~

QX){Cijrme — Urimij + Ui + Ui }
1
Q(X){Ecijkl(Ukl + Ui) — Ui + UirTij + mieUsic }

12

= UXNHCijmUn — Uiy + Ui Thj + TinUsi } (2.269)
So
9 = QUX) B Ui + ... (2.270)
with
Bl = Cijrt — Tijor + Tjudik + Tudjk (2.271)

Similar to the arguments in symmetric deformation space, stability behavior in

general deformation space is governed by
A* = (B*+ (B)")/2 (2.272)
When
det|A*| = 0 (2.273)

for the first time, the system become unstable. Note that A* is a 9 x 9 matrix.
As an observation, when a configuration is stable in general deformation space,
i.e., none of the eigenvalues of A* are negative, the configuration would be stable in

all deformation spaces.

2.4.2 Deformation of a Periodic Simulation Cell
Basic setup
We will simulate particle systems that interact via short-ranged potentials of cutoft

radius re,t. Given any radial function w(r), this can be done by redefining a w(r),

W(r) — w(rent) — W (Teut) (1 — Tewt), 0 <1 < rey
wiy = | 0 = 0l 0 = C e
0, T Z Tcut
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which? ensures continuity in both energy and forces as a particle crosses r = 7.y. In
the case of multiple-component systems, r., is generalized to a matrix rs‘uﬁt, where
a = c(i),f = c(j) are the chemical types of atoms 4,j. As a convention, i suggests
a “host” atom at the “frame origin”, whereas j suggests a “client” atom. We then

define
ij

Quantities such as the pair force f;; = (—f/’ (Tij)) x;; are understood as the force on
J due to i. f;; should be parallel to x;; when the potential is repulsive, a mnemonic
device.

The supercell is a parallelepiped, which can be tiled in space indefinitely if desired.

The three edges are row vectors
a; = (Hyy, Hip, Hi3), ay = (Hai, Hyp, Ha3), as = (Hzsy, Hsp, Hsg), (2.276)

in Cartesian coordinates, with H,, forming a 3x 3 matrix H. * The position of particle

i is specified by a row vector, s; = (81, Si2, Si3), With s;,’s usually satisfying
0<s, <1, p=1.3, (2.277)
and the Cartesian coordinate of this particle, x;, also a row vector, is
X; = Spa; + Spas + s;zaz = s;H, (2.278)

where s;, has the geometrical interpretation of the fraction of the puth edge to build

2An alternative is to define w(r) = w(r)exp(rs/(r — reut)) which has all derivatives continu-
ous at r = Teus. Another efficient scheme for the LJ6-12 potential is w(r) = 45[(”)12 - (5)6 —+

T T

18 12 6 12 6
(2 (ri) — (T:’t) ) (f) -3 (L) +2 ( g ) ], which expands in r® instead of r, and avoids

o Tcut Tcut

using sqrt or exp.

3This labelling scheme is literally followed in both my C (1 — 3 becomes 0 —2) and Fortran source
codes, irrespective of internal storage arrangements. That is, I may sacrifice efficiency for clarity
in Fortran (where columns are stored contiguously), to achieve easy-to-read correspondence with C
source codes, where this arrangement s computationally more efficient for edge vector operations.
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X;.

The volume of the supercell is

Q = |det H| = |ay - (az x ag)| > 0. (2.279)

The inverse of the H matrix B = H™! satisfies

I1=HB = BH. (2.280)
If we define row vectors
by = (Bi1, Ba1, B31), by = (Bia, B, Bsa), bz = (Bis, Bas, Bss), (2.281)
then (2.280) is equivalent to
a;-b; = abl =4;;. (2.282)

Since b; is perpendicular to both as; and ag, it must be collinear with the normal

direction n of the as/az plane: by = |by|n. And so by (2.282),
1= a - b1 =aj - (|b1‘1’l) = ]bl\(al : 1’1). (2283)

But |a; - n| is nothing other than the thickness of the supercell along the a; edge.
Therefore, the thicknesses (distances between two parallel surfaces) of the supercell
are,

1 1 1

di=— dy= ) dy= —. 2,284
ol BT BT by (2.284)

The general design of the simulation should allow for deformation of H that in-
cludes rotational components, even though one may choose to impose the constraint
of symmetric deformation later, whose dynamics is derived in section 2.4.2. In gen-
eral one should use the Lagrangian strain 7, a true rank-2 tensor under coordinate

transformation, to measure the deformation of a MD supercell as it is unlikely to be

89



infinitesimal. To define 77, one needs a reference Hy of a previous time, with xq = sHj
and dxg = (ds)Hy, and then imagine that with s and ds fixed, dx, is transformed to
dx = (ds)H, under Hy — H = HK.

The Lagrangian strain is defined by the change in the differential line length,
dI* = dxdx" = dxo(I+ 2n)dxg, (2.285)
where by plugging in dx = (ds)H = (dxo)Hy 'H = (dxo)K, 7 is seen to be

(Hy'HH'H," - T) = ; (KK" -T1). (2.286)

I3
N —

Because 7 is a symmetric matrix, it always has three mutually orthogonal eigen-

directions x1n7 = X171, X9 = X0, X3 = X3n3. Along those directions, the line

lengths are changed by factors /1 + 211, /14 21y, /14 213, which achieve ex-
trema among all line directions. Thus, as long as 7y, 7o and n3 oscillate between

[—Mbound; Mhound] for some chosen M,oung, any line segment at Hy can be lengthened by

no more than /1 + 29young and shortened by no less than /1 — 2nyoung. That is, if

we define length measure
L(As,H) = VvAsHHT As™| (2.287)
then so long as 1, 72, N3 oscillate between [Nmin, Mmax|, there is

31+ 20min L(As, Hy) < L(As,H) < /14 2nmax L(As, Hy). (2.288)

One can use the above result to define a strain session, which begins with Hy = H
and during which no line segment is allowed to shrink by less than a threshold f. <1,

compared to its length at Hy. This is equivalent to requiring that,

f= \/1 + 2 (min(ny,m2,m3)) < fe (2.289)

Whenever this condition is violated, the session terminates and a new session starts
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with the current H as the new Hy. In my implementation of the O(N) molecular
dynamics program, this is associated with a repartitioning of the supercell into equal-
size bins, and is called a strain-induced bin repartitioning.

The purpose of a bin partition and a strain session is the following: it can be a
very demanding task to determine if atoms 4,5 are within r or not, for all possible

ij combinations. * Formally, this requires checking

rij = L(Asy, H) < rews. (2.290)

Because s;, s; and H are mobile — they differ from step to step, it appears that we
have to do this at each step. This O(N?) complexity would indeed be the case but
for the observation that, in most MD, MC and static minimization applications, s;’s
and H often change only a little from the previous step. Therefore, once we ensured
that (2.290) hold at some previous step, we can devise a sufficient condition to test
whether (2.290) still must hold now or not, at a much smaller cost. Only when this
sufficient condition breaks down, which is taken to be less frequent, do we resort to a
more complicated search and check in the fashion of (2.290).

My implementation of the above idea is as follows: I associate each s; with a
semi-mobile reduced coordinate s{ called atom i’s anchor. At each step, I check if
L(s; —s?,H), that is, the current distance between ¢ and its anchor, is greater than
a certain rqug > 794 or not. If it is not, then s¢ does not change; if it is, then I

redefine s¢ =s; at this step, which is called atom i’s flash incident. At ’s flash, atom

41t is often more efficient to count pairs if the potential function allows for easy use of such “half-
lists”, such as pair- or EAM potentials. In these scenarios we pick a unique “caretaker” among i and
j to store the information about the 7j-pair, that is, a particle’s “personal list” only keeps possible
pairs that are under its own care. For load-balancing it is best if the responsibilities are distributed
evenly among particles. We use a pseudo-random choice of “if i + j is odd and i > j, or if i + j is
even and i < j, then i is the caretaker; otherwise it is j.” As i > j is “uncorrelated” with whether
i+ j is even or odd, significant “load imbalance” is unlikely to occur even if the indices correlate
strongly with the atoms’ positions.
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i is required to update records ° of all atoms whose anchors satisfy

0
Teut + 27 qrig

7 (2.291)

L(S;l- — S?, Ho) < Tt =

Note that the distance is between anchors instead of atoms ¢, and the length is
measured by Hy, not the current H. (2.291) nominally takes O(N) work per flash,
but I accelerate it to O(1) per flash by partitioning the supercell into m; x mgy X mg
bins at the start of the session, whose thicknesses by Hy (see (2.284)) are required to

be greater than or equal to 7:

(Hy) dy(Ho) ds(Ho) _ (2.292)
- , . R s = ist- :

The bins deform with H and remains commensurate with it, that is, its s-partition
1/my, 1/mg, 1/m3 remains fixed during a strain session. Each bin keeps an updated
list” of all anchors inside. Then, if at the time of i’s flash two anchors are separated

by more than one bin, there would be

d\(Hy) do(Ho) ds(H
L(s§ — s}, Ho) > () - d(Ho) dsMo) - (2.203)
my mo ms

and they cannot possibly satisfy (2.291). Therefore we only need to test (2.291)
for anchors within adjacent 27 bins. To synchronize, all atoms flash at the start of a
strain session. From then on, atoms flash individually whenever L(s; —s% H) > rqg.
We see that to maintain anchor lists that captures all solutions to (2.291) among the
latest anchors, it takes only O(NN) work per step, and the pre-factor of which is also
small because flash events happen quite infrequently for a tolerably large 79,

The central claim of the scheme is that if j is not in 4’s anchor records (suppose

5Parts of the records may be stored in j’s if pairs are counted and j happens to be the caretaker
of the ij pair.

6s? ='s;, though.

"When atom i flashes, it also updates the bin-anchor list if necessary.

81f two anchors flash at the same step in a loop, the first flash may get it wrong — that is, missing
the second anchor, but the second flash will correct the mistake. The important thing here is to not
lose an interaction.
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i’s last flash is more recent than j’s), which was created some time ago in the strain
session, then r;; > 7oy The reason is that the current separation between the anchor
i and anchor j, L(s$ — s{, H), is greater than re. 4 27y, since by (2.288), (2.289)
and (2.291),

0
Teut T 27 Qi

o (2.294)

L(S? - S?,H) Z f ' L(S? - S?’HO) > f * Tist Z fc * TMistg = fc :
In fact, we see that the r;; > 7.y conclusion maintains if neither ¢ or j currently
drifts more than
f * Tist — Tcut

rain = o 2 T (2.295)

from respective anchors. Put it another way, when we design ry;s in (2.291), we take
into consideration both atom drifts and H shrinkage which both may bring 7j closer
than 7y, but since the current H shrinkage has not yet reached the designed critical
value, we can convert it to more leeway for the atom drifts.

For multi-component systems, we define

af 2 0
e = T“‘“} Lt (2.296)

where both f, and 73, are species-independent constants, and 79, can be thought
of as putting a lower bound on 74, so flash events cannot occur too frequently — a

self-protection mechanism. At each bin repartitioning, we would require

di(Hy) do(Hpy) d3(H
1 0), 2( 0), 3(Ho) > maxr’. (2.297)
ma Mo ms o,
And during the strain session, f > f., we have
A 045 o i @a _ Pa
Tgrift = min [mén <f rhstQ TCHt) : ngn (f rhstQ TCut>‘| : (2298)

a time- and species-dependent atom drift bound that controls whether to flash.
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