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Nearly exact solution for coupled continuum/MD fluid simulation
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Abstract. A general statistical approach is described to couple the continuum with molecular dynamics in fluid
simulation. Arbitrary thermodynamic field boundary conditions can be imposed on an MD system while minimally
disturbing the particle dynamics of the system. And by acting away from the region of interest through a feedback
control mechanism, across a buffer zone where the disturbed dynamics are allowed to relax, we can eliminate
that disturbance entirely. The field estimator, based on maximum likelihood inference, serves as the detector of
the control loop, which infers smooth instantaneous fields from the particle data. The optimal particle controller,
defined by an implicit relation, can be proved mathematically to give the correct distribution with least disturbance
to the dynamics. A control algorithm compares the estimated current fields with the desired fields at the boundary
and modifies the action of the particle controller far way, until they eventually agree. This method, combined
with a continuum code in a Schwarz iterative domain-decomposition formalism, provides a mutually consistent
solution for steady-state problems, as particles in the MD region of interest have no way to tell any difference from
reality. Finally, we explain the importance of using a higher order single-particle distribution function, in light of
the Chapman–Enskog development for shear flow.
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1. Introduction

Molecular dynamics (MD) plays a unique role in the simulation of fluids by virtue of its
ability to offer insights into atomic-level structure and dynamics that cannot be obtained from
continuum calculations. Because only a microscopic region of the fluid can be studied in
this manner, there is considerable interest to develop hybrid atomistic-continuum methods.
Though this problem has been well recognized [1], there still appears to be no completely
satisfactory solution.

Two notable attempts have been made recently to rectify this situation, both invoking the
use of an overlapping region but differing in how the molecular and continuum descriptions
are to be made compatible. O’Connell and Thompson [2] proposed to constrain the dynamics
of atoms in the hybrid layer between the MD and continuum regions to ensure continuity of
property averages across the coupling region. Hadjiconstantinou and Patera [3] cast their for-
mulation in the framework of the Alternating Schwarz method [4, 5] and treated the matching
in terms of refining the boundary conditions imposed on each of the overlapping subdomains
through an iterative process (see Fig. 1).

Our approach [6, 7] is also based on the Alternating Schwarz method, but paying more
attention to the microscopic physics. In order to iterate between continuum and MD solutions,
one needs (a) to infer the macroscopic fields that accurately represent the particle results of
an MD simulation, to be plugged into a continuum solver as the boundary condition (BC) and
(b) to perform the inverse, i.e., make sure that particles in an MD simulation do correspond to
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Figure 1. Alternating Schwarz formalism to get a joint solution in two subdomains handled by different solvers.
The atomistic subdomain will be treated by MD simulation, while the other subdomain will be treated by an
appropriate continuum solver. In the iteration, two kinds of boundary condition (BC) coupling methods are needed:
(a) MD result→ continuum BC, (b) continuum result→MD BC.

a set of prescribed macroscopic fields at the boundary, and that is achieved at a cost of as little
artificial disturbance to the particle dynamics as possible.

A method for (a) has been developed in our first paper [6] in the form of an algorithm
called the thermodynamic field estimator (TFE). A method for (b) was briefly described in our
second paper [7], and will be reviewed in Sections 2 and 3. It is composed of two stages. In the
first stage, we define a particle velocity transformation called the optimal particle controller
(OPC), to be imposed on the boundary of the MD sub-domain,∂C, in order to achieve the
desired field BC on∂C. We regard this particular transformation as optimal in the sense that
the resulting artificial disturbance to the particle dynamics, as measured in terms of the squared
difference in the particle velocities before and after the transformation, is minimal. In the
second stage, we say that if one is willing to pay an extra price computationally and not
directly act on∂C itself, but on an action regionA separated from∂C by a buffer zoneB,
then the particle dynamics will be fully restored at∂C. Meanwhile one can still impose the
desired BC on∂C using a feedback-control mechanism, by modifying the actions inA. This
is what we call the extended boundary condition (EBC), which we believe gives an exact
solution to the problem of (b). Combining (a) and (b) in the Alternating Schwarz formalism
(Fig. 1), one could obtain exact unified solution for most steady-state fluid problems.

In Section 4, we explain the significance of adopting a more accurate single-particle distri-
bution function, other than the lowest-order local Maxwellian distribution, that is especially
critical when the direct OPC (stage one) method is used to impose the BC in (b). Referring to
the Chapman–Enskog development in kinetic theory, we work out an approximate solution to
solve the most outstanding problems.

2. Optimal Particle Controller (OPC)

The theoretical challenge to linking continuum with MD is that the two descriptions deal with
different degrees of freedom. The continuum description deals with fields such as the density
field ρ(x), velocity fieldv̄(x) and the temperature fieldT (x), while MD deals with individual
particles, their positionsxi and velocitiesvi . And they are also different in evolution equations:
the fields evolve by a set of partial differential equations like the Navier–Stokes equation,
while the particles evolve by a many-body Newton’s equation. The bridge linking the two, we
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Figure 2. Given that an incoming sequence{X} (circles) satisfies a current distributionf (X), but one would like
to change{X} to {Y } (dots) such thatY satisfies the desired distributiong(Y ), whatT : X → Y transformation
should one use? Note that the average difference between circles and dots represents the magnitude of the artificial
action one applies onto the atoms.

think [3, 6, 7, 9], should be the single-particle distribution function

dP = f (x, v|ρ(x), T (x), v̄(x)) dxdv

≈ ρ(x)dx
(2πT (x))3/2

exp

(
−|v− v̄(x)|2

2T (x)

)
dv+ f (2)dxdv, (1)

a probability distribution in{xi , vi} parameterized by the smooth fieldsρ(x), v̄(x), T (x). f (2)

denotes the second-order correction to the leading-order local Maxwellian distribution when
the fields have gradients. For a coupling scheme to work, Equation 1 must be true in the
overlap region, i.e.,ρ(x), v̄(x), T (x) must be well defined in the sense of Equation 1 and
having small gradients, because otherwise it makes no sense to do coupling in the first place.
Both solvers in Fig. 1 should be valid in the overlap region, and the Navier–Stokes equation
can be derived from the particle physics in the Chapman–Enskog development [9], assuming
Equation 1.

In a previous paper [6] we have shown how to infer the macroscopic fields in an MD
region of interestC from the current particle data, using a technique called thermodynamic
field estimator (TFE). Now, suppose one has inferred the current fields to beρ ′(x), T ′(x), v̄′(x)
on∂C using TFE, but actually wants the fields to beρ(x), T (x), v̄(x), how should one modify
the particle coordinates such that the desired distribution is achieved? That is, say there is
a random variable sequence{Xn} satisfying distributionf (X), but we want them to satisfy
another distributiong, so we begin to replaceXn’s by Yn’s such that{Yn} will satisfy g(Y ),
what should be the optimalT : Xn→ Yn transformation?

We propose the criterion for optimality to be the minimization of

B =
∑
n

|vaft
n − vbef

n |2, (2)
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wherevbef
n andvaft

n are the velocities of thenth particle before and after theT transformation,
on the constraint thatvaft

n now satisfy the desired single-particle distribution described by fields
ρ(x), T (x), v̄(x). T is then called the optimal particle controller (OPC). One may choose to
operateT in a finite-volume region outside ofC, or just at a certain boundary such as∂C,
which are then called bulk or boundary OPC, respectively. The subtlety of boundary OPC
involving conditional probability was already discussed in a previous paper [7].

We believe that, in general, a unique OPC exists for a given problem. Especially, we
show that for one-dimensional or decoupled multi-dimensional (factorizable) distributions,
the following transformation is OPC,

X→ Y :
∫ X

−∞
f (ξ)dξ =

∫ Y

−∞
g(ξ)dξ, (3)

where one solves the implicit equation forY , given eachX. It can be checked thatY indeed
conforms to distributiong if the input random variableX conforms tof . The proof that
Equation 3 is OPC in 1D with discussions on general 3D boundary OPC is to be given in our
next paper [8].

3. Extended boundary condition

In Section 2 a method was proposed to impose the field boundary condition in an MD sim-
ulation that results in least disturbance to the particle dynamics in the sense of Equation 2.
Nevertheless the disturbance still exists for particles in the skin region near the boundary,
which can be shown to be proportional to the rate of dissipation in the system. In this section
we will formulate a procedure which eliminates that disturbance entirely at the specific bound-
ary and in its interior, thus providing an exact solution to the problem. Since any artificial
action necessarily alters the particle dynamics in the vicinity where it is imposed, the best one
can do is to act some distance away from the intended boundary and cause the macroscopic
field at the boundary to be what is prescribed.

This can be done using a three-region approach which we will call the extended boundary
condition (EBC), shown in Fig. 3, and through a feedback control mechanism. The physical
region of interest,C (core), is surrounded by a buffer zoneB. Artificial actions are applied
in an outer MD regionA which is sufficiently separated fromC, its aim being to induce the
prescribed fields on the core boundary∂C. Due to molecular chaos in fluids, short-wavelength
perturbations on particle dynamics will decay over a distance of a few collisional mean free
paths, thus setting a lower limit onA–C separation. Only the hydrodynamic variables which
correspond to the three collisional invariants would still have influence on∂C. The action in
A is in general a matter of choice, but we use the boundary OPC introduced in Section 2
because it minimizes the artificial disturbance, thereforeB could be as thin as possible. The
thermodynamic field estimator (TFE) serves as the detector of the control loop, inferring
current fields on∂C based on particle data from the entireC region. A control algorithm
compares the inferred current field with the prescribed field on∂C, and sends instructions to
the particle controller.

Note that althoughA andB are discrete-particle regions governed by molecular dynamics,
as the coreC, they are not real, physical domains and do not appear in the Schwarz domain
decomposition diagram in Fig. 1. They are only numerical constructs in the MD sub-step of
the iteration, to ensure that the physical region of interest,C, has the correct field boundary
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Figure 3. Schematic diagram of the extended boundary condition (EBC), which incorporates a field estimator, a
particle controller and a feedback control algorithm.

conditions and evolves according to natural particle dynamics. Properly implemented, it is a
powerful tool for studying fluid systems because a fluid atom inC has no way to tellany
difference from reality.

Compared to directly applying OPC on∂C without a buffer zone, EBC has two advantages:
(1) It generates practically no disturbance to the core region. (2) We do not need to worry about
f (2) and higher-order terms, which will be generated automatically at∂C. The drawback is
that for general BC, multi-variable feedback control is needed, which is quite a challenging
task.

4. Improved single-particle distribution function

Our discussion in Section 2 is general with respect to the single-particle distribution function
f . That is, we only assumef exists, and its leading order is the local Maxwellian distribution
f (0), without insisting on a certain form off (2). Indeed, it is all right to just usef (0) if EBC is
used to impose the continuum BC, sincef (2) and higher-order terms will be present naturally
at ∂C. But, if one directly applies OPC on∂C as BC, one should be more careful aboutf (2)

to at least ensure the continuity of stress and heat current across∂C. An example is shown
in Fig. 4, where direct boundary OPC is imposed on the center plane to achieve a shear flow
speed of 0.3, in an MD simulation of 5184 LJ6-12 atoms at a reduced temperature of 1.1,
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Figure 4. Result of applying direct boundary OPC with and withoutf (2) in a simple shear flow scenario.

with solid walls on both sides1. However, if one just usesf (0) to derive and implement the
boundary OPC, the flow speed will not reach the desired value but actually drop to 0.25.

A simple mechanical reason for this behavior is thatf (0), the local Maxwellian distribution,
does not carry any shear stress (or heat current) since the net flux of momentum (or energy)
across any differential area vanishes whenever the velocity distribution is isotropic. On the
other hand, shear stress andf (2) do exist in the fluid bulk in Fig. 4, and atoms near the
center plane, newly assigned the low-order distributionf (0), have to satisfy stress continuity
by sacrificing parts of their own inertia. Thusf (2) is achieved by atoms leaving the center
plane into the bulk, at the expense ofV̄x.

The common description onf (2) is the Chapman–Enskog development [9] in kinetic the-
ory. Although that theory is meant for gases, we nevertheless use it for liquids. The big
difference between a liquid and a gas is that the interatomic interaction is a major contributor
to fluxes (shear stress, heat current) in a liquid, whereas it is relatively less important in a gas.
Thus in liquids, spatial correlation likeg(r) should contribute roughly the same to fluxes as
velocity distributionf (2). However, we are only able to modifyf (2), a single-particle rather
than a two-particle distribution, in our present formalism. The plausibility argument for doing
so would be a mechanical one: so long as we satisfy flux continuity at the interface by assign-
ing enough flux tof (2), the internal conversion betweenf (2) andg(r) can be accomplished
in a relatively ‘peaceful’ manner in the skin region near the boundary without causing great
error to other properties, unlike the prior scenario where not enough flux is assigned tof (2),
and the fluids have to pay for it by themselves.

1This setup can be used to study the Couette flow with continuum-atomistic coupling, as part (b) of the iteration
in Fig. 1.
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In the Chapman–Enskog development, the velocity distribution is expanded as

f = ρ(x)
(2πT (x))3/2

exp
(
−|v− v̄(x)|2

2T (x)

)
(1+ φ(2))+ ..., (4)

which is then plugged into the Boltzmann equation. It happens that there exists an exact
solution for a so-called quasi-Maxwell model [9], whereφ(2) turns out to be a summation
of several terms,

φ(2) = φ(2)shear+ φ(2)heat+ ... (5)

For the purpose of this discussion we will only consider the shear flow term,

φ
(2)
shear=

−µ
ρ(x)T (x)2

(v− v̄(x))TD(x)(v− v̄(x)), (6)

where

Dαβ(x) = 1

2

(
∂v̄α

∂xβ
+ ∂v̄β
∂xα

)
(7)

is the fluid strain rate tensor, and

µ = −(2T )
1/2

2σλ02
(8)

is the fluid shear viscosity, expressed in terms of the collisional cross-sectionσ and some
eigenvalueλ02.

We then approximate 1+ φ(2)shear in Equation 4 by exp(φ(2)shear), a common maneuver in
perturbation expansion, to show that the only significant effect ofφ

(2)
shearis to distort the velocity

distributionf from an isotropic Gaussian distributionf (0) to a tilted Gaussian distribution. In
the simple shear flow scenario depicted in Fig. 4, the principal axes of the tilted Gaussian are
{(vx + vz)/

√
2, vy, (vx − vz)/

√
2}, as

(
vx − v̄x(z), vy, vz

) ·
 1 0 0

0 1 0
0 0 1

 −→
 1 0 γ

0 1 0
γ 0 1

 ·
 vx − v̄x(z)

vy
vz

 , (9)

in the exponent, with the off-diagonal coupling coefficientγ (x) defined to be

γ (x) ≡ τxz(x)
ρT

. (10)

The merit of Equation 10 is that it is readily computable on the fly in a coupled continuum-
MD simulation, without any extra parameters. And one can easily check that by including off-
diagonal coupling in Equation 4, the stress carried byf is exactlyτxz(x), which is necessary
for achieving mechanical equilibrium. To includeγ (x) in the bulk OPC is very simple:f
is still factorizable in the{(vx + vz)/

√
2, vy, (vx − vz)/

√
2} frame, so Equation 3 can be

readily used. The boundary particle controller is a lot more complicated because the boundary
velocity distribution is not a Gaussian [7] and cannot be factorized. It is not clear yet what
transformation is the OPC in that case. Some preliminary tests suggest that by giving each
atom which hits thez-plane an extra−2γ (x)vz in vx , in addition to the boundary OPC as if
f (2) is not present, the results can be satisfactory, as shown in Fig. 4.
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Finally, we mention that in the spirit of the Chapman–Enskog expansion, it is all right
to usef (0) in the TFE to estimate the current fieldsρ(x), T (x), v̄(x), calculate their spatial
gradients, and then impose directf (0)+f (2) OPC using the Chapman–Enskogf (2) with those
gradients. It achieves the same order of accuracy as initially usingf (0) + f (2) TFE.
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