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Abstract

Atomistic modeling plays a critical role in advancing our understanding of microstructure evolution and mechanical
properties. We present progresses in the theory and computation of ideal strength, dislocations activation processes and
brittle fracture from the atomic perspective, in close connection with experiments and other levels of modeling. New
discoveries are often made in the “virtual atoms labs”. There, one has perfect control of the simulation conditions, and
the amount of detailed atomistic information is often breathtaking. Yet, this information can only be seen, utilized and
appreciated in full in light of experiments and models for other length/time-scales.
 2003 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Parallel to the development in solid-state phys-
ics, where computational physics has developed
into a respected branch of scientific investigation
after classical experiment and theory, atomistic
modeling and simulation has become a maturing
tool in materials science and particularly for the
investigation of the mechanical properties of
materials. Several developments in the recent past
have made the atomistic approach increasingly
more attractive:
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� Generic atomistic interaction models have now
largely been replaced by improved environ-
ment-dependent atomistic interaction models
and advanced embedding techniques which
allow progressively more subtle quantum mech-
anical effects to be handled. Besides providing
more realistic descriptions of the atomic interac-
tion of pure metals, these techniques now allow
the material-specific simulation of semiconduc-
tor systems, intermetallics and even first steps
towards chemically complex systems.

� Studies of reasonably sized systems for the
properties of individual defects and for the inter-
actions between small numbers of defects can
today be performed very systematically on
desktop computers. Supercomputers have given
access to such studies on the basis of direct
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quantum mechanical methods and to the investi-
gation of large multi-million atom systems.

� Atomistic techniques are increasingly used as a
fundamental basis in multiscale modeling
approaches to materials behavior.

� Increasing interest in nanoscale systems and
phenomena has led to more interest in the atom-
istic processes determining the stability and per-
formance of small systems.

In this article, we will certainly not be able to
give an overview of all these developments and
particularly we will not be reviewing the technical
and methodological improvements. Instead we will
give a few examples on the different applications
of atomistic modeling techniques, in a few areas
which we think are representative. These mainly
fall in three categories. First, atomistic modeling
is now used for the systematic investigation of a
particular, often material-specific phenomenon.
Examples are the properties and the motion of
screw dislocations in body-centered cubic (BCC)
metals (Section 3), the structure and the properties
of the Kear–Wilsdorf lock in L12 alloys (Section
3), or the cleavage and the crack propagation direc-
tion anisotropy in silicon (Section 4). Second,
atomistic modeling is used for the exploratory
investigation of complex processes far away from
equilibrium. Examples are studies of the nanoind-
entation of metallic thin films (Section 2) or of the
development of the plastic zone at the tip of a crack
(Section 4). Third, atomistic modeling is now
increasingly applied to systematically study the
behavior of certain materials defects under pre-
cisely controlled loading or boundary conditions.
This knowledge is then often used as input to
defect-based larger scale simulations. Such studies
involve the dependence of dislocation velocity or
crack tip speed on driving force (Section 4) and
studies of the strength of dislocation junctions or
locks (Section 3).

2. Ideal strength and defect nucleation

As devices shrink to the nanoscale, the
material’s defect population starts to differ signifi-
cantly from that of the bulk, due to surface

annealing, change of source operating conditions,
different synthesis/processing routes, etc. As a
result of these and Weibull statistics, an enhance-
ment of low-temperature strength is usually
observed. If we follow the above tendency to its
limit by letting the bulk defect density approach
zero, what strength can the material reach? The
ideal strength of a material is defined to be the
maximal homogenous stress that a perfect crystal,
without structural or compositional defects, can
withstand. As such, it is the upper limit to the parti-
cular material’s strength. The theoretical notion of
ideal strength was established early in the last cen-
tury [1], but only recently—with the advancement
of high precision nanoscale instrumentations—do
researchers begin to quantitatively probe it. Along
with the experimental developments, first-prin-
ciples calculations and atomistic simulations play
a concurrent and critical role in discovering new
phenomena and elucidating the underlying mech-
anisms. Because the relevant phenomena’s length-
and time-scales now readily overlap in these
approaches, the great synergy between them will
make this area very exciting in the years to come.

Aside from the practical significances, the ideal
strength is also a very fundamental intrinsic
material trait much like the elastic constant, and
reflects deeply the strength and nature of the under-
lying chemical bonding [2]. If one thinks of the
elastic constant as a good reflection of the stiffness
of the bonds when they are distorted slightly, then
the ideal strength fundamentally characterizes the
bonds when they are stretched to the utmost, that
is, the old prime bonds are about to yield, and in
the case of shear deformation, new prime bonds
are about to form. The breaking and reformation
of bonds control the mobility of defects which in
turn largely controls the mechanical behavior, even
though this happens in a local and asynchronous
fashion in a defect, in contrast to the homogeneous
and synchronous fashion that bonds break and
reform in the ideal strength scenario. But it is pre-
cisely the simplicity in a concept or a calculation
that imparts value. This aspect of the ideal strength
should be emphasized.

Lastly, if the ideal strength is considered to be
a static quantity, then mechanical instability would
be its dynamic manifestation. Because the phonon
modes form a complete basis for all atomic motion
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in a perfect crystal at 0 K [3], stability of the
phonon modes is a necessary and sufficient con-
dition for the mechanical stability of the perfect
crystal at 0 K. In monatomic solids, the phonon
modes that first go unstable are usually long elastic
waves, in which case we have an elastic instability.
In binary compounds and more complicated crys-
tals, phonons other than the elastic waves may
become unstable first [4]. This first-principles
analysis can be applied to inhomogeneous systems
as well: when the translational symmetry is broken
by lattice defects, the normal modes can no longer
be labeled by a wave vector k, but modal analysis
is still rigorously correct at 0 K and there are
efficient methods to probe the local soft modes [5].
In any case, the initiation of the instability is con-
trolled by linear eigenvalue (bifurcation) analysis;
the final products of the instability are atomistic
defects such as microcracks, dislocation loops,
twins or martensite embryos. What happens in
between, what controls certain defects to be
nucleated, and how much one can predict based on
the linear instability eigenvectors are the questions
that can be addressed using atomistic simulations.

2.1. Linear stability analysis

The Helmholtz free energy of a representative
volume element (RVE) can be expanded as [6]

F(Y) � F(X) � �(X)(tij(X)hij (2.1)

� Cijkl(X)hijhkl /2 � ···)

where � is the volume, t is the stress and C is the
isothermal elastic constant at state X, and h is the
Lagrangian strain of a perturbed state Y with
respect to X, defined as

hij � (ui,j � uj,i � uk,iuk,j) /2 (2.2)

in which u � y�x is the displacement, and x�X,
y�Y track the same material point. Here, (2.1),
(2.2) prescribe a homogeneously strained volume
element, so ui,j is a constant. The second-order
term uk,iuk,j is necessary because otherwise the
F(RX) = F(X) rotational invariance would only be
true to the first-order in rotational matrix R;
specifically, the invariance would be broken at the
second-order—and linear stability analysis is
solely concerned with the second-order terms.

Now imagine that a long elastic wave is excited
in the system, u(x) = weik·x. By translational invari-
ance of the perfect crystal this excitation is deco-
upled from excitations at other wavelengths. Note
that u(x) is a true variational degree of freedom,
but h(x) is not, so even though in (2.1), the second-
order term in h is scaled by C, the stability is not
governed by C. Assuming the change in total free
energy is the sum of free energy changes in indi-
vidual RVEs, we have,

�F � �dx(tijhij(x) � Cijklhij(x)hkl(x) /2 (2.3)

� ···)

The second-order �F in u(x) is then, by plugging
(2.2) into (2.3),

�(2)F � �dx(tjldik � Cijkl)ui,j(x)uk,l(x) / 2 (2.4)

which, in order to maintain positive definiteness,
must satisfy,

�(w,k) � (Cijklwiwk � tjl�w�2)kjkl � 0 (2.5)

for all polarization vectors w and wave vectors k.
As linear long waves are considered here, |w| and
|k| are immaterial, and we can take |w| = 1 and
|k| = 1. �(w, k) divided by the mass density and
extremized under the constraint |w| = 1 is in fact
the eigenfrequency squared of the long-wavelength
phonon. �min � min�w� = 1,�k� = 1�(w,k) then indi-
cates the softest elastic wave(s) existing in the
crystal under a particular strain (slope of the softest
branch of the phonon dispersion curves near the �-
point is proportional to √�min). When �min changes
from positive to negative, certain elastic wave(s)
changes from oscillatory to exponentially growing
in amplitude with time. �min = 0 then marks the
change in stability of a homogeneous crystal. If
�min = 0 is achieved simultaneously by (wa,ka),
a = 1…M, which are mutually linearly independent
in 6-D vector space, we say the elastic instability
is M-fold degenerate.

The above analysis is based on a homogeneous,
albeit highly strained, perfect crystal. If tjl and
Cijkl vary slowly spatially compared to the range
of the interatomic force constants, we may extend
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the analysis to a perfect crystal under an inhomo-
geneous strain field. By interpreting �min as a mea-
sure of micro-stiffness that varies locally, insta-
bility is predicted at the location where �min

vanishes [7]. Direct atomistic simulations indicate
that �min = 0 accurately predicts the time and
locations of dislocation dipole nucleation in 2-D
bubble raft indentation simulations [8].

Before taking a closer look at the instability in
the next section, it suffices to say here that the
character of wmin and kmin that achieves �min = 0
is an important predictor of the type of atomistic
defect to develop. If wmin is more perpendicular
than parallel to kmin, then the unstable wave is
transverse, i.e. it is a soft shear wave. In that case
(see Fig. 1), it is very likely that a dislocation loop
or a twin embryo would be nucleated; furthermore,
kmin is likely to be aligned with the slip plane nor-
mal n, and wmin is likely to be nearly parallel to
the (partial) Burgers vector b. If however wmin is
more parallel than perpendicular to kmin, then the
unstable wave is longitudinal, and a microcrack is
likely to result, with wmin and kmin nearly parallel
to the crack plane normal n. This relationship is
merely approximate, though, since wmin is just the
instantaneous tangent at the inflection point along
the transition path, and not the vector directly con-
necting the initial and final states. Fig. 1 illustrates
the so-called shear activation volume effect, which
belongs to the class of phenomena just described.

Fig. 1. This illustrates the shear activation volume effect. wmin

may have a small angle with the final Burgers vector b, which
connects two minima on the energy landscape, since wmin is
only the instantaneous tangent direction along the transition
path at the inflection point.

Imagine rows of hard-sphere atoms arranged in a
close-packed triangular lattice, and a shear stress
is applied that will drive the top row atoms to slide
to the left. When the stress is gradually increased
to a critical level that the top row hard spheres are
just about to “ roll over” , the instantaneous rolling
direction is wmin. But wmin is not equal to the final
overall displacement b, which is the path integral
of instantaneous rolling tangents, including those
before and after the instability. In plain words,
there needs to be some volume expansion before
the shear instability, and shrinkage after the insta-
bility. In a 2-D bubble raft indentation simulation,
there is less than 1° angle difference between kmin

and the final slip plane (which is the close-packed
plane) normal n, but there is about 12° difference
between wmin and b, for the dislocation dipoles
nucleated [8].

Discussion about the boundary condition of the
variational procedure has been postponed until
now, because it is a subtle issue. Certainly, it is
straightforward to see that in (2.3), if the system
is under Born-von Karman periodic boundary con-
dition (PBC), or fixed displacement condition
(u�∂� = 0), then the above second-order variational
procedure is correct. Yet in the real world, the
material is often directly coupled to external load-
ing. If external work �W is elicited by u(x), then
we need to add �W to �F to obtain �G, and
second-order contribution from �W should in gen-
eral be incorporated. This complicates the problem
because we often do not know enough about the
loading apparatus to know what the second-order
contribution from �W is [6]. Fortunately, in many
cases of inhomogeneous strain field this issue can
be avoided, for a soft spot �̃ develops inside the
sample—a region of negative �min—that is sur-
rounded by materials with positive �min, a “fi re-
wall” that isolates �̃ from direct external loading.
In such scenarios, the correct strategy for u(x) to
destabilize the system variationally is to be a
localized wave pack inside �̃, since it does not pay
to try u(x) 	 0 within the “fi rewall” . u(x) will then
have no access to the external work, and the
Helmholtz free energy analysis is correct.
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2.2. Homogeneous defect nucleation

The products of homogeneous nucleation are
atomistic defects. Yet, the analytical criterion
developed in the last section only deals with the
stability of long elastic, or continuum waves. How
does an unstable continuum wave evolve into
atomistic defects, which are regarded as singular-
ities at the continuum level? We propose the fol-
lowing four-stage process:

I Linear growth of the unstable elastic wave,
u(x,t) = wmineikmin·x�i√�mint, well described by the
continuum. The initiation of the linear instability
is controlled by �min 
 0. During this stage the
wave grows in amplitude but its shape (wave
form) maintains, as all linear waves do.

II When the wave amplitude grows to a certain
level, non-linear terms in the Hamiltonian start
to have an effect, which distort the wave form
to have an ever steepening front like sea waves
approaching the shore. But during this stage, the
continuum picture and the continuum Hamilton-
ian still work because the width of the steepen-
ing wave front is still much greater than atomic
lattice spacing.

III The wave front continues to steepen, to the
point that its width approaches atomic spacing.
Now we must transfer its description, at least
for the wave front part, from the continuum to
an atomistic (discrete) description. What then
develops is an atomistically sharp shock
front—which could either be a shear shock or
a longitudinal (sound) shock.

IV As the length scale of the wave front shrinks,
ruggedness of the atomistic potential energy
landscape becomes visible. The energy that has
been transported from the rest of the strained
material to the wave front now is dissipated
as the discrete atomic layers in the shock get
“dragged” over the crests and valleys of the
energy landscape, and is converted to heat.
Eventually, the shock is trapped and arrested in
a low-dimensional atomistic energy landscape.
The stationary shock is the nucleated defect. A
dislocation, for instance, is nothing other than
the bounding rim of a one-layer shear shock.

The above four-stage evolution of an unstable

elastic wave has been confirmed by direct molecu-
lar dynamics simulation. Fig. 2 shows a 2-D model
solid whose atoms interact via a Morse potential
with exponent 3.5. The supercell under PBC is ori-
ented such that its x-axis is along the slip plane
normal n and y-axis is along the Burgers vector b.
The cell dimension is Lx = 100 atomic layers, Ly

= 9b. A uniform shear strain is applied to the entire
supercell at temperature T = 0. Then, a pertur-
bational elastic shear wave whose wavelength
spans the entire Lx (the smallest k possible) is
injected into the system. The amplitude of the
shear wave is initially very small, only 0.002b. The
ideal shear strain of this crystal has been determ-
ined previously to be around 0.21 at low-T, from
the cusp in the overall strain–stress response. We
find that when the overall strain is less than 0.21,
the injected perturbational shear wave manifests
oscillatory behavior with time. As the overall strain
applied approaches 0.21, the oscillation gets slower
and slower in frequency. At an overall shear strain
of 0.215, the perturbational shear wave shows no
time-oscillations at all and subsequently undergoes
Stages I–IV. Fig. 3 shows the wave profiles at
reduced times t = 0, 75.6, 112 and 122.8. From t
= 0 to 75.6, the evolution is in Stage I, as the wave
amplitude grows from 0.002b to 0.01b, but the
wave shape does not change. This is related to the
fact that all linear equations like g̈ = g are sym-
metric with respect to g→�g, so it cannot dis-
tinguish between positive strain perturbation
(incremental strain of the same type as the overall
strain) and negative strain perturbation
(incremental strain opposite to the overall strain).
And since the initial sinusoidal wave form is sym-
metric in its positive and negative incremental
strains, this symmetry maintains as long as the lin-
ear equation is valid.

From t = 75.6 to 112, the amplitude continues
to increase, but the wave shape also starts to
change, with the positive incremental strain part
becoming more and more localized. For this to
happen, we need to have terms like g2 added to g̈
= g, breaking the g→�g symmetry. As one can see,
the wave form is no longer symmetric at t = 112,
with the positive strain part having a smaller
“wavelength” than the negative strain part. Never-
theless, during this period (Stage II) the entire kin-
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Fig. 2. A 2-D solid with atoms interacting via the Morse potential. x-Axis is the close-packed plane normal direction (Lx = 100
layers), y-axis is the Burgers vector direction (Ly = 9b). The supercell is first subjected to uniform shear, and then a monochromatic
long shear wave of amplitude 0.002b is put in the system. If this perturbational long wave is stable, it will be oscillatory with time.
But if it is not, it will go through the four stages, and an atomistically sharp shear shock will form.

ematics can still be described within the con-
tinuum framework.

From t = 112 to 122.8, the front steepening pro-
gresses to a point that it is no longer appropriate
to describe the positive incremental strain part by
a smooth profile, as just a few atomic layers absorb
most of the positive incremental strain. In this
“ transfer” stage, Stage III, one must hand over the
shock front description from a continuum one to
an atomistic one. A genuine, atomistically sharp
shock is forming, whose local strain is of the same
character as the overall applied strain. At t =
122.8, the wave amplitude is still just ~0.05b, but
because it is distributed just between a few layers,
the displacement between two adjacent atomic lay-
ers is becoming quite significant, and the system
starts to truly traverse the atomistic energy land-
scape.

Fig. 4(a) shows the generalized stacking fault
(GSF) energy surface of face-centered cubic (FCC)
Cu, computed using the Mishin potential [9]. One
can map the relative shear displacement between
one atomic layer and the next adjacent layer, on
the GSF. The 100 atomic layers in the supercell
then map to 100 points on the GSF surface. Before
the critical strain is reached, all these displacement

points are bunched together on the GSF and a per-
turbational wave cannot disperse them. After the
critical strain is reached, and elastic instability
occurs, a bifurcation happens, in which most of the
points start to go in one direction (relaxing back
toward the origin—the negative incremental strain
part of Fig. 3 profiles), and just a few displacement
points start to go the opposite way (the positive
incremental strain part of Fig. 3 profiles). In fact,
since the total displacement is a constant, set by
the supercell PBC strain, the center of mass of the
100 points on the GSF is fixed. So in order to com-
pensate for the backward relaxation displacements
of most of the points, the few runaway points must
traverse the GSF from hill to valley to hill … and
during this bumpy ride the incoming energy will
be dissipated into heat. Fig. 4(b) shows the final,
arrested incremental displacement profile, in which
the wave amplitude has grown to 12b. Even more
remarkable is that about 8b of the 12b is taken up
by just one point on the GSF, that is, the relative
shear displacement between one pair of adjacent
atomic layers.

Why is the four-stage strain localization process
energetically favorable? This is clear when we add
the final incremental displacement profile (Fig.
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Fig. 3. Stages I–III of the unstable evolution of the long wave shown in Fig. 2. A circle denotes the shear displacement of one
atomic layer, normalized by the Burgers vector b.

4(b)) grown from the perturbational long wave, to
the overall PBC uniform strain/displacement (Fig.
4(c)). The result is Fig. 4(d), the final, total dis-
placement. The point is that the final state (Fig.
4(d)) has a lower potential energy than the initial
state (Fig. 4(c)). In (c), the strain energy is distrib-
uted uniformly. In (d), the strain energy is some-
what relaxed in all parts of the supercell except in
the shock region. Because the total displacement
is fixed, these relaxations must be absorbed by the
thin shock, and indeed the shock region may have
a higher energy than before. However, since the
GSF energy is a periodic function in the shear dis-
placement x: x + b, x + 2b, x + 3b, etc., have the
same GSF energy. Especially, x = b, 2b, 3b have
vanishing GSF energy. By condensing the total
shear displacement to between just two atomic lay-
ers, the total energy is reduced. This is the funda-
mental reason behind converting the affine strain

energy g�(x)—the most delocalized strain energy,
to the GSF energy g1(x)—the most localized strain
energy [2], through strain localization process. The
nucleation and mobility of dislocations is a scheme
that nature deploys to achieve this fundamental
purpose.

Analogous to the Big Bang model of the begin-
ning of the universe, we see that entire sequences
of events could unfold within a very short time
after the elastic instability. But because it is related
to the origin of defect species, a careful examin-
ation is warranted. For instance, one could propose
that a twin embryo forms if the steepening shear
shock can be trapped by the three-layer multiplane
generalized stacking fault (MGSF) [10] in BCC
metals. If no MGSF can trap the steepening shock
front, and if it progresses down to one layer and
eventually gets trapped by the single-layer GSF,
then we get a dislocation loop. The nature of this
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Fig. 4. (a) One-layer generalized stacking fault (GSF) energy of FCC Cu calculated using the Mishin potential [9]. (b) Final stationary
product of the unstable elastic wave in Fig. 2, after Stage IV evolution. Notice that this is the incremental displacement profile, which
must be a periodic function. (c) Displacement caused by the uniform supercell strain. (d) Total final displacement profile by summing
(b) and (c).

instability dynamics then becomes an entry point
for ascertaining which crystallographic systems
should be twinning systems and which should be
slip systems, by correlating the observed dynamics
with the attraction basins, saddle-points and bifur-
cation transitions of the low-dimensional atomistic
energy landscapes. The proposed theory has been
preliminarily corroborated by direct atomistic
simulations in the case of BCC Mo using the
Finnis–Sinclair potential [11], in a quasi-1-D chain
model similar to the above.

2.3. Nanoindentation and incipient plasticity

Modeling and experiments of nanoindentation of
thin film materials [12] provide a good testing

ground for studying the ideal strength, defect
nucleation—both homogeneous and hetero-
geneous, and incipient plasticity. The Hertzian sol-
ution of 3-D spherical indentation of linear elastic
half space [13] provides a global view of the stress
distribution and indicates that the spherical
indenter acts like a lens, which projects the
maximum shear stress to an internal point (the
“ focus” ) a finite distance away from the surface.
This favors stress-driven instabilities occurring first
in the bulk, and minimizes the influence of surface
defects, which makes the study of ideal strength—
a bulk characterization—possible.

Direct MD simulation of 3-D spherical inden-
tation into a flat Al (1 1 1) surface [8] verifies that
homogenous dislocation nucleation indeed occurs.
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Furthermore, the homogenous nucleation site is at
a depth z equal to 51% of the contact radius a, in
good agreement with the depth of 0.48a predicted
by the Hertzian solution. But the nucleation site is
also significantly off-axis, at a radial distance
r�0.5a�z away, a feature that is first revealed by
atomistic simulations [14]. This is probably
because the elastic instability is driven more
strongly by slip-system specific resolved shear
stress than the von Mises shear stress invariant.
Quantitative �min analyses have been performed by
Zhu et al. [15] for 3-D spherical indentation into
flat Cu (1 1 1) surface, based on the Mishin poten-
tial [9] and checked against ab initio calculations.
They find that the homogeneous nucleation sites
are at z = 0.61a and r = 0.58a, and threefold sym-
metric to the �1 1 1� indentation axis.

Because the initiation of elastic instability is
stress-driven and governed by a continuum cri-
terion, it is amenable to the finite element
approach, provided a fully non-linear treatment is
used, which includes a constitutive relation that is
faithful to the atomistic potential model at large
strain. The so-called interatomic potential-based
finite element method (IPFEM) [7,8,15] is a sub-
feature set version of the quasicontinuum method
[16] and is in fact a simple numerical implemen-
tation of hyperelasticity with the Cauchy–Born
hypothesis [17]. It involves on-the-fly embedding
of atomistic lattice sums in general purpose finite-
element software packages such as ABAQUS. By
comparison with fully atomistic results, it is veri-
fied that IPFEM is very accurate down to indenter
radius ~10 nm and system size ~200,000 atoms
[8,15]. Because the FEM can make use of adaptive
meshing, this allows one to model stress distri-
bution in systems with much more complicated
boundary conditions (Berkovich indenter, oxide
layer, substrate effect, etc.) efficiently. Currently,
IPFEM is limited to modeling nanoindentation up
to the point of elastic instability, and making pre-
dictions with respect to the critical
load/displacement, homogeneous nucleation site,
wmin, kmin and consequently characters of the
defect to be nucleated (slip plane and Burgers
vector). It cannot yet follow the nucleated defect
through the incipient plasticity development. The
hope is that in the future one will be able to model

microstructure evolution and incipient plasticity
under nanoindentation by combining IPFEM with
analytical defect nucleation criteria and with dislo-
cation dynamics (DD) modeling [18–21].

Currently, the microstructural evolution under-
neath a nanoindenter is modeled mainly by direct
atomistic simulations. A central topic of such
simulations is trying to understand the distribution
of displacement excursions in load-controlled
indentation experiments [8,22,23]. It was realized
that while some of the so-called “minor bursts”
consist of displacement excursions on the order of
nanometers; other so-called “major bursts” mani-
fest displacement excursions on the order of tens
of or even a hundred nanometers. Simple estimates
indicate that the “major bursts” could not possibly
all correspond to homogenous dislocation
nucleation, and suggest instead the formation of
dislocation sources similar to the Frank–Read
source beneath the indenter—whose operating
stress is far below the initial local stress, which
will then allow for the heterogeneous nucleation of
hundreds of dislocation loops in one time without
the need of an indenter load increase. The tran-
sition from homogeneous dislocation nucleation to
source formation and then to prolific hetero-
geneous dislocation nucleation is the main con-
clusion of our atomistic modeling [7,8], although
the full picture is still far from clear. In the spheri-
cal indentation of an aluminum (1 1 1) surface, a
sessile dislocation structure quickly develops
beneath the indenter after the homogeneous
nucleation. Some time later, a highly mobile pris-
matic dislocation loop, with the aid of the sessile
structure as pinning points, is emitted from beneath
the indenter, as shown in Fig. 5. Prior to that, hom-
ogenous dislocation nucleation has yielded only
expanding glide loops on single slip planes; the
formation of a prismatic loop requires the cooper-
ative activation of two different slip systems, and
therefore can only be produced from a hetero-
geneous source. This highly mobile prismatic loop
then glides through the thin film without any resist-
ance, and exits the free surface at the bottom, leav-
ing behind a slip line parallelepiped. Subsequently,
many more prismatic loops are nucleated in this
and two other symmetric prism directions, con-
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Fig. 5. Concatenated snapshots of a heterogeneously nucleated prismatic dislocation loop gliding through an aluminum thin film in
molecular dynamics simulation of its (1 1 1) surface nanoindentation. Only atoms with coordination numbers different than 12 are
shown. Each of the four sides of the prismatic loop is a full 1/2
1 1 0� dislocation, which is further split slightly into two partial dislo-
cations.

firming the operation of three heterogeneous pris-
matic dislocation loop sources.

Fig. 6 shows a large-scale molecular dynamics
simulation consisting of 2-million aluminum
atoms. In such studies, analysis of atomistic data
and utilization of visualization tools are critically
important. A portable and efficient visualization
program, AtomEye, has recently been developed
[24]. The film is 41 nm × 41 nm × 20 nm, and the
indenter tip radius is 13 nm. The speed of the
indenter is 30 m/s, which is certainly very fast for
the development of plasticity but is much smaller
than the sound speed and therefore still allows for
the equilibrium of elastic stresses. After the trig-
gering event of homogenous nucleation, the dislo-
cation density grows rapidly and within 100 ps
after contact starts to form an intricate network of
dislocations under the indenter, which corresponds
to a rudimentary plastic zone. Two main categories
of dislocations are observed: those of limited

mobility—either because they are sessile or tied
down by the network—and those of basically
unlimited mobility, the “ runaway” dislocations.
Even though the runaway dislocations only make
up a small fraction of the total dislocation density,
they seem to carry most of the plastic strain. Princi-
pal among the runaway dislocations are the thread-
ing dislocations connecting the top and bottom sur-
faces, and prismatic dislocation loops (slip lines on
the bottom surface clearly indicate the operation of
three symmetric prismatic dislocation loop
sources). Conditions for the runaway phenomena
exist because once a mobile dislocation moves to
the edge of the entangled dislocation network and
breaks free from the crowd, the FCC perfect crystal
provides very little lattice resistance and they can
move on forever until they exit or pile up on the
boundary. On the top surface we see the indenter
crater, and slip lines indicating cross-slip.
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Fig. 6. Microstructural development in a 2-million atom molecular dynamics simulation of nanoindentation of an aluminum thin
film. Operations of three equivalent sources of prismatic dislocation loops results in parallelepiped slip lines on the bottom surface.
Through-thickness threading dislocations have also been nucleated in the film. Only atoms with coordination numbers different than
12 are shown.

We have carried out similar indentation simula-
tions of FCC Cu and BCC Fe, and observed quite
distinct microstructural features. In FCC Cu, there
is no dislocation cross-slip and less prismatic loop
activity; on the other hand, we have observed het-
erogeneous nucleation of twin bands and sub-
sequent layer-by-layer thickening growth during
nanoindentation. In BCC Fe, we have observed
very interesting material pileup and faceting
behavior at the top surface near the indenter crater.
The influence of temperature, point-defect dif-
fusion and preexistent microstructures like phase
or grain boundaries are under investigation by
atomistic modelers. New phenomena of nanoind-
entation, such as delayed pop-in effects [25], are
still constantly being revealed experimentally.

It is noted that nanoindentation of metals is only
one part of a broad spectrum of nanoscale active-
probe experiments and material systems. Nanoind-

entation of silicon [26], for example, has revealed
multiple-stage martensitic transformation, solid-
state amorphization, dislocation nucleation and
microcrack nucleation in one experiment, in differ-
ent zones radiating from the indenter crater. Atom-
istic simulations [27] play a critical role in
unveiling and interpreting this rich family of
behaviors, concurrent with the experiments.

From the perspective of plasticity theory devel-
opment, nanoindentation induced incipient plas-
ticity constitutes a grand challenge, as it is charac-
terized by large dislocation density gradients in
both space and time, and is therefore a good test
case for any size-dependent plasticity theory. Com-
bining this with the first-principles, quantum mech-
anical evaluation and interpretation of ideal
strength [2,15], phonon instability and the origin
of atomistic defects, it is a fertile ground for
experimentalists, theoreticians and modelers alike.
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3. Dislocation processes in BCC metals and
intermetallics

Dislocation mobility is a vast subject. It is also
an area where atomistic modeling has made
tremendous impact, since dislocation core struc-
tures and atomic-level activation processes govern
the mobility and often the macroscopic mechanical
behavior. Empirical potential-based atomistic
simulations are able to directly model fully 3-D
activation configurations (such as cross-slip [28]
and kink-pair nucleation [29])—a task which cur-
rently stretches the capability of ab initio calcu-
lations. The accuracy of the results, however, criti-
cally depends on the quality and transferability of
the empirical potential. Fitting to different kinds
of ab initio energy surfaces is how such empirical
potentials are most often constructed. This infor-
mation flow from ab initio energy surfaces to acti-
vation energies is alternatively achieved by Pei-
erls–Nabarro type [30] and phase-field [31]
models, which allow for parametric studies, and
are generally highly valuable tools for the develop-
ment of basic understanding, including the
interpretation of atomistic results.

Schmid’s law states that dislocation glide on a
given slip system, defined by the slip plane and the
direction of slip, commences when the magnitude
of the resolved shear stress on that system reaches
a constant critical value. Implicitly this assumes
that other components of the stress tensor than
shear resolved in the slip plane in the slip direction
do not play any role in the deformation process.
Furthermore, the critical stress must be inde-
pendent of the sense of shear. These assumptions
are generally valid in metals with close-packed
crystal structures for which Schmid’s law was orig-
inally established. In contrast, BCC metals (see, for
example, [32,33]), many intermetallic alloys (see
[34]) and some ceramics (e.g. [35]) clearly deviate
from the Schmid law. This is usually an indication
that dislocation core effects are important. Atom-
istic modeling and high resolution transmission
electron microscopy in these cases often show non-
planar core structures for the screw dislocations or
even more complicated core dissociations (see, for
example, [34,36–38] and references therein). We
are not in the position to review all this work and

will rather give a few recent examples in the mode-
ling of dislocation processes in BCC metals and
intermetallics, and even within which we cover just
a small part of the entire spectrum of dislocation
modeling currently performed. Interested readers
are encouraged to follow the more general refer-
ences [39,40].

3.1. Glide processes of screw dislocations in
BCC metals

In recent years, there has been a renewed interest
in studying cross-slip of screw dislocations in the
simple FCC structure. As reviewed by Püschl [41],
new developments in both linear elastic semi-con-
tinuum modeling as well as in the application of
atomistic simulation have been made in the past
decade or so to investigate the 3-D problem of
cross-slip of screw dislocations in the simple FCC
structure. This section serves to address parallel
developments, both in semi-continuum approaches
and in 3-D atomistic simulations, in modeling the
cross-slip of screw dislocations in the BCC struc-
ture.

3.1.1. Background of kink-pair processes in BCC
metals

Comparing with close-packed structures, the
deformation characteristics of BCC crystals are
unusual in terms of the following aspects:

(i) The slip behavior in BCC crystals violates
Schmid’s law, i.e. the critical resolved shear
stress is not a constant, but varies with the
orientation of the deformation axis.

(ii) Slip does not take place on definite, low index
crystallographic planes, but can occur on any
slip planes of the 
1 1 1� zone. The slip pat-
tern is usually wavy.

(iii) The Peierls stresses of BCC metals are in the
range of 10�2 to 10�3m (m being the shear
modulus). These are two to three orders of
magnitude higher than that of FCC or HCP
metals.

(iv) The flow stress of BCC metals increases shar-
ply and exhibits strong strain-rate sensitivity
at low temperatures.

(v) Experimental measurements of the activation



5723J. Li et al. / Acta Materialia 51 (2003) 5711–5742

volume for slip indicate that the activation pro-
cess may undergo a change in mechanism as
temperature increases. The activation volume
increases from 
10b3 (b being the
1/2
1 1 1� Burgers vector) at low defor-
mation temperatures to �102b3 at high tem-
peratures.

(vi) BCC metals usually exhibit a brittle-to-ductile
transition (BDT).

These unusual characteristics have triggered a
large volume of theoretical investigations at the
dislocation level over the last half-century. Hirsch
was among the first to suggest that the intrinsic
high Peierls stress of BCC metals is due to the non-
planar spreading of screw 1/2
1 1 1� dislo-
cations, in a way conformable to the crystal sym-
metry about the screw axis [42]. The idea that a
1/2
1 1 1� screw dislocation in a BCC crystal
may dissociate into fractional dislocations forming
a non-planar structure was first pursued by Hirsch
and Duesbery [43,44]. Central to this “dis-
sociation” theory is the assumption that the frac-
tional dislocations have Volterra-type strain fields
connected to one another via stacking faults with
constant fault energy. Fault energies were not gen-
erally available at the time, and they were regarded
as fitting parameters. The theory took detailed
crystallographic features into account and was
rather successful in explaining qualitatively the
orientation and thermal dependence of the critical
resolved shear stress. In particular, motion at finite
temperatures via kink-pair formation and expan-
sion was investigated by this theory. The results
have led to the classical concept [43–46] that dif-
ferent regimes dominate at different temperatures.
In the low temperature or high stress regime, it is
the nucleation of an opposite-signed kink-pair from
the screw dislocation line that forms the activation
process. In the high temperature or low stress
regime, the activation process consists of the over-
coming of the long-range elastic attraction of the
two opposite kinks by the applied stress. The acti-
vation energy decreases with the applied stress in
a rather complex manner. At yet higher tempera-
tures, classical obstacle interaction dominates and
the flow stress becomes less temperature and strain

rate sensitive—often referred to as the athermal
regime.

Quasi-2-D atomistic simulations, first due to
Duesbery et al. [47], were used to study the charac-
teristics of the ground state configuration and
motion of screw dislocations that are infinitely
straight. The concepts derived from these investi-
gations have now been widely regarded as classi-
cal, and the relevant literature has been reviewed
by several authoritative authors [48–53]. The earl-
ier simulations were done using empirical poten-
tials not specific to given materials (e.g. Vitek’s J-
series potentials). One main aim of these initial
efforts was to identify common trends among dif-
ferent potentials and if any existed, they were taken
as structural consequences of the BCC lattice
rather than those of the potentials themselves. It
was within the last one or two decades when more
accurate material-specific potentials became avail-
able. These have allowed a wider range of BCC
transition metals to be calculated, and specific
behavior of certain groups of metals may now even
be identified from ab initio calculations [54,55].

In short, topics (i)–(iii) above have been fre-
quently addressed by 2-D atomistic simulations.
However, dislocation motion at finite temperatures
is expected to take place via kink-pair mechanisms,
and hence these 2-D results may not be directly
relevant. Points (iv) and (v) have been traditionally
treated by line tension models, incorporating at
times crystallographic features derived from
Hirsch’s Volterra picture of core dissociation.
However, the use of ill-defined input parameters
such as inner cut-off radii and constant stacking
fault energies have inevitably limited the credi-
bility of these models.

The last few years have seen two new aspects
of development in modeling kink-pair problems in
BCC metals. The first is the development of a
semi-continuum approach derived from the classi-
cal Peierls–Nabarro (P–N) model [56–60]. The
second concerns new 3-D atomistic simulation
methods [61–63]. These results have led to more
coherent understanding of the kink-pair activation
problem, and will be reviewed below.
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3.1.2. Generalized Peierls–Nabarro models
It is beyond any doubt that atomistic simulation

is a powerful tool to predict subtle features of dis-
location cores in specific materials. However, there
is still some attraction in discussing common
trends through a more generic model, because the
unusual phenomena listed in Section 3.1.1 above
are material and therefore potential independent.
One starting point is the Peierls–Nabarro model,
which couples the linear elastic response of the
major portion of the core to the stacking-fault-like
shearing on the slip plane that takes up a major
part of the Burgers vector content. The GSF on the
slip plane is associated with a non-linear force law
known as the γ-surface and can be computed using
atomistic means for specific materials.

The original Peierls–Nabarro model was for
planar core spreading, but Kroupa and Lejcek [56]
first modified the model to make it applicable to
the situation of threefold spreading resembling a
screw core in the BCC structure (Fig. 7). Ngan
[57,58] generalized the original Peierls–Nabarro
model into the situation of n-fold spreading for a
screw dislocation. For any fold of dissociation n,
explicit integral expressions of the strain and misfit
energies have been derived in terms of the relative
boundary displacements at the misfit planes, as in
the original Peierls–Nabarro model for the planar
case. Minimization of the energy then yields the
ground state properties of the core. The first suc-
cess of this model is its ability to explain why a

Fig. 7. Threefold dissociated screw dislocation core as
depicted in the generalised Peierls–Nabarro model [57,58].

screw dislocation would prefer to dissociate into
a non-planar configuration while crystal symmetry
does not prevent planar dissociation. Assuming a
simple Frenkel-type γ-surface [1], the energy of an
n-fold dissociated screw dislocation was found to
be [57]:

E�
mb2

4π
ln�aRo

b 	, (3.1)

where the inner cut-off parameter a was estimated
by a Rayleigh–Ritz approximation to be

a�
ne

22/n�1π��

0

sin
2π
n

�
4
n
tan�1(xn/2)� xn/2

1 � xndx,

which is a monotonically decreasing function of n.
Here, Ro is the outer cut-off radius, and e is the
base of the natural logarithm. From the cut-off
parameter in Eq. (3.1), a core would therefore
lower its energy simply by dissociating into as
many folds as crystal symmetry would allow. It
thus appears that a sixfold core as observed in
group VB metals is more stable than the threefold
core as observed in other materials. The more usual
threefold state could be the result of deviation of
the γ-surface from the Frenkel sinusoidal form.
Duesbery and Vitek [52] have indeed found that
the γ-surfaces of group VIB metals exhibit “shoul-
ders” at roughly the b/3 and 2b/3 positions. The
shouldering of the γ-surfaces may be a stabilizing
factor for threefold cores but more investigation is
required to confirm this.

The approximate result in Eq. (3.1) predicts that
a planar core (with n = 2) would have an energy
higher than that of a threefold core (with n = 3)
by an amount �E�0.014mb 2, and a more refined
calculation [58] shows that �E is likely to be as
high as 0.03mb2. Assuming that the core would
become mobile when the threefold configuration
shown in Fig. 7 has transformed to a planar con-
figuration by retracting spreading on two slip
planes and extending that on the third plane, the
rise in energy �E would account for the intrinsic
high Peierls stress. More specifically, the Peierls
stress required to produce this transformation has
been shown to be given by [59,60]
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tp � (3.2)

�
2�E

A∗cos2c
for eventual slip on a {1 0 1} plane (i.e. J2 behavior)

2�E
A∗cos2(�c��30°)

for eventual slip on a {1 1 2} plane (i.e. J1 behavior)

where A∗ is an effective activation area of the
applied stress and is of the order of a few b2, and
c�(�30°, + 30°) is the angle between the
maximum-resolved-shear–stress plane and the
nearest {1 0 1} plane (see Fig. 7). Thus, the intrin-
sic orientation dependence of the Peierls stress is
predicted. Within the allowable range ±30° for c,
tp is about 10�2m, which is of the order of magni-
tude observed experimentally. �E and A∗ should
depend on whether the slip planes are of {1 0 1}
or {1 1 2} type, and the variation can be predicted
using the appropriate γ-surfaces for the two types
of planes. The case of spreading and slip on
{1 0 1} and {1 1 2} may be referred to the J2 and
J1 behavior, respectively, referring to Vitek’s orig-
inal work [47,48]. Focusing only on the variation
with load orientation, for the J2 behavior, tp shows
a minimum at c = 0° and a maximum at c =
±30° (see Fig. 8). Such a tp–c relationship agrees
indeed with what is observed in Fe and Mo [50].
The magnitude of variation of tp from c = 0° to
c = ±30° estimated by Eq. (3.2) is ~10�3m, which
again agrees very well with experimental results
for Fe and Mo. For the J1 behavior, the slip plane
changes from the twinning {1 1 2} to the anti-twin-
ning {1 1 2} as c increases from �30° to +30°.
Atomistic simulations predicted an asymmetry that
the twinning slip is easier than the anti-twinning
slip; the actual tp–c variation for J1 may therefore
skew towards the c = 30° side as shown in Fig.
8(c). This twinning/anti-twinning asymmetry was
observed in the slip behavior of Ta, Li-Mg, AgMg
and β-CuZn [50]. At a first glance, Eq. (3.2) seems
to predict symmetric behavior about c = 0° but it
must be remembered that �E and A∗ depend on
the shape of the γ-surface which is not symmetric
with respect to the sense of shear on the {1 1 2}
plane.

Kink-pair mechanisms have also been modeled
using a slab approximation [59,60] as illustrated in
Fig. 9. Here, plane-strain slabs each representing a
certain partially recombined state along the dislo-

cation line are “glued” together and their interac-
tions considered using linear elasticity. Energy
functional of the kink-shape can then be obtained
and this when minimized will yield the saddle
point properties of the dislocation. It was found
that similar to the classical prediction by Hirsch
and Duesbery, kink-pair nucleation is the acti-
vation process at low temperatures while kink-pair
expansion dominates at high temperatures. Fig. 10
shows the predicted relation between the combined
activation energy H and the applied stress ta. It can
be seen that H for both regimes approximately
obeys the very simple relation

H�0.1(1�t)2mb3, (3.3)

where t = ta /tp. Note that H depends on orientation
as t is dependent on tp. Also shown in Fig. 10 are
the experimental results for potassium [64] and
high-purity iron [65]. In these two materials H has
been measured over a wide temperature range
down to liquid helium temperature. The agreement
with Eq. (3.3) irrespective of materials and orien-
tation is very impressive.

To summarize, a number of simple relations
concerning complicated phenomena such as the
intrinsic orientation dependence of Peierls stress
and kink-pair activation have been derived from
the generalized Peierls–Nabarro model. These
relations were derived using simplifying approxi-
mations such as a Frenkel form for the γ-surface,
but the relations may still be regarded as generic
behavior of BCC crystals since real γ-surfaces
should not deviate very far from the Frenkel form.
More subtle material-dependent properties would
require material-specific γ-surfaces. This has not
been done so far for the kink-pair formation prob-
lem, but should be a straight-forward task to do.

3.1.3. Three-dimensional atomistic simulation of
kink-pair activation

A rigorous atomistic treatment of activation
should involve rate theory. One classical approach
to calculate reaction rates is the transition state
theory [67], and this involves calculating partition
functions for both the reactant neighborhood and
the saddle dividing surface. Mills et al. [68] have
recently proposed that one can bypass calculating
partition functions by calculating a reversible work



5726 J. Li et al. / Acta Materialia 51 (2003) 5711–5742

Fig. 8. Schematic Peierls stress (tp) vs c relations for J2 and J1 behaviour. c is the orientation of the maximum resolved shear stress plane,
measured from a {1 0 1} reference plane towards the direction of the anti-twinning {1 1 2} plane. y is the orientation of the actual slip plane.

Fig. 9. Modeling kink-pair using a Peierls–Nabarro approach
[59,60].

function instead. The new approach has still not
been applied to calculating dislocation activation
problems, presumably because the computing
power to handle the entire phase domain on the
reactant side of the saddle dividing surface is still
too large for such problems. However, within the

harmonic approximation, the rate � of a reaction
can be simplified into � = n∗exp(�H /kT), where
the activation energy H is simply the energy differ-
ence between the saddle point and the ground state,
and n∗ is an effective frequency equal to the ratio
of products of the normal mode frequencies evalu-
ated at the ground state and saddle point. Hence if
the saddle point configuration can be located, H
can be evaluated. One way to locate the saddle
point in an atomistic picture is to employ the so-
called “nudged elastic band” method of Mills et al.
[68]. This method assumes only knowledge of the
reactant and product states. Equally spaced replicas
of the system are then constructed along an initially
chosen path joining these two states, as shown in
Fig. 11. Each replica is then relaxed with respect
to degrees of freedom which are perpendicular to
the path. In this way, the minimum energy path
(MEP) connecting the reactant and product states
can be located, and the saddle point is simply the
highest energy state on the MEP.
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Fig. 10. Activation energy for slip (H) vs normalized stress
t = ta /tp in BCC metals. ta is applied shear stress, tp is Peierls
stress at zero temperature. Data for potassium from Ref. [64],
iron from Ref. [65,66]. For the iron data by Aono et al. [65],
results at two stress orientations are shown: orientation A is
close to the center of the unit triangle, and B is close to [101].
Also shown are the atomistic simulated activation energies for
the lowest energy kink-pair (BnApB) using a BCC iron poten-
tial [63], as well as the prediction from a Peierls–Nabarro
model [60].

Fig. 11. Schematic illustrating the “nudged elastic band”
method.

The nudged elastic band method (NEBM) was
first applied by Rasmussen and co-workers [69,70]
to investigate dislocations problems. They
employed the NEBM to calculate the MEP for the
Friedel–Escaig cross-slip mechanism in screw dis-
locations in copper. These authors found that the
cross-slip behavior of screw dislocations in FCC
metals exemplified by copper is by-and-large con-
sistent with the classical predictions by Friedel and
Escaig. However, in screw dislocations in BCC,

a few hitherto unknown results were revealed by
simulations using the NEBM [61–63]. A major dif-
ference between a screw dislocation core in BCC
and one in FCC is that the former, if threefold dis-
sociated, is more complicated in that it exhibits
degenerate configurations which are mirror images
of one another. The degeneracy in BCC leads to a
number of possible configurations of kink-pairs
[71], as opposed to the only one form as in FCC
in which the degeneracy does not exist. Fig. 12
shows the different kink configurations in BCC.
These kink configurations can be denoted by a
nomenclature scheme proposed by Duesbery [71],
in which the two degenerate states of the screw
core are labeled as “A” and “B” , and the kinks are
labeled as either “p” or “n” according to whether

Fig. 12. Three-dimensional schematic illustrating different
kink configurations in the BCC structure. The BpA kink is a
high energy kink because the arms of the states of the screw
dislocation intersect in the kink region.
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they point along the positive or negative Peach–
Koehler force direction, respectively. Because of
configurational asymmetry, some of the kink con-
figurations in Fig. 12 will have higher energies than
others. A simple physical argument shows that
kinks such as ApB and BnA are low energy con-
figurations, because the “arms” of the dissociation
of the A and B states on either side of the kinks
are kept apart in the kink regions. (The ApB kink
is in fact diad-related to the BnA kink and hence
these are equivalent configurations, and so are AnB
and BpA, AnA and BpB, and so on.) If the dis-
sociation “arms” intersect in the kink region, as in
configurations such as AnB and BpA, a higher
energy can be expected because large distortions
may be expected near the intersection locations.
Simulations using the NEBM confirm these [63].
Fig. 13 shows the simulated activation energies of
the different kink-pairs using an embedded atom
potential suitable for BCC iron. Here, it can be
seen that the BnApB kink-pair, comprising the low
energy kinks BnA and ApB, has the lowest energy,
while the AnBpA kink-pair, which comprises the
high energy kinks AnB and BpA, has the highest
energy. The kink-pairs comprising homogeneous
kinks such as AnA, BpB, etc., have intermediate
degrees of interaction at the kink regions, and
hence their energies are intermediate as shown in
Fig. 13.

Fig. 13. Simulated activation energies of different kink-pairs
in BCC Fe [63].

The above asymmetries in kink energies have
important implications in the glide process of an
advancing screw dislocation in the BCC lattice.
Suppose only the low energy ApBnA (or the equi-
valent BnApB) kink-pair can occur, a dislocation
originally in the A state will jump to the B state
on the next Peierls valley along the positive (say)
Peach–Koehler force direction by the nucleation
and expansion of the ApBnA kink-pair. However,
the new B state cannot jump forward by another
step to either the A state or the B state on the same
slip plane, because the high energy BpAnB or
BpBnB kink-pair, respectively, will have to be
involved. To keep the energy low, the new B state
will have to cross-slip by jumping to an A state on
an inclining slip plane, and this process repeats
itself [63]. The glide path will then have to be zig-
zag on each atomic step. This explains the “pencil
glide” phenomenon, or characteristic (ii) in Section
3.1.1. It should be noted that this new explanation
of pencil glide hinges on the asymmetry of the
kinks, and is therefore very different in spirit to
the traditional explanation stemming from the
observed behavior of straight dislocations under
stress in 2-D atomistic simulations [48–50]. Since
glide at finite temperatures ought to involve kink
mechanisms, the present explanation should be
more pertinent. The simulated energies of the
BnApB kink-pair are also plotted in Fig. 10, and
it can be seen that they agree reasonably well with
the experimental results and the Peierls–Nabarro
relation in Eq. (3.3).

3.2. Kear–Wilsdorf lock formation in the L12

superlattice

Another prominent group of materials in which
3-D activation processes of dislocations are
important are L12 intermetallics which exhibit a
flow stress anomaly. Based on atomistic results on
straight 1/2
1 1 0� superpartial dislocations, Pai-
dar, Pope and Vitek (PPV) proposed that the
strength anomaly is due to the thermally activated
formation of incomplete Kear–Wilsdorf locks (or
later known as “PPV” locks) for screw superdislo-
cations [72]. As illustrated in Fig. 14, a PPV lock
is formed by either a one-step jump by b/2 or a
two-step jump by b of the leading superpartial from
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Fig. 14. Two forms of PPV locks.

an original (1 1 1) plane onto a (0 1 0) cross-slip
plane, where b is the Burgers vector of the
1/2
1 1 0� superpartial dislocation. Hirsch [73]
proposed a detailed theory of the flow stress anom-
aly, which is based on the PPV locks but has
detailed elaboration on the subsequent dislocation
development after a two-step PPV jump of the
leading superpartial to form a strong lock, as well
as on the unzipping process of such a lock which
is predicted to give rise to the nearly zero strain-
rate sensitivity of the flow stress. In Hirsch’s
theory, the apparent activation energy is identical
to that in the PPV model, namely, the activation
energy for cross-slip from a primary (1 1 1) slip
plane onto a (0 1 0) plane by one atomic step in a
kink-pair model. Hence, the PPV lock formation is
the rate-controlling process in Hirsch’s theory.

The stability of the PPV locks, however, remains
controversial. Schoeck [74] has predicted that the
one-step PPV lock produced by a (b/2) jump is
energetically unstable with respect to the planar
state on the (1 1 1) plane before the jump.
Schoeck’s treatment is a planar Peierls–Nabarro
model. Three-dimensional atomistic simulations on
the dislocation processes in intermetallics are rare,
and the only study to-date is that by Parthasarathy
and Dimiduk [75], who have studied the structures
and energies of the PPV locks and the jogs at the
intersection between a locked and an unlocked seg-
ment.

The NEBM should be a convenient method to
investigate the process of PPV lock formation. An

active project is underway along this direction, and
in what follows, some results are presented to pro-
vide a snapshot of the current activities. The main
aim of these simulations is to elucidate the relative
importance of antiphase boundary (APB) energy
anisotropy, Yoo’s torque [76] and Escaig effect in
controlling the formulation of PPV locks.

3.2.1. Simulation method
The simulations below employed the embedded

atom potential for Ni3Al developed by Voter and
Chen [77]. The same potential was used by Par-
thasarathy and Dimiduk [75], so that direct com-
parison can be made with that study. The full
superdislocation has a dissociation width of larger
than 6 nm and hence to speed up calculations, only
the leading superpartial was included in the simul-
ation block. The effect of the trailing partial was
incorporated through applying the corresponding
anisotropic elasticity Volterra field to the boundary
region of the simulation block. The simulation cell
was a rectangular block with a length of ~10 nm
along the 
1 1 0� screw direction, and a dimen-
sion of ~5 nm in the other two orthogonal direc-
tions which were along a 
1 1 1� and 
1 1 2�
direction, respectively. The trailing APB was
placed on the (1 1 1) plane parallel to one edge of
the simulation cell. To implement the NEBM, 18
equidistant replicas were set up between the reac-
tant and product states (see Fig. 11). The calcu-
lations were parallelized using typically six pro-
cessors, each handling three replicas. If a stable
intermediate state was found, the calculation was
repeated by breaking the reaction into two steps,
the first from the reactant state to the intermediate
state, and the second from the intermediate state to
the product state. Constrained relaxation was car-
ried out until there was no noticeable change in the
energy along the MEP, and typically this corre-
sponded to an average residual force perpendicular
to the MEP of the order of 10�4 eV/Å.

The PBC was applied along the 
1 1 0� screw
direction. In the L12 close-packed structure, free
boundaries cannot be used for the other two direc-
tions because the Peierls stress is too small, and
hence the simulated dislocation would be easily
attracted to a free surface. Instead, flexible bound-
aries updated using a lattice Green’s function were
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used [78]. The net energy change during the dislo-
cation motion is the configurational energy minus
the work done by the applied stress field and the
stress field due to the trailing superpartial dislo-
cation, plus the long-range strain energy developed
during the kinking process. The work done due to
the applied stress can be calculated by determining
the average force acting on the atoms on the inter-
face between the atomistic and the outer Green’s
function region due to the applied stress, and multi-
plying this by the displacement of these atoms dur-
ing the core change. The work done due to the
trailing superpartial, i.e. the well-known Yoo’s
torque effect [76], is likewise calculated as the pro-
duct of the force due to the Volterra field of the
superpartial on the atoms lying on the interface
between these regions, and the movement of these
atoms during core changes. The strain energy in
the continuum region due to core changes is calcu-
lated by the following formula:

energy �
1
2�

ij

sijuidsj, (3.4)

sij �
1
2
cijkl(uk,l � ul,k)

where the integration is over the interface between
regions 2 and 3; dsj is an element of the interface
with normal pointing towards the center of the
simulation block, and cijkl are the elastic constants.
ui here is the displacement with respect to the reac-
tant state of a finite element of volume containing
dsj. The displacement ui is calculated as the aver-
age displacement difference between a particular
state along the MEP and the reactant state of all the
atoms situated inside the element containing dsj.

3.2.2. Simulated minimum energy paths for PPV
lock formation

While details will be published separately, a few
key results will be outlined here to provide a per-
spective. In the results below, the reactant state was
a 1/2
1 1 0� leading superpartial spreading on
the primary (1 1 1) plane (top diagram in Fig. 14),
and the product state was a two-step PPV lock in
which the same superpartial had cross-slipped onto
the (0 1 0) plane by b and had spread on a (1 1 1)
plane parallel to the original slip plane (bottom dia-

gram in Fig. 14). The MEP was automatically
located by the NEBM.

3.2.2.1. Effect of Escaig stress Fig. 15 shows
the simulated MEPs at different stress states. It can
be seen that in the absence of an Escaig stress,
which is a stress along the edge direction on the
primary slip plane, the MEP exhibits a high acti-
vation energy of 4.0 eV at a stress of 160 MPa on
the (0 1 0) cross-slip plane. This energy is some-
what lower but comparable to the results obtained
by Parthasarathy and Dimiduk [75], who have used
the same potential but a very different constraining
method to simulate the unstable kink-shape, and
have concluded an activation energy for the same
PPV jump to decrease from ~4.9 to ~4.2 eV when
the stress is increased from 0 to 500 MPa on
(0 1 0). Such activation energies are obviously too
high compared with the experimentally determined
apparent activation energy for the flow stress ano-
maly in Ni3Al, which should yield a locking acti-
vation energy in the range of 0.5–0.9 eV [75].

In the absence of an Escaig stress, the present
simulation results show that the PPV jump by b

Fig. 15. Effects of cross-slip stress and Escaig stress on mini-
mum energy path (MEP) of PPV lock formation. The reaction
state (reaction coordinate = 0) corresponds to planar dis-
sociation on primary octahedral plane before cross-slip. The
product state (reaction coordinate = 1) corresponds to the PPV
jump by 1b on the cross-slip cube plane. In some MEPs, an
intermediate state occurs and this corresponds to the PPV jump
by b/2 on the cross-slip cube plane.
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does not involve the b/2 PPV jump (middle dia-
gram in Fig. 14) as an intermediate step. Parthasar-
athy and Dimiduk concluded that the b/2 PPV
jump is unstable unless under an exceptionally
large cross-slip stress exceeding 700 MPa. How-
ever, the present simulation indicates that the b/2-
jump can be stabilised by a large enough Escaig
stress as well. The results in Fig. 15 show that
under a high Escaig stress of 800 MPa on the pri-
mary (1 1 1) plane, the b-jump indeed involves an
intermediate state which was found to be the b/2-
PPV lock. The intermediate state of the b/2-PPV
lock occurs only when the Escaig stress is higher
than ~500 MPa. Below this stress value, the b-
jump remains as a single process with an activation
energy above 4 eV. The high Escaig stress required
here may not be realistic because the Voter and
Chen potential applied here predicts a too small
value for the complex stacking fault energy. There-
fore, in reality, the spreading of the 1/2
1 1 0�
superpartial on the primary octahedral plane may
be narrower than in the simulations using this
potential. In any case, the occurrence of b/2-PPV
lock as an intermediate state for the b-jump drasti-
cally reduces the activation energy to only slightly
above 1 eV as shown in Fig. 15. The discrepancy
with the experimental value of 0.5–0.9 eV is there-
fore smaller. The reason for the drastic reduction
of the activation energy with the intermediate state
is similar to the situation depicted in Fig. 12 for
the BCC screw core, namely that the b/2-PPV lock
dissociates on a plane inclined to the original slip
plane as Fig. 14 shows, while the b-PPV lock dis-
sociates on a plane parallel to the original slip
plane. The strain in the kink regions in the critical
kink-pair configuration corresponding to the for-
mation of the b/2-PPV lock is therefore more dis-
tributed, resulting in a lower energy. Another
observation from the results in Fig. 15 is that the
activation energy from the reactant to the inter-
mediate state (~1.2 eV) is independent of the cross-
slip stress. The reason is that the center of the lead-
ing partial roughly remains on the same (1 1 1)
plane during this process, and hence the cross-slip
stress can do little work in this process. The second
stage from the intermediate state to the product
state, however, has an activation energy depending
weakly on the cross-slip stress.

3.2.2.2. Effect of the Yoo torque vs APB energy
anisotropy Yoo [76] proposed that in an elasti-
cally anisotropic material, the trailing superpartial
exerts a torque on the leading superpartial in the
cross-slip direction. To elucidate the relative
importance of the Yoo-torque and APB energy iso-
tropy between (1 1 1) plane and (0 1 0) plane in the
driving force for cross-slip, another simulation was
conducted in which the trailing partial was placed
infinitely far away. This has the effect of switching
off the Yoo-torque, while retaining the APB ani-
sotropy effect. The simulated MEP is shown in Fig.
16 as the solid symbols. Here, the cross-slip stress
is turned off to reveal the pure effect of APB ani-
sotropy, but a large Escaig stress is applied to
result in the intermediate state. The MEP exhibits
an energy gain of 0.197 eV/b after the PPV jump
by 1b on the (0 1 0) plane. This is due to the cre-
ation of an APB ribbon of 1b wide on the (0 1 0)
plane after cross-slip. This energy gain converts to
an energy of 494 mJ m�2 for the APB strip on the
(0 1 0) plane, which is significantly higher than the
83 mJ m�2 for an infinitely wide APB on (0 1 0)
calculated by the same potential. The much higher
energy of the APB strip on (0 1 0) in the PPV lock
is thought to be due to the constraining effects
imposed by the bounding superpartial [79] and the
“corner” effects at the intersection between the
APBs on the (0 1 0) and (1 1 1) planes [80]. Since

Fig. 16. Effect of switching off Yoo’s torque on MEP of PPV
lock formation.
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the APB energy on (1 1 1) is only about 142 mJ
m�2, the APB energy anisotropy alone offers no
and indeed a negative driving force for the PPV
lock formation. The constraining effects on the
narrow strip of the APB on the cross-slip plane of
a PPV lock thus appears to be an important factor
in the consideration of the driving force for the
formation of such a lock.

The effect of the Yoo-torque on the driving force
for cross-slip can be seen by comparing the MEP
without the trailing superpartial and that with the
trailing superpartial properly positioned in Fig. 16.
In the MEP with the trailing superpartial properly
positioned, the product state (the b-PPV lock) has
fortuitously similar energy as the reactant state, but
in the simulation, the trailing superpartial was held
fixed. In reality, the trailing superpartial should
have come forward to shorten the APB on the pri-
mary (1 1 1) plane during the cross-slip of the lead-
ing superpartial, and thus, with the presence of the
Yoo-torque, the whole cross-slip process should
have a positive driving force. The results in Fig.
15 indeed show that an increasing stress on the
cross-slip plane would also lead to an increasing
driving force for cross-slip as expected. Work is
underway to automatically reposition the trailing
superpartial during NEBM relaxation to more
realistically simulate the MEP during PPV lock
formation.

3.3. Dislocation interaction with other lattice
defects

An area where atomistic modeling will play a
particularly important role in the future is the inter-
action of dislocations with other lattice defects. In
experiments, these processes usually cannot be
observed individually, but they clearly control
plasticity over a wide range of loading conditions.
The lattice defects of interest range from individual
point defects and clusters of them to other dislo-
cations, surfaces, interfaces and second phase par-
ticles.

Dislocation point defect interaction is of course
the key to climb processes and high temperature
deformation. At reasonably low temperatures they
account for solid solution hardening or the depen-
dence of the flow stress of intermetallic alloys on

composition [81]. These effects can now be studied
reasonably well that systematic investigations have
now begun. An example is B2 NiAl, where dislo-
cation interactions with vacancies and antisite
defects have been investigated [81]. They tend to
give values which are in reasonable account with
experiments on off-stoichiometric alloys and even
explain flow stresses of stoichiometric NiAl at
intermediate temperatures [82]. However, quanti-
tative comparison to the experiment requires dedi-
cated multiscale approaches which still need to be
developed further.

Dislocation dislocation interaction is the prime
domain of current multiscale modeling efforts [83].
Atomistic simulations sometimes show unexpected
reaction products [84] but most often the detailed
core effects need not be considered and the mode-
ling can safely be done on a discrete dislocation
level which is based on the elastic interactions
between dislocations [18–21]. This, in short, can
be regarded as the main outcome of several recent
atomistic simulations of dislocation intersection
and junction formation and their very elegant com-
parison to dislocation modeling [85–87]. Neverthe-
less, these studies have also shown the important
role atomistic modeling can provide in assessing
assertions from coarser simulations on a more fun-
damental basis. In some cases, the atomistic mode-
ling may then be used to determine the relevant
parameters for the coarser models.

Of genuinely exploratory nature and not
specifically guided by detailed experimental inves-
tigations (for experiments on a model system of
bubble rafts with grain boundaries, see [88]) are
current studies of the deformation of nanocrystal-
line materials. Following the established under-
standing of the effect of dislocation interaction
with grain boundaries, one expects metals to
become increasingly harder as their grain size is
reduced (see [89] for an excellent review of size
effects in materials). The Hall–Petch effect is
expected to lead to a scaling of flow stress with the
inverse square root of grain size. Nanocrystalline
metals are therefore expected to exhibit fantastic
hardness. Experimentally they do not quite reach
such hardness and furthermore the hardness may
even show direct scaling with grain size. Diffusion
processes are held responsible for this behavior
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[89] but atomistic simulations of such nanocrystal-
line aggregates have also shown grain boundary
sliding to be important [90,91]. With the ability
to handle increasingly larger grain structures, the
simulations of nanocrystalline metals now just hit
the size scale where dislocation processes begin to
contribute again [92–94]. Dislocation nucleation
from the grain boundaries is one of the processes
which current investigations are focusing on. In
principle, sufficiently large atomistic systems can
now be handled to give the transition to the classi-
cal Hall–Petch behavior. Such studies are expected
soon and will then provide the starting point for
more systematic investigations of the interplay
between grain boundaries and dislocations.

One of the key processes in this scenario, dislo-
cation nucleation, is also studied by MD simula-
tions of a running crack in a three-dimensional
notched solid [95]. A Lennard–Jones crystal,
loaded in tension in a 
1 1 0� direction, first
shows brittle crack propagation and then develops
a crack tip instability, which results in the massive
generation of dislocations at the crack tip. The
simulations clearly show that non-blunting dislo-
cations on inclined glide planes play a very
important role in the plastic zone which is
developing around the crack tip. Fig. 17 displays
the crack at the point of instability and the develop-
ment of the plastic zone. Unfortunately, such stud-
ies are still too demanding to systematically study
imperfections in the crack front and other possible
causes for dislocation nucleation.

4. Brittle fracture processes

Fracture is a phenomenon which spans many
different length scales. The macroscopic dimen-
sions of the crack and the specimen determine the
intensity of the stress concentration at the crack tip
and are equally important as the microstructure of
the material, which provides preferred fracture
paths. Ultimately, fracture reduces to the breaking
of atomic bonds, which in the case of brittle frac-
ture occurs at an atomically sharp crack tip [96,97].
In a perfectly brittle material, the crack moves by
no other process than the breaking of individual
bonds between atoms. Nevertheless, traditional

theory of brittle fracture processes does not focus
on individual atomic bonds but resorts to the treat-
ment of Griffith [98], which is based on continuum
thermodynamics. Following Griffith, one may
regard the static crack as a reversible thermodyn-
amic system for which one seeks equilibrium. The
equilibrium condition leads to the so-called Griffith
criterion, which balances the crack driving force
and the material resistance against fracture. With
the implication of thermodynamic equilibrium,
Griffith’s picture provides a reference value for the
analysis of the crack driving forces. It however
cannot explain why and how fracture proceeds.
From an atomistic point of view, one immediately
identifies materials resistance against fracture with
the forces needed to break the crack tip bonds suc-
cessively. The first atomistic studies of fracture
[99] showed that the discrete bond breaking event
manifests itself in a finite stability range, which
was attributed to the discreteness of the lattice and
called the “ lattice-trapping” effect. Lattice trapping
causes the crack to remain stable and not to
advance/heal until loads K+,� somewhat
larger/smaller than the Griffith load are reached.
Other influences of the atomic nature of a crack
have recently been summarized in a series of art-
icles in the MRS Bulletin [100]. Consequences of
the lattice trapping have been reviewed [101,102]
and only one particularly important aspect of the
lattice trapping, crack propagation anisotropy, is
discussed below.

4.1. Lattice trapping and the cleavage
anisotropy in silicon

Silicon is reported to have two principal cleav-
age planes: {1 1 1} planes, usually the easy cleav-
age planes, and {1 1 0} planes [103,104], the
planes of easy cleavage in polar III–V semiconduc-
tors. The most accurate constant-K experiments
[103] seem to show that {1 1 0} planes have a
slightly lower fracture toughness than {1 1 1}
planes. For both cleavage planes, the measured
fracture toughness gives surface energies (γ1 1 0~2.3
J/m2, γ1 1 1~2.7 J/m2) which are significantly larger
than the values calculated atomistically using den-
sity functional theory (DFT)-based quantum mech-
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Fig. 17. Three-dimensional MD simulation of crack propagation and dislocation generation in an FCC crystal. Atoms are shown
only if their energy exceeds a critical value. This value is chosen to select only the atoms at crystal lattice defects and surfaces. The
four frames display the crack after some brittle crack propagation at the point of instability to dislocation emission (upper left) and
the further development of the plastic zone around the crack tip. (Courtesy of F. Abraham.)

anical methods (γ1 1 0~1.7 J/m2, γ1 1 1~1.4 J/m2)
[105].

Propagation direction anisotropy has been
observed for both cleavage planes. The preferred
propagation direction is along 
1 1 0� on both
cleavage planes [103,104]. On the {1 1 1} fracture
surface, the anisotropy with respect to propagation
direction is minimal. In contrast, cleavage on the
{1 1 0} plane is extremely anisotropic. Propagation
along the 
1 1 0� direction results in nearly per-
fectly flat fracture surfaces [103,104]. Attempts to

achieve propagation in the 
0 0 1� direction, per-
pendicular to the preferred direction, have not been
successful because the crack deflects onto {1 1 1}
planes [104,106]. The relation of the calculated
surface energies and elastic anisotropy cannot
account for this deviation of the crack [107] and
an atomistic investigation therefore is attractive.

Based on ab initio calculations of the crack tip
stability, the anisotropy in fracture behavior with
respect to the propagation direction on the {1 1 0}
plane was recently explained as a consequence of
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a difference in lattice trapping for the different
propagation directions [107]. A {1 1 0} crack pro-
pagating in the “easy” 
1 1 0� direction (Fig.
18(b)) continuously opens successive bonds at the
tip of the crack. This continuous process leads to
a relatively small trapping, and it can be argued
that the trapping may further decrease as the size
of the model (specimen) is increased. In contrast,
a crack driven in the “difficult” 
0 0 1� direction
on the {1 1 0} plane, displayed in Fig. 18(a), shows

Fig. 18. Relaxed atomic configurations (using ab initio methods) of (top) the silicon {1 1 0}
1 1 0� crack, which is propagating
in a 
0 0 1� direction, and (bottom) {1 1 0}
0 0 1� crack, propagating in the 
1 1 0� direction. The outermost two layers of
silicon atoms are held at the positions given by the linear elastic solution for the displacement field of the crack (for a load of 1.2KG).
Their dangling bonds are saturated with hydrogen atoms. The bond distance for the bonds labeled B is displayed (filled symbols) as
a function of the applied load in the diagram on the right. While the {1 1 0}
0 0 1� crack (circles) shows a continuous increase in
bond length, a discontinuous bond breaking at an applied load of 1.35KG is found for the {1 1 0}
1 1 0� (squares) crack. The open
symbols are for a modified Tersoff potential, which does not well reproduce the bond breaking characteristics of the ab initio
calculations [102].

a clearly discontinuous bond breaking. Fig. 18(c)
shows the bond distances of the crack tip bonds
(labeled “B” in Fig. 18(a) and (b)) for both sys-
tems. Further analysis of this discontinuous bond
breaking process shows that it is mainly a result
of the relaxation of the six or eight atoms around
the crack tip and connected with a significant load
sharing between the crack tip bond and the one
above [105]. Comparing both the loading and
unloading processes, it is seen that the discontinu-
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ous bond breaking is also connected with a larger
lattice trapping range [107]. This difference in the
trapping effectively destabilizes the {1 1 0} crack
propagation in the 
0 0 1� direction against deflec-
tion onto an inclined {1 1 1} cleavage plane. Thereby
lattice trapping appears to provide the only reason-
able explanation for the experimentally observed
cleavage anisotropy with respect to the propagation
direction for the {1 1 0} cracks in silicon.

4.2. Dynamics of brittle crack propagation

The fracture of materials can be a dynamic pro-
cess, at least in the final stage of supercritical
propagation. Although this last stage of fracture
might at first seem almost irrelevant, closer con-
sideration shows that it is precisely the dynamics
of the brittle crack which competes with the rate-
dependent plasticity in the near tip region to deter-
mine whether a propagating crack can ever be
stopped. The dynamic crack propagation has there-
fore recently attained much attention.

The first set of atomistic investigations of
dynamically moving cracks were directed towards
understanding the steady-state propagation, crack
speed and the onset of dynamic instabilities. Ana-
lytical atomistic studies [108] on simplified one-
and two-dimensional structures show that the
dynamically propagating crack can only access a
limited velocity regime. After initiation, crack tip
speed immediately reaches about 20% of the Ray-
leigh wave velocity and approaches a branching
instability at about half the Rayleigh wave velocity
[108]. The instability manifests itself in the break-
ing of bonds at the flanks of the crack before the
breaking of the next bond in propagation direction
and is interpreted as a branching instability.

MD simulations [109] of the propagation of a
mode I crack with a straight crack front and a short
periodic length along the crack front (quasi-two-
dimensional geometry) essentially confirm the ana-
lytic results. They confirm a lower band of forbid-
den velocities for the straight crack and also reveal
an upper critical velocity. The upper critical velo-
city for the mode I crack is shown to strongly
depend on the non-linearity of the atomic interac-
tion. For harmonic snapping spring force laws
[109] and for open crystal structures with strong

directional bonds [110,111] the velocities can be
almost as high as the Rayleigh wave velocity, the
relativistic upper limit. Only 40% of the Rayleigh
wave velocity is reached for close-packed crystals
and more realistic non-linear atomic interactions
[109]. Up to 50% of the shear wave speed is
reached in the more complex quasicrystalline
structures [112]. Increasing temperature reduces
this band of forbidden velocities and successively
allows cracks to also propagate at lower speeds
[113,114]. In amorphous or quasicrystalline struc-
tures, increasing temperature may also lead to a
change in crack propagation mechanism from the
propagation of a distinct crack tip to crack propa-
gation by successive opening of pores or daughter
cracks in front of the main crack and their back-
ward propagation (see Fig. 19) [114–116]. This of
course drastically reduces the crack propagation
speed.

Above the critical velocity, the MD simulations
reveal a rich set of different types of instabilities
depending on the crystallographic orientation of
the crack and on the crystal structure
[109,110,112]. The generation of cleavage steps
and dislocation emission are usually observed at
lower overloads, while crack bifurcation was only
observed at the highest overloads. Dislocation
emission usually leads to a pronounced change in
crack propagation direction.

Large scale MD simulations have recently con-
firmed continuum mechanical analysis [117] on the
fact that mode II cracks just like edge dislocations
[118] are not bound by the shear wave speed as an
upper limit [119]. They show a transition to
intersonic propagation via the nucleation of a
daughter crack out of a subsonic mother crack.

4.3. Brittle–ductile transition

The brittle–ductile transition commonly
observed in BCC metals, i.e. point (vi) in Section
3.1.1, has often been linked to the low mobility of
screw dislocations in the BCC lattice. However,
a more complete analysis must involve mesoscale
considerations, taking into account the mutual
interaction amongst dislocations whose individual
behavior, however, is governed by the physics of
the dislocation core. Originally, the ease with
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Fig. 19. Crack propagation in a quasicrystalline structure: at low temperature (0.1Tmelt, upper frame), the crack avoids strongly
bound obstacles whenever possible but propagates essentially as a brittle crack. The crack propagation process and particularly the
surmounting of obstacles is sometimes mediated by virtual dislocation emission [112]. Crack propagation speed reaches 50% of the
shear wave velocity. At higher temperatures (0.75Tmelt, lower frame), the crack propagation mechanism changes to nucleation, growth
and coalescence of microvoids in front of the crack tip [114]. The crack propagation speed is then reduced to roughly 3% of the
shear wave speed.

which dislocations can be emitted from sources in
the vicinity of the crack tip or directly from the
crack tip itself has been proposed to be a criterion
for the BDT [120–122]. Ngan and Zhang [123]
have recently extended these studies to include the
non-planar dissociation of a screw dislocation
ahead of a crack tip, and have shown that the pres-
ence of the crack as a free surface largely reduces
the elastic resistance to a core transformation from
a non-planar state to a mobile, planar state. Hence,
mobility should not pose any problem for crack tip
emission in the BCC structure. This conclusion
was further supported by atomistic results [124].
Despite this, increasing experimental evidence

[125,126] seems to indicate that the BDT in BCC
metals is controlled by the mobility of dislocations
away from the crack tip. One distinguishing differ-
ence between BCC metals and covalent solids such
as Si in terms of the BDT is that the activation
energy of the BDT in BCC metals is in general
much lower (by an order of magnitude) than the
activation energy of bulk slip [125,127,128], while
for covalent solids, the BDT activation energy is
comparable to activation energy of bulk slip
[129,130]. The much lower BDT activation energy
in BCC metals could be interpreted in terms of the
strong stress-dependence of the activation energy
of slip, as expressed, for example, by Eq. (3.3), in
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the vicinity of the highly stressed crack tip. How-
ever, recent discrete dislocation dynamics simul-
ation [131] has shown that the effective activation
energy of crack tip plasticity—even with stress-
dependent activation energy—is only marginally
reduced from the activation energy of bulk slip.
This must be interpreted to clearly rule out the
mobility of screw dislocations as the only decisive
factor and the rate limiting step for crack tip plas-
ticity and the BDT. It rather suggests that other
factors such as the blunting edge dislocations
[128,131], or the crack tip enhancement of the dis-
location emission process itself [123,124], may
play an important role. However, there remain
many unknown facts amongst which the role of the
initial dislocation density of the material and the
nature of the dislocation sources near the crack tip
are the most-needed ones. More experiments, dis-
location dynamics simulations [18–21], and in
particular more specific atomistic simulations are
required to clarify these questions.

5. Outlook

Some of the most promising developments in the
recent past are the fantastic improvements in the
development of physically more transparent,
environmentally dependent quantum mechanically
based methods to describe the interatomic interac-
tions. Most of these developments are based on
tight-binding methods which are modified to allow
for order-N scaling behavior [132,133]. These
models have first been developed for semiconduc-
tors (see [134] for a comparative assessment). The
need for such methods for a reliable description
of transition metals and intermetallics, however, is
even greater [135] but this requires further
improvements to account for the environmental
dependence. Such improved descriptions are now
gradually appearing [136–139]. They hold great
promise to further lead atomistic modeling of
materials properties away from generic, possibly
crystal structure-specific to material-specific quan-
titative studies of dislocations, interfaces and frac-
ture processes. Furthermore, such improved inter-
action models now open atomistic modeling of
dislocations to new classes of materials which have

hitherto been out of the scope of classical atomistic
simulation, like Laves phases or multicomponent
alloy systems.

Another development which leads in the same
direction but which has the capability to fully
include first-principles accuracy in some part of the
model are hybrid computational schemes which
couple different levels of physics in one program.
Forerunners of these developments have been the
continuum–atomistic schemes and quasicontinuum
approaches [140–142]. Recently, these have been
extended to include quantum mechanical parts
[55,143,144] or even to re-evaluate simple models
of the atomic interaction during simulation, termed
fitting on the fly [145,146].

Such quantum mechanics-based methods will be
important for studies of the cleavage fracture and
the general fracture behavior of more complex
III/V or II/VI semiconductor crystals and of
interfacial fracture. They may also be useful here
for developing continuum models which can pre-
dict fracture. While the Peierls model for the dislo-
cation allows quantum mechanical information to
be included in semi-continuum studies of dislo-
cation cores, no similarly powerful model exists
for fracture and currently we have no predictive
capability to determine the cleavage planes of a
given brittle material other than full atomistic
simulation. This certainly is a subject well worth
further study and atomistic simulation.

The quantum mechanical accuracy will however
be most urgently needed for the study of chemical
attack at the crack tip. Although being of outstand-
ing importance for the assessment of long-term
behavior of ceramics, the effects of chemical reac-
tivity at the crack tip as the origin of slow crack
growth have not been sufficiently well understood
so far. The simplest case is probably the well-
known effect of moisture on the crack growth velo-
city in SiO2 glass [96]. Such studies would not only
be welcome by the glass community, but also
would be urgently needed to better understand
wafer bonding processes and the subsequent mech-
anical and thermal stability of wafer bonds [147].
Bonded silicon wafers develop thin SiO2 interlay-
ers in between which must be fractured again if
the wafers shall be separated. Experiments show
that a small amount of water enhances crack propa-
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gation speed significantly, which suggest that the
chemical attack of the stressed siloxane (Si–O–Si)
bond by water is the key process [148].

Another area where we will certainly see
increasing activity is the study of crack nucleation.
Our understanding of crack nucleation processes is
still at a very rudimentary level, but crack
nucleation as the strength-determining factor is
becoming increasingly common. The simplest and
experimentally well characterized case is the crack
nucleation at well defined wedge type notches in
silicon [149]. Such notches often occur in
microelectronic and micromechanical devices
(MEMS) as a result of anisotropic etching. They
are almost atomically sharp therefore lending
themselves well for such studies. Similarly, crack
nucleation from dynamically loaded silicon free
surfaces [150], from grain boundaries or dislo-
cations impinging on grain boundaries, will come
into the focus of atomistic modeling. Similarly, for
the dynamic fracture issues, nice and detailed
experiments are available on silicon single crystals
which could in the combination with appropriate
atomistic modeling lend themselves well for the
development of a better understanding of dynamic
crack instabilities [106]. Since reliable tight bind-
ing descriptions of silicon and fitting on the fly
[146] are now becoming available, such studies can
be expected in the near future.

Probably, the greatest open issue not only for
dynamic fracture but also for the understanding of
the brittle to ductile transition is the interaction of
cracks and dislocations. Dislocation nucleation and
multiplication at a crack tip obviously are
important processes there and atomistic modeling
is the only tool available right now to investigate
such processes in full resolution. Experiments are
scarce but the impinging of a single dislocation on
a loaded crack in silicon single crystal has been
studied by in situ X-ray topography and revealed
massive dislocation multiplication in a very short
time [151]. Such processes are very difficult to
observe in any other material and should therefore
be used as a starting point for the atomistic mode-
ling.

The issues for dislocation studies are first and
outmost the dislocation core properties themselves.
With the focus on nanoscale systems, however,

increasing attention must also be paid to the inter-
action of dislocations with interfaces. There, we
will probably gain a lot more understanding about
the role of interfaces as sources and sinks of dislo-
cations and about the mechanisms by which slip
can be transmitted across interfaces from atomistic
simulations. The above mentioned studies of nan-
ocrystals and small confined systems will in the
future be able to be extended to the sizes where
a transition from nanocrystalline behavior back to
“normal” Hall–Petch behavior occurs [157]. At this
point, systematic atomistic studies will facilitate a
better understanding of nanocrystalline materials
and may even suggest ways to remedy their weak-
nesses. Another area where large-scale exploratory
atomistic simulations are urgently needed will be
the study of contact formation, tribology and
indentation. Starting from the formation of the
chemical bonds at the contact faces, via the defor-
mation processes in the contact area to the neck
formation upon separation most elementary pro-
cesses are as yet poorly understood and certainly
may benefit from more intensive atomistic simula-
tions.

A key element of the atomistic simulation of dis-
locations will however be to provide input to meso-
scale and multiscale simulation approaches (see
e.g. [158,159]). There, the interaction of dislo-
cations with short-range obstacles certainly plays
an important role. Of similar importance is the
actual dynamics and the inertia of dislocations,
which up to now is not included in the discrete
dislocation simulations at all. The dislocation
simulations are so far based on viscous laws of
motion which certainly are insufficient for high
speed deformation of materials in sliding contact,
for the modeling of cutting processes or possibly
even for many of the low temperature dislocation–
dislocation and dislocation–obstacle interaction
processes, for which first studies are just appearing
[152]. Atomistic modeling has been used and will
be used even more in the future to test ideas and
assumptions about dislocation behavior, which at
the end may be described by mesoscale techniques
but must be based on the atomistic understanding.

Long-term “ thermal” problems will continue to
represent an exciting challenge for the atomistic
community. These problems evidently cover too
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large time-wise for molecular dynamics but could
be handled by discrete dislocation dynamics [18–
21] approaches, with dislocation-core-level infor-
mation provided by atomistic simulations. To do
this, the “ thermal” behavior of individual dislo-
cations in different structures/loading conditions
needs to be predicted, and despite the recent pro-
gresses described in Section 3, a more complete
database still needs to be established. Methods
such as the NEBM as described in Section 3.1.3
can be applied to many more situations, such as
dislocation–interstitial interactions [153], and dis-
location–vacancy interactions including pipe dif-
fusion or dislocation climb, etc. For sub-micron-
scale deformation processes such as nanoindent-
ation, the effects of time-dependent evolution of
the generated dislocation structures need to be
investigated. Apart from being an interesting fun-
damental issue [25], sub-micron-scale, time-depen-
dent effects are known to severely affect the accu-
racy of the measurements of mechanical
parameters such as reduced modulus and hardness
by depth-sensing indentation techniques [154–
156]. Metals are also known to creep orders-of-
magnitude faster in the nanoindentation condition
compared to the bulk condition at room tempera-
ture [154], and the reason is unknown so far.

In conclusion, it is clear that atomistic modeling
has become a mainstream tool in the study of the
mechanics of materials. Future opportunities
abound, particularly with the current drive towards
nanoscale systems. As in other areas of science,
coherent and strong connections between theory,
experiment and computation is the key to success.
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