
large Euclidean distances in the word2vec space from the node.
We fit the histograms with a functional form of the kind

f xð Þ ¼ A1 exp � x � μ1ð Þ2
2σ21

� �
þ A2 exp � x � μ2ð Þ2

2σ22

� �
(3)

and report the fit parameters in Table 1. Based on this characteri-
zation, one could identify “mutually common” and “mutually
irrelevant” concepts to describe the nodes that are either too close
or too distant from the reference node.

Forecasting research trends also requires the investigation of
the temporal evolution of the publication process, which is very
computationally expensive analysis. We here propose a detailed
example for GPT model only.

First, we investigate the effect of a new publication on the KG
structure by tracking the number of new nodes added in the
KG. By inspecting the number of new nodes as a function of
the number of citations received by the manuscript postpublica-
tion, a criterion to distinguish innovation from controversy in the
publication process can be proposed. In Figure 7, we identify
four naturally defined quadrants that characterize the
publications’ effect on the research literature: “Innovative
(C1)”,“Controversial (C2)”,“Standard (C3)”,“Incremental (C4)”.
It is clear that an increase of citations can turn C2 to C1, as well
as turn C3 to C4. Based on this analysis, one can identify pub-
lications with particular characteristics: 1) C1: “Early studies on
Cr-Coated Zircaloy-4 as enhanced accident-tolerant nuclear fuel
claddings for light water reactors”;[23] 2) C2: “Understanding of
electrochemical behaviors of niobium in molten LiCl–KCl eutec-
tic for pyrochemical decontamination process”;[24] 3) C3:
“Investigation of Zircaloy-fuel interaction in failed spent PWR
fuel using EPMA”.[25] 4) C4: “An insight into radiation resistance
of D019 Ti3Al intermetallics”.[26]

Figure 6. Histogram of Euclidean distances between 5 nodes with the high-
est degree centrality and every other node in the graph from GPT in
Word2Vec space. The curves can be modeled by a sum of 2 Gaussians
(black dashed line) according to the fitting function of Equation (3).

Figure 7. Proposed categorization of articles based on the comparison between the number of citations and effect on the size of the graph. “Innovative
(C1)”,“Controversial (C2)”,“Standard (C3)”,“Incremental (C4)”.
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In Appedix Figure A7, we report further analysis of the graphs’
properties with respect to the number of citations of the article
they are based on.

3.4. Temporal Convergence of Research Themes

Second, we investigate the distance of nodes in the KG network
space, as a function of time. Naturally, concepts that are mutually
distant in the KG are characterized by a large SP, as defined in
graph theory.[27] Such SPs decrease in time, due to the fact that

concepts are used together and intertwined through research
investigations. By investigating the nodes that are mentioned
by manuscripts whose sum of citations exceeds 200, the SP
between the nodes can be computed, if it exists, and its yearly
decrease (Figure 8) tracked. We find that a constitutive descrip-
tion of this decrease can be defined as the Equation (2) being t the
time measured in years since a path connecting two nodes is
created. The values of fitted parameters for the GPT case are
(a,b,c)=(5.07, 0.33, 0.36). In Figure 9, we report the decaying
behavior for a set of nodes couples that show the largest changes
in their SPs with time: these specific nodes are found to be of
crucial interest in the nuclear materials community.

By focusing on individual node pairs (Figure 10), it is clear that
this constitutive description can be used to predict the future
commonality of mutually nontrivial concepts, thus predicting
the “arrow of time” in this self-contained scientific field, as seen
in Table 2.

Based on this prototype approach, we can identify the time
when the research focus of the community will be on specific
topics, such as the investigation of residual stress in large He
bubbles (Table 2).

4. Discussion

In this work, we leverage the generalization ability of LLMs to
construct high-fidelity KGs from unstructured text. The quality
of the LLM is paramount; as shown in our comparative analysis,
superior models like GPT-3.5 generate KGs with a power-law
structure, suggesting the capture of meaningful, nonrandom
relationships between concepts. This structured representation
of domain knowledge is the essential substrate upon which
any meaningful analysis of novelty or future trends can be built.
The similarity in shape between the path length and word2vec
distance histograms further suggests that the constructed KGs
successfully encode meaningful information from the literature.

Figure 8. Decay of the SP between pairs of nodes with time progression,
SP(t), and the corresponding fitting function (red line) of Eqn. 2. The pixel
color in the heatmap is proportional to the number of examples with the
same path length after the same number of years. Nodes were selected by
summing the number of citations of papers that published them and
rejecting those under 200.

Figure 9. Biggest changes in the SP between pairs of nodes for GPT model.
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The framework provides a quantitative method for identifying
new concepts and assessing the nature of a publication’s impact.
By plotting the number of new nodes a paper introduces into
the KG against the citations it receives, we can classify publications
into distinct categories: “Innovative,” “Controversial,” “Standard,”
and “Incremental”. An “Innovative” publication, for example, is
defined by introducing many new nodes and receiving high cita-
tions, as shown in several examples such as Cr-Coated Zircaloy-4
fuel claddings. In contrast, a “Controversial” article might introduce
many new concepts but initially receive fewer citations. This classi-
fication scheme offers a scalablemethod to automatically flag poten-
tially transformative or debatable research upon its publication.

Our work provides the ability to forecast the evolution of the
research field itself. The analysis of the SP between concepts in

the KG network over time reveals the process of scientific integra-
tion, where disparate ideas are gradually connected through new
research. We discovered that this convergence is not random but
follows a constitutive exponential law, where the SP between two
connected concepts predictably decreases over time. This empiri-
cal observation was modeled as SP(t)= ae�btþ c as a predictive
mathematical tool. By applying this model, our framework can
forecast the year in which distinct research topics will merge into
a combined focus. As demonstrated in our results, we can project
that concepts like “residual stress” will become closely integrated
with “large bubbles,” “Uranium,” within a few years. This trans-
forms knowledge mining from a retrospective activity into a pro-
spective one. Instead of simply summarizing what is known, this
methodology allows researchers and funding agencies to antici-
pate and prioritize future interdisciplinary research areas, fulfill-
ing the role of a data-driven forecast for research trends.

By explicitly linking LLM-derived KG metrics to empirical meas-
ures of future impact, our discussion clarifies how the experimental
results empower new-knowledge mining. The structured indices
and dynamic graph analysis we present offer both descriptive insight
and actionable foresight, marking a significant advance in the auto-
mated discovery of emergent scientific concepts (Figure A8).

5. Conclusions

In conclusion, this work presents a framework for understanding
conceptual development in scientific literature, as well as making
predictions of future research interests. By using the embedding
space-defined concepts of mutually “common” and “unrelated”
concepts in LLM-constructed KGs, we identify a constitutive law
for the relational aspect of distinct concepts in time, as their SPs
decrease. We believe that refinements of this approach can lead
to groundbreaking predictions of future research, analogous to
long-term weather forecasts that are routine nowadays, but in
the semantic space.

Figure 10. Approximation of shortening distance between pairs of nodes
with time progression. Approximation, in red, starts at the point in time
the pair is first connected in the graph and at the same distance. From left
to right and top to bottom: sample; thermal expansion; cladding; scan-
ning; electron microscopy; dislocations; oxide layer; corrosion; oxide; clad-
ding; tests; error; steel; cracks; heat treatment; toughness; zirconium
alloys; irradiated; and SEM observations.

Table 2. Projected year of combined focus for pairs of nodes and their SP
in 2020.

Node 1 Node 2 SP Projected year

Large bubbles Residual stress 4 2023

Residual stress Uranium 3 2023

Displacement dose Residual stress 5 2025

Residual stress Solution 3 2023

Annihilation Residual stress 3 2023

Fuel rods Residual stress 3 2023

Formation Residual stress 4 2023

Grains Residual stress 2 2023

Radiation damage Residual stress 3 2023

History Residual stress 4 2023

Oxide layer Residual stress 3 2023

Residual stress SIA clusters 4 2023

Database Residual stress 3 2023

Point defects Residual stress 2 2023

Oxide Residual stress 3 2023
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Appendix

Figure A2. First step of building a graph.

Figure A1. Number of articles per year considered from the Journal of Nuclear Materials.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 2401124 2401124 (9 of 17) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202401124 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [29/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure A3. Second step of building a graph.
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Figure A4. Third step of building a graph.
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Figure A5. Fourth step of building a graph.
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Figure A6. Fifth step of building a graph.
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Figure A7. Impact of the graph vs citations of papers from different LLMs. a) Number of new nodes by the paper versus number of its citation.
b) Number of new edges introduction by the paper versus number of its citation. c) Number of new nodes versus new edges introduction by
the article.
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Figure A9. The prompt used to generate KGs from literature.

Figure A8. Node appearance frequency in literature by year. Red triangles
mark the year of publication of the most cited article mentioning each
node with the number equal to the number of citations of that article
to date.
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