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1 Introduction

The purpose of this chapter is to discuss the atomic structure and interac-
tions in the dislocation core and their effects on dislocation mobility from
the standpoint of theoretical concepts, physical models and simulation stud-
ies, with due consideration of relevant experimental results. Several pre-
vious chapters in this series provide the necessary background and more
extensive exposition into several topics to be discussed here: Bullough and
Tewary, “Lattice Theories of Dislocations” (vol. 2, 1979), Weertman and
Weertman, “Moving Dislocations” (vol. 3, 1980), Schoeck, “Thermodynam-
ics and Thermal Activation of Dislocations” (vol. 3, 1980), and M. Duesbery,
“The Dislocation Core and Plasticity” (vol. 8, 1989). Rather than being
comprehensive, our intent in this new chapter is to highlight some of the re-
cent developments in understanding dislocation core structure and mobility.
These include the driving forces and activation barriers for dislocation mo-
tion, the models which relate mobility to core properties, and the results of
atomistic simulations at the levels of first-principles calculations and empiri-
cal and semi-empirical interatomic potentials. In our discussions, the major
emphasis is placed on physical ideas and observations. In fact, technical de-
tails of modeling and experiments are only briefly mentioned and only where
required for clarification of physics issues or for interpretation of results.

In this introductory section we provide general background and introduce
several basic concepts in order to frame the discussion given in three subse-
quent sections dealing with particular crystal structures and material types:
FCC metals, diamond-cubic semiconductors, and BCC metals. The reason
for treating FCC materials first is that historically the understanding of core
effects on dislocation mobility developed mostly in conjunction with this
crystallography class. FCC systems give us a good chance to discuss some of
the better established views and approaches and set the stage for contrasting
these with more recent observations of core effects in other materials. Dis-
location cores in FCC materials tend to be planar and spread out in extent;
they dissociate into partials that interact with each other and move by glid-
ing on a slip plane. Dislocation response to stress in these systems generally
obeys the Schmid law established for macroscopic crystal plasticity. A well-
known model, due to Peierls and Nabarro, provides a simple framework that
captures dislocation core and mobility behavior in FCC metals reasonably
well. In contrast, dislocation cores and dislocation mobility in semiconduc-
tors are affected by strong directional bonding that is responsible for the
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appearance of a rich family of secondary core defects. The existence of glide
and shuffle sets of dislocation positions in diamond cubic semiconductors in-
troduces still more complexity with regard to the role of core mechanisms
in dislocation motion. Plasticity behavior of BCC metals is controlled, to a
large extent, by the motion of screw dislocations. The core of screw dislo-
cations is relatively compact but in some BCC metals exhibits a tendency
to three-way non-planar dissociation or polarization. Dislocation mobility
exhibits large deviation from the canonical Schmid behavior as a function
of stress. The connection between details of core structure and mobility of
screw dislocations in BCC metals has been a topic of intense research but
remains somewhat controversial. Of all known material systems, the most
pronounced and intricate core effects arguably are observed in ordered inter-
metallic alloys, such as nickel-based superalloys or TiAl composites. These
however are discussed in great detail in a recent volume (vol. 10) of this series
and will not be considered here.

Since the most recent chapter by M.S. Duesbery (vol. 8) that was ded-
icated to dislocation core and crystal plasticity, several important develop-
ments have come to fore that brought about significant progress towards
quantitative analysis of the dislocation core structure and its effects on mo-
bility. A major factor in these recent developments is the emergence of new
capabilities for accurate first-principles electronic structure calculations of
dislocation core structure, energy and mobility. Over the same period, the
models based on the empirical potentials have been used to explore realistic
complexity of fully three-dimensional dynamics of individual dislocations and
dislocation groups. These recent simulations revealed a rich sub-structure of
secondary core defects and multiple mechanisms of dislocation motion in 3D.
Yet another principal development of the past decade is the emergence of the
fully three-dimensional mesoscale simulation methodology of Dislocation Dy-
namics (DD) that can be used, in principle, for computational prediction of
overall crystal plasticity behavior from the underlying physics of dislocation
motion. For this impressive development to deliver on its ultimate promise,
understanding of the core mechanisms of dislocation mobility is crucial. Fi-
delity of DD simulations places high demands on the accuracy of dislocation
mobility functions that can be derived and parameterized from direct atom-
istic simulations, dislocation theory and experimental observations. On the
experimental side, new capabilities for HREM allow for direct observations of
the secondary structure of dislocations and approach the limits of resolution
required to resolve the relevant details of the dislocation core structure [1].
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However, reading through this chapter one is likely to observe that the
progress towards understanding dislocation core effects has not been always
steady. A few seemingly well established ideas and concepts now appear to be
in conflict with the more recent data, while other previous inconsistencies no
longer exist in light of the new results. Even if it is disturbing that a number
of key issues in dislocation mobility remain controversial, we consider this
as an indication to critically revisit, given the new capabilities, some of the
existing concepts in dislocation physics. We believe the situation presents an
opportunity to develop new knowledge of dislocation mobility that is more
coherent and quantitative than previously existed.

Basic concepts

Plastic strain produced in response to shear stress is a cumulative result
of multiple displacements along the crystallographic slip planes in quanta of
the Burgers vector. Conservative dislocation motion or glide involves local
atomic displacements that proceed through switching one or few interatomic
bonds at a time. In comparison, homogeneous shear along the crystallo-
graphic slip plane requires switching all interatomic bonds across the plane
at once and, as such, must be prohibitively expensive energetically unless the
stress reaches rather high values near the theoretical shear strength (typically
of the order of µ/10, with µ the shear modulus of the material). Experimen-
tally observed values of the yield stress are typically much lower than this
ideal shear resistance, with notable exceptions of deformation response of
whiskers [2] and single crystals under nano-indentation [3, 4].

Exactly how a dislocation moves is defined by the energetics of bond-
switching rearrangements required for its translation by a unit atomic dis-
tance in the glide plane. Somewhat loosely, one can define the core as a
region of crystal lattice around the dislocation line in which the relative
displacements of the neighboring atoms exceed the elastic limit (say 2% in
terms of the local shear strain). Given the highly non-linear character of
interatomic interactions in the core, it is clearly the relative motion of the
core atoms that contributes most to the energetics of dislocation translation.
Conversely, the relative displacements of the atoms outside the core will not
contribute as much to the energy of dislocation translation. The latter is a
sensitive function of the core structure, including the details of the atomic
arrangement in the core, and of the atomic pathways by which this structure
changes when the dislocation moves. Core structure under zero stress has
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received much attention over the years given its real or presumed connection
to the mechanisms of dislocation motion. In the subsequent sections we will
discuss various approaches to modeling and observing dislocation core struc-
ture developed for various materials. We will also give examples of insights
one can obtain by considering the core structure of dislocation both under
zero and non-zero stress.

The core could exist in several metastable structures that differ from
each other by virtue of some in-core rearrangements. Here, the nonlinear
interatomic forces between the individual atoms including the local bonding
topology come into play. The difference between one core structure and
another manifests itself in a difference in the core free energy. Experiments
are unable to provide precise information on the core energies, such data can
be obtained only from atomistic calculations. Although the total (elastic +
core) energy of the dislocation is a physical quantity, its partitioning into
core and elastic energies is, to a large extent, arbitrary and depends on the
choice of the core cutoff parameter - core reference radius. The latter should
not be identified with a physical extent of the non-linear region of the core,
although these two parameters are often confused. The core free energy is
the factor that determines the stability of a particular atomistic structure.
In comparing core energies of various metastable core structures, one must
use the same core cutoff parameter which, otherwise, can be arbitrary. For
the same reason, one must report a particular value of the core cutoff radius
selected for partitioning the dislocation energy.

Another fundamental property is the minimum stress required for the
dislocation to move, i.e. the Peierls stress. Given the defining role dislo-
cations play in crystal plasticity, the Peierls stress is related, although not
necessarily directly, to the macroscopic yield stress above which the crystal
deforms plastically. In reality, dislocation motion can be assisted by thermal
fluctuations. Thus the minimal stress to move a dislocation is a function of
temperature and the time over which dislocation motion is observed, both in
simulations or and in laboratory experiments. In contrast, Peierls stress is an
idealized concept, defined as the minimal stress to move a dislocation at zero
temperature. Experimentally, this is related to the yield stress measured at
vanishingly low temperatures. In computational models, the zero tempera-
ture condition corresponds to quasi-static relaxations, where the system stay
close to its ground state. In such cases, quantum effects of the nuclei, such
as zero-point vibrations, are usually ignored, even though the interaction
forces between atoms can be solved by quantum mechanical treatment of the
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electrons. When the conditions are met where both thermal fluctuation and
quantum tunnelling effects can be ignored, Peierls stress becomes a well de-
fined measure of intrinsic lattice resistance to dislocation motion, and serves
as a connection between experiments and simulations. We will encounter it
frequently in the discussions throughout the chapter.

Closely related to the Peierls stress is another measure of the lattice resis-
tance to dislocation motion - the Peierls barrier. It is defined as the energy
barrier that a straight dislocation must surmount in order to move to a neigh-
boring lattice position - Peierls valley. The Peierls barrier is of course defined
per unit length of the dislocation line. At a low but non-zero temperature
this barrier can be overcome locally, by spontaneous formation of a kink pair
which throws a small part of the dislocation into the neighboring Peierls val-
ley. The kinks can then propagate along the line and either recombine or run
away from each other, completing translation of the whole line. Under zero
stress the barriers for forward and backward motion are exactly equal. How-
ever, under non-zero stress one of these barriers is reduced while the other one
becomes higher so that directional dislocation motion (glide) begins. If the
stress rises still further, at some point the smaller of the two barriers vanishes
altogether - this condition corresponds to reaching the Peierls stress. Also, at
high enough temperatures the Peierls barrier can become totally washed out:
in such conditions kink mechanisms play no or little role while the overall
mobility of an unpinned dislocation is controlled by viscous friction due to
the interaction between moving dislocations and phonons and electrons. All
these and other, less apparent, regimes of dislocation motion are discussed
in the following three sections in conjunction with FCC, diamond cubic and
BCC material systems.
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2 FCC Metals

At room temperature, noble metals (Cu, Ag, Au), platinum group metals
(Rh,Pd,Pt,Ir), some alkaline metals (Ca, Sr) and Al, Ni and Pb assume the
face-centred cubic (FCC) close packed structure. FCC metals and alloys are
technologically important both as structural materials (especially Al alloys
and stainless steel) and as special application materials, e.g. interconnects
in the electronic circuitry. Most FCC materials can combine stiffness with
formability and remain ductile down to low temperatures. Because their
mechanical properties can be significantly affected and improved by alloying,
FCC metals are ideal base materials for alloy design. Many of the useful
properties of these materials are direct results of the underlying dislocation
behavior. As such, dislocations in FCC and other close-packed metals have
been the focus of much attention in the past, making these materials the
most widely studied group from this point of view.

2.1 Core Structure

Much of the dislocation behavior observed in FCC metals and alloys results
from the Shockley dissociation, by which perfect 1

2
〈110〉 dislocations split into

two partial dislocations, bounding an area of stacking fault (SF). Expressed
in Miller index notation such a reaction reads

1

2
[110] =

1

6
[211] + SF +

1

6
[121] . (1)

While the reduction of elastic energy achieved by this dissociation is consider-
able, this reaction can occur only if a stable low-energy stacking fault exists.
In FCC materials stable stacking faults are found only in the {111} planes.
The dissociated dislocations glide in the planes containing the stacking faults
which simply move along with the partial dislocations. We emphasize that
it is the availability of stable stacking faults in the {111} planes that defines
the well-known predisposition for dislocations to glide on these planes, rather
than the fact that these planes are the most widely spaced. In other material
systems where stable stacking faults do not exist, the preference to gliding on
any particular system of slip planes is less distinct (see for example the BCC
section). Even in FCC aluminum which has a relatively high SF energy on
the {111} plane, slip activity on {001} planes is sometimes observed [5](p.
272).
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Figure 1: (a) Plane-on view of the {111} plane of FCC lattice. (b) Perfect

Burgers vectors ~b1,2,3 and partial Burgers vectors ~bp1,p2,p3 on the {111} plane.

(c) A perfect dislocation loop with Burgers vector ~b3, formed by first shifting

the lattice by ~bp2 in the outer loop, and then shifting the lattice by ~bp1 in the
inner loop, eliminating the stacking fault.

The existence of low-energy SF on the {111} planes is a consequence of
the particular packing sequence of {111} atomic layers, a universal charac-
teristic of all FCC metals. This packing is illustrated in a plane-on view
through {111} planes (see Fig. 1(a)) in which three types of atomic layers
with different in-plane positions are marked as A, B and C. Notice that the
three layers are shifted by 1/3〈111〉 along the plane normal, forming a re-
peat pattern with periodicity 〈111〉. Each layer presents a regular triangular
arrangement of atoms, the layers being stacked in such a way that atoms in
layer B are lined up over the centres of the triangles formed by the atoms in
layer A. Likewise, atoms in C are at the corresponding centres of the triangles
in B or, equivalently, in the centres of the alternate triangles in A. Atoms
in the next layer A are exactly aligned with the atoms in the layer A at the
bottom, thus completing the stacking period.

An intrinsic stacking fault (ISF) is formed when atoms of one layer, say
C, are shifted into the “wrong” triangles of the underlying B layer, and
all the layers above C are shifted by the same amount leaving the relative
stacking of all other layers unchanged. At this point, atoms in the shifted
layer C are aligned with the atoms in the bottom layer A. Therefore the
stacking sequence changes from · · ·ABCAB · · · to · · ·AB|ABC · · ·, where |
indicates the location of the stacking fault. By shifting every second {111}
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layer, the FCC stacking can be entirely transformed into a HCP structure,
· · ·ABABAB · · ·. Given that this shift does not affect the relative positions
of first and second nearest neighbors (18 atoms altogether), the energy dif-
ference between the two structures is expectedly small. With few notable
exceptions, the energy of an isolated ISF is indeed quite low for most FCC
metals, typically in the range from 10 to 200 mJ/m2 [5](p. 839). Shifting suc-
cessively two layers in the same sense creates the so-called extrinsic stacking
fault (· · ·AB|A|CABC · · ·). Finally, shifting every layer above a pre-selected
{111} plane in the same sense creates a perfect twin (· · ·CBACBA · · ·).

A partial dislocation loop can be viewed as the boundary separating an
area of ISF from the rest of the plane. This partial shift can occur in any of
the three equivalent directions ~bp1,~bp2,~bp3, shown by the arrows in Fig. 1(b).
To make a complete (perfect) dislocation, two atomic layers bounding the
ISF inside the first partial loop have to be shifted again along another partial
shift direction. However, to avoid the atoms moving on top of each other,
the second shift should be chosen from a different set of three partial shift
directions, Fig. 1(c). Clearly, for every perfect dislocation with Burgers vec-

tor ~b, only one combination of partial shifts ~bp1 and ~bp2 exists that avoids
atomic run-ons and then only if introduced in a certain order. This simple
observation lies behind the well-known leading-trailing partial rule usually
formulated using the Thompson tetrahedron notation, see Fig. 3 (Axiom
10-1 in [5]).

The separation distance between two partials is defined mainly by the
balance of two forces, the elastic repulsion between the partials and the
attractive “glue” force due to the ISF. For the dissociation reaction of Eq. (1),
continuum elasticity predicts that the equilibrium spacing X0 between two
straight parallel partial dislocations under zero stress is

X0 =
K ′b2

γISF

, (2)

where K ′ is a certain combination of elastic constants that depends on the
dislocation character angle, and γISF is the stacking fault energy. In ob-
taining this formula, one considers the two partials as separate dislocations
connected by an ISF. Alternatively, the whole assembly of two partials and
the ISF can be viewed as an extended core of the perfect dislocation. This
particular core structure of 1

2
〈110〉 dislocations determines their mobility and,

through that, the overall plasticity behavior of FCC metals and alloys.
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Similar, albeit more complicated, dissociation reactions occur in L12 and
L10 alloys. However, in contrast to FCC metals, dislocations in these ordered
alloys can dissociate in rather complex ways due to the availability of stable
stacking faults and anti-phase boundaries in various crystallographic planes.
As a consequence, the ordered inter-metallic alloys exhibit perhaps the most
interesting core effects in dislocation mobility. These have been reviewed
extensively in volume 10 of this series.

2.2 Mobility

The common characteristic of highly mobile dislocations in FCC metals and
alloys is a clear reflection of the common core structure of these dislocations.
Atomistic calculations show that in FCC metals the Peierls stress is of the or-
der of 100 MPa or lower for dislocations of all characters [6]. Correspondingly
the value of the Peierls barrier is of the order of∼ 0.005eV/b. Therefore, even
modest thermal agitation at low temperatures should be sufficient to sur-
mount such a small barrier. For this reason the kink mechanisms that are so
important in materials with high lattice resistance to dislocation motion (see
the following sections) are not expected to play a major role in FCC metals.
Molecular Dynamics (MD) simulations also reveal that at room temperature
dislocations do not move in a fashion consistent with kink mechanisms; they
continuously undergo small oscillations in response to thermal fluctuations.
The resulting mobility is so high that in laboratory measurements it would
be difficult to extract the intrinsic lattice resistance to dislocation motion
where various extrinsic effects, such as dislocation-impurity interactions, are
generally present. Indeed, experiments on very pure single crystals of Cu
show that the yield stress essentially vanishes with increasing sample purity
[7].

The reason for the low intrinsic resistance is generally the extended and
planar nature of the dislocation core combined with the reduced Burgers
vector of the partial dislocations. In addition to extension by dissociation,
the core of partial dislocations is also planar and rather wide. It is exactly
for this situation that the well-known model of Peierls and Nabarro (PN)
was initially developed. This model relates resistance to dislocation motion
to variations of dislocation energy as a function of the dislocation character
reflecting periodicity of the host lattice. The energy is assumed to consist of
two parts, an elastic strain energy stored in the two half-crystals, and a non-
linear misfit energy γ due to bond distortions across the plane in which the
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Figure 2: The generalized stacking fault energy γ(u), its derivative f(u) =
dγ(u)/du and the distribution of Burgers vectors ρ(x), whose relationship is
given in Eq. (3). (a) A single peak in γ(u) corresponds to a perfect (non-
dissociated) dislocation. (b) A local minimum in γ(u) corresponds to the
stacking fault region of a dissociated dislocation. (c) Fractional dislocations
bounding an unstable stacking fault.

core spreads. Suppose we consider the dislocation to be spread out in the x-z
plane with the dislocation line running along the z-axis, and the displacement
u oriented parallel to the Burgers vector b. The dislocation is represented
by a continuous distribution of inter-planar misfit across the special plane
given by the density of a continuous dislocation distribution ρ(x) = du/dx,
normalized to the magnitude of the Burgers vector,∫ ∞

−∞
ρ(x)dx = b . (3)

The solution appears from a balance between the stress induced by ρ(x) and
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the restoring force f(u) = −dγ/du,

A

∫ ∞

−∞

ρ(x′)

x− x′
dx′ = −dγ/du = f(u) (4)

where A is an appropriate constant and γ is assumed to be a periodic function
of u. The function γ(u) is usually referred to as the generalized stacking fault
energy, or γ-surface. Mathematically the model can be viewed as a Hilbert
transform between ρ(x) and f(u); given γ(u) one can find ρ(x) and vice
versa. Fig. 2 shows three possibilities1, a perfect dislocation (a) expressed
by a single peak in γ(u), a dislocation split into two partials with a stacking
fault in between (b) showing a local minimum in γ(u), and a dissociated
dislocation with an unstable stacking fault (c) with some structure in γ(u)
but no local minimum. In case (c), one has two fractional dislocations with
no well-defined stacking fault in between.

Based on the Peierls-Nabarro (PN)model, estimates of the Peierls stress
τPN have been given for various materials [8, 9, 10, 11, 12, 13]. According
to this model [9, 10], a wide core combined with a reduced Burgers vector
should result in a reduced Peierls barrier. A similar relationship seems to
hold for dislocation kinks: one extreme illustration was given in [13] where
kinks on dissociated dislocations in Cu were examined. The kinks were found
to have widths of the order of 50b. Fittingly, the barrier for kink migration
was so small that a value could not be determined. The reported upper
bound estimate of the migration barrier was only 10−6 eV showing that the
description of dislocation mobility in terms of kink mechanisms is hardly
appropriate in FCC metals.

It was noticed earlier that the interaction between partials can lead to fur-
ther reduction of the lattice resistance to dislocation motion. Benoit et al [14]
observed that, depending on the balance between inter-partial repulsion and
SF attraction, the distance between the partials may become incommensu-
rate with the periodicity of the Peierls potential. Under such conditions,
dislocation mobility can be further reduced by the partials overcoming the
Peierls barrier in an anti-phase manner. That is, while the leading partial is
scaling up the barrier the trailing partial is already on the descending slope
and vice versa. On the other hand, when the equilibrium distance is com-
mensurate with the Peierls potential, the partials have to climb up the barrier

1Based on a lecture by V. Vitek at the Tri-Lab Short Course, “Dislocations in Materi-
als”, June 8-10, 1998, Lawrence Livermore National Laboratory, Livermore, CA.
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simultaneously. This idea was further explored and quantified by Schoek [15]
and Nabarro [12]. Specifically, when the separation between the partials are
incommensurate with the Peierls potential, the effective Peierls stress be-
comes much smaller than that in the commensurate case, and acquires an
exponential dependence similar to the original P-N formula. Nabarro [12]
thus explains the above mentioned controversy by arguing that it is the dis-
locations with partial separations at a half-integral multiple of the Peierls
valley spacing that controls the flow stress and Harper-Dorn creep experi-
ments. This is due to the fluctuation of the internal stresses which cause
the fluctuation of the partial separation, and the fact that the least strongly
pinned dislocations control the experiment. On the other hand, the Bordoni
peak experiments probe all the segments of the dislocation network, and the
signal is not affected much by the internal stresses. Thus, the measurements
agree better with Huntington’s expression.

We note in passing that, in most FCC metals, such a coupling between
the partials is expected to have a minor effect on dislocation mobility given
that the lattice resistance to dislocation motion is very small in the first
place. Such dynamic couplings are more likely to play a role in materials
with high Peierls stress, such as silicon, as will be discussed in Section 3.

At temperatures that are not too low, dislocation mobility is controlled
by various modes of dislocation-phonon interaction commonly referred to as
phonon drag [16, 17]. MD simulations of dislocation motion in FCC met-
als are relatively straightforward and allow direct calculations of the drag
coefficient [18, 19], which is the ratio between applied stress and disloca-
tion velocity. In addition to high mobility, dislocation motion was observed
to involve “breathing modes” in which the separation between two partials
varies in time in a quasi-periodic fashion [20]. No noticeable anisotropy of
dislocation mobility between edge and screw dislocations has been observed.
At temperatures about 30K and below, interaction with electrons becomes
important; this aspect of the problem is beyond the reach of MD simulations.

Because the intrinsic lattice resistance to the primary 1
2
〈110〉{111} slip

is low in FCC metals, it is mainly the interaction between dislocations with
other defects that gives rise to mechanical strength of the material. For ex-
ample, the formation of LC junctions by two dislocations zipping together
gives rise to work hardening. At the same time, interaction between dislo-
cations and point defects, especially impurities, is an issue of considerable
practical importance, given that solution hardening is a major means for
altering mechanical properties of alloys. Below we discuss the effects of dis-
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Figure 3: Thompson tetrahedron notation for FCC slip systems.

location interactions with other defects on its mobility in FCC metals and
alloys.

2.3 Junctions

Interactions between dislocations result in the formation of junctions. The
constraining effect of dislocation junctions on dislocation motion becomes
increasingly more important with increasing strain. In FCC systems, junc-
tions are formed in the collisions of two dislocations gliding on different
{111} planes. For the description of dislocation reactions in FCC metals,
the Thompson tetrahedron, shown in Fig. 3 [5], is helpful. Pairs of Roman
letters represent perfect Burgers vectors, such as AB = 1

2
[110], and Greek-

Roman pairs represent partial Burgers vectors, such as Aδ = 1
6
[121].

A Lomer-Cottrell (LC) junction is formed when two glissile dislocations
BC on plane d = (111) and CD on plane b = (111) collide and zip along
direction AC. The reaction, expressed in Burgers vectors, is

BC(d) + CD(b) → BD (5)
1

2
[101] +

1

2
[110] → 1

2
[011] (6)
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Figure 4: Formation of Lomer-Cottrell lock junction dislocation by reaction
of two glissile dissociated dislocations.

The resulting dislocation has the same type of Burgers vector (BD = 1
2
[011])

as the incoming dislocations. But, because it is aligned along direction AC =
[011], its glide plane is (100). To appreciate the core structure of the LC
junction dislocation, we note that both incoming dislocations are dissociated,

BC = Bδ + δC (7)

CD = Cβ + βD (8)

As shown in Fig. 4, the leading partials of the incoming dislocations react,
thus forming a stair-rod dislocation through the reaction,

δC + Cβ → δβ (9)
1

6
[112] +

1

6
[121] → 1

6
[011] (10)

The resulting stair-rod dislocation has a Burgers vector exactly 1/3 of that
of the LC junction dislocation and lies on the same (100) glide plane. From
Fig. 4(b) it is easy to see that the LC dislocation is difficult to move because
it is dissociated into two {111} planes that are inclined with respect to its
own glide plane (100). This is supported by direct atomistic calculations that
predict that the Peierls stress of extended junction locks in Ni is of the order
of 10GPa [21, 22]. The core structure of the LC junction is shown in Fig. 5.

Recently, several large-scale atomistic simulations on dislocation junction
in FCC metals [21, 23, 24] have shown that the junction energetics computed
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Figure 5: Core structure of LC junction dislocation [21] viewed along [101]
junction line. The junction (black atoms) appears at the intersection of two
stacking faults resulting from two intersecting partial dislocations, each of a
mixed, 30◦ character with respect to the junction line direction. In terms
of atomic displacement, the combination of the two partials is equivalent to
carving out a triangular wedge (grey atoms) and displacing the wedge matter
away from the junction by 1/6[101] and along the junction line by 1/4[101].
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Figure 6: Unzipping of LC lock under increasing stress [23]. Stress is (a)
0.0µ, (b) 0.011µ, (c) 0.018µ, just before the junction breaks, and (d) 0.018µ
at the end of the simulation.
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from atomistic simulations [23] can also be accurately reproduced using a
continuum model of dislocations, such as in dislocation dynamics (DD) [24].
Remarkably, two separate simulations [23, 24] agreed not only in the general
appearance and strength of the Lomer-Cottrel (LC) junctions in Al but also
in the fine details of junction configurations. The conclusion reached in this
study was that the core does not contribute appreciably to the energetics
of junction formation and destruction as long as these processes proceed
through the zipping-unzipping mechanisms. The same conclusion was earlier
made by Friedel [25] and confirmed in [21]. However, here we note that
the sessile nature of the LC junction is another very strong effect of the
core structure on dislocation mobility. In the above studies, the junction
dislocation never moves in its nominal (100) glide plane; the only motion that
is taking place is the translation of the triple nodes along the intersection
line (Fig. 6). The junction strength against unzipping is defined as the stress
at which the length of the junction dislocation reduces to zero, i.e. when the
junction fully unzips. Assuming that the LC junction is completely sessile in
the first place (a strong core effect), the critical stress to unzip the junction
can be described quite accurately by continuum models (i.e. without any
core contribution). If, on the other hand, the LC junction could move in its
glide plane in response to, possibly large, stress, the dislocation core would
have a large effect on the lattice resistance to the junction motion. This
possibility will be discussed shortly.

An interesting consequence of junction zipping and unzipping was uncov-
ered in [21]. This is the mechanism of “junction replacement” involving three
dislocations. Initially, a pair of dislocations was observed to form a LC junc-
tion that unzips at a later stage in favor of a new, stronger junction, formed
in a collision of one of the first two dislocations with a third dislocation.
This observation suggested an interesting unit mechanism of “survival of the
fittest” by which the distribution of junction strength is gradually shifted,
in the course of strain hardening, towards stronger and stronger junctions.
This is also a mechanism by which dislocation fluxes can effectively propagate
through various elements of the hardening microstructure, e.g. dislocation
bundles or cell walls, so that dislocations incorporated in a bundle or wall
are released by incoming dislocations with the same Burgers vectors.

Let us now examine in more detail the core structure and its possible
effect on the mobility of LC junctions. Consider the core shown in Fig. 4(b).
It has been predicted that the equilibrium configuration of this complex core
should be asymmetric, with one of the two stacking faults more extended
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than the other [26]. Indeed, such an asymmetric configuration was observed
in silicon by HREM [27]. Because the symmetry can break in two ways,
the ground state core structure becomes doubly degenerate. This, as al-
ways, brings about a possibility of special point defects that can form at
the boundary between two alternative core variants. In the following we will
often refer to such zero-dimensional objects as reconstruction defects (RD).
This fine structure of the core can affect the lock strength in the sense that
lock dislocations may be able to move under stress, contrary to the commonly
accepted notion of their sessile nature. This is because the extent of non-
planar dissociation at the RD is significantly reduced compared to the rest of
the LC dislocation: this local constriction creates a soft spot for possible mo-
bility initiation on the {100} plane. Another possible way for “sessile” locks
to move is nodal mechanisms. We note that one of the triple nodes on the LC
junction can become fully or partially constricted. If so, the lock dislocations
can respond to stress by moving this triple node in the plane containing the
lock’s Burgers vector. That the locks can be removed was actually reported
based on a series of TEM observations [28]. This three-dimensional nature
of dislocation junctions and locks is an interesting venue for further study.

2.4 Cross-slip

Cross-slip and climb are two mechanisms enabling dislocations to leave their
glide planes. However, at low and moderate temperatures where climb is
not operational, cross-slip of screw dislocations is the only means by which
dislocation motion can spread to adjacent glide planes. In FCC systems,
because of the planar dissociation into the Shockley partials, dislocations are
confined to {111} planes in which they dissociate. Even if a dislocation is
locally in a screw orientation, the planar dissociation confines it to move in
the dissociation plane. Only rarely does some special event (cross-slip) takes
place so that a dissociated screw dislocation changes its dissociation plane
from the original glide plane to the cross-slip plane. In fact, in pure Al, where
the SF energy is high and dissociation is largely suppressed, the confining
effect of the {111} planes is greatly diminished and slip in planes other than
{111} is observed [5](p. 272). Consequently, cross slip in Al is expected to
occur much more frequently than in other FCC metals with lower SF energy,
such as Cu or Ag.

Two mechanisms, namely Friedel-Escaig (FE) and Fleischer (FL), have
been proposed so far for dislocation cross slip in FCC metals, and are illus-
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Figure 7: Friedel-Escaig mechanism of dislocation cross-slip in FCC metals.
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Figure 8: Fleischer mechanism of dislocation cross-slip in FCC metals.

trated in Fig. 7 and 8, respectively. The FE mechanism, which has received
wide attention, involves constriction of two partials in the initial glide plane
followed by re-dissociation into the cross-slip plane. In Fig. 7(a), a screw
dislocation with total Burgers vector 1

2
[110] is initially dissociated in (111)

plane, with the Burgers vectors for leading and trailing partials being 1
6
[211]

and 1
6
[121], respectively. In Fig. 7(b), the two partials are shown to constrict

to a point, assisted by thermal fluctuation and, possibly, local stress. Finally,
in Fig. 7(c) the dislocation re-dissociates in (111) plane at the constriction
point into two different partials, 1

6
[211] and 1

6
[121] respectively.

Although the FE mechanism has become widely accepted, until recently
there has been no conclusive data to support its validity, except some indirect
experimental evidence [29]. Recently, the mechanism of cross-slip in FCC
Cu was examined in full atomistic details [30, 31, 32]. The FE cross-slip
mechanism was shown to have a reasonably low activation barrier, especially
if cross-slip is initiated at a pre-existing jog. Although the activation energy
for the FE mechanism is seemingly in agreement with experimental estimates,
some uncertainty still exist since the Fleischer (FL) mechanism of cross-slip
may be a viable alternative to FE.

In the FL mechanism, dislocation constriction is not required. As shown
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Figure 9: Fleisher mechanism of dislocation cross slip in FCC Al observed in
atomistic simulations. Atoms are shaded according to the so called centro-
symmetry deviation (CSD) parameter. Only atoms with CSD significantly
different from zero, i.e. local packing different from perfect FCC are shown.

in Fig. 8, a small segment on the trailing partial emits a small area of stacking
fault in the cross-slip plane. In the cross-slip plane, this stacking fault is
bounded by the leading 1

6
[211] partial on one side and a 1

6
[110] stair rod on

the other. As the stacking fault in the cross-slip plane expands, the stacking
fault on the original plane contracts around the stair rod dislocation. The
leading 1

6
[211] partial in the original plane eventually combines with the stair

rod dislocation and forms the trailing 1
6
[121] partial which is now ready to

glide on the cross-slip plane. The end result is exactly the same as that shown
in Fig. 7(c) but the atomic pathway is very different from the FE mechanism.

The FL mechanism was observed [33] in atomistic simulations of stress
driven cross-slip in FCC Al, using the Ercolessi-Adams potential [34]. Fig. 9
shows the dislocation core structure before, during and after the cross-slip
event. Only atoms with local packing significantly different from that of
FCC are shown, indicating the position of stacking faults and partials. The
simulation is quasi 2-dimensional in that the simulation cell is periodic along
the dislocation line. In this case, the entire dislocation line undergoes cross-
slip simultaneously, which is not exactly the same as the FL mechanism as
shown in Fig. 8. Nonetheless, the cross-slip pathway clearly does not involve
constriction and the non-planar core structure observed during the transition
is in agreement with the FL mechanism. The core structure of the dislocation
undergoing cross-slip via the FL mechanism resembles that of the Lomer-
Cottrell dislocation junction, where the dislocation core dissociates into two
{111} planes, bounding a stair-rod dislocation.

The above simulation was performed at zero temperature under shear
stress τ applied in the plane perpendicular to the original glide plane. Cross-
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slip occurs when τ reaches 1.4GPa. This is suggestive that the FL mechanism
may become more favorable under high stress. On the other hand, the FE
mechanism is usually considered to operate under low stress conditions. Fur-
ther atomistic simulations in three dimensions can help establish the relative
role of FE and FL mechanisms, but care should be taken to allow dislocations
to explore a variety of cross-slip paths. In that regard, it should be noted
that the simulations [32] that revealed the FE mechanism relied on the so
called Nudged Elastic Band (NEB) method for finding a low energy path-
way. Principally, the latter method is unable to sample transition paths that
deviate significantly from the initial trial (or guess) path, which is usually
taken as a straight line (in multi-dimensions) connecting the initial and final
states. In [30, 31, 32] the initial and final states chosen for the NEB method
favor the FE mechanism by symmetry.

2.5 Interaction with point defects

In this subsection we discuss a few recent results revealing the mechanisms of
dislocation interaction with point defects and clusters in FCC metals. The
classical theory predicts dislocation mobility to be highly sensitive to the
nature of impurities, their concentration and mobilities. A variety of inter-
action mechanisms have been discussed in the context of Cottrell, Suzuki
and Snoeck atmospheres [5](p. 639). Although generic aspects of interac-
tion between substitutional impurities and dislocations are well understood,
computational capabilities for predictive modeling are still lacking.

The problem of dislocation - point defect interaction is complex. The
simplest case is probably the interaction with a substitutional atom at a
large distance away from the dislocation. In this case, electronic structure
calculations can be used to compute the size and stiffness misfit associated
with the alloying impurity atoms [35]. This information can then be used
in an elastic model to obtain the hardening effect of the impurity due to its
long range interactions with dislocations.

When point defects are mobile, or they happen to lie on the path of a
moving dislocation, it becomes important to account for their short-range
(core) interactions. In this case, it is necessary to study systems with a large
number of atoms, which are beyond the reach of accurate electronic structure
methods. Direct MD simulations of the type presented in [36] in the context
of pipe diffusion can be employed for the purpose. As we are forced to use
molecular dynamics methods with empirical potentials, the major difficulty
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(a) (b) (c) (d)

Figure 10: (a),(b),(c) MD snapshots of edge dislocation interaction with an
interstitial loop in Ni. (d) Dislocation velocity as a function of stress. The
dashed curve corresponds to free dislocation at T = 100K. Solid curve is
for dislocation with an attached interstitial loop, with empty symbols for
T = 10K, full symbols for T = 100K [18].

is of course the notorious inaccuracy or, often, complete lack of interatomic
potentials for atom-atom interactions in metals and alloys.

Considerable progress has been achieved recently in direct Molecular Dy-
namics modeling of dislocation interaction with interstitial and vacancy clus-
ters in FCC metals Ni and Cu, for which reasonable interatomic potentials
do exist [18, 37, 38]. Both vacancy and interstitial type defects were found
to serve as pinning obstacles to dislocation motion and, in the short-range
collisions, to be partially or completely absorbed or transformed. These
mechanisms are especially important for understanding the mechanical be-
havior of irradiated materials where collision cascades produce a large number
of displaced atoms whose subsequent motion results in gradual evolution of
radiation-induced defect microstructure, from Frenkel pairs to a distribution
of defect clusters. These defects offer considerable resistance to dislocation
motion and are thought to harden or even shut down dislocation multiplica-
tion leading to a characteristic upper yield behavior followed by a sharp stress
decrease at the lower yield point. At this point considerable shear localiza-
tion is observed in the form of clear channels [39]. Shear localization results
in high stress concentrations at the grain boundaries and can eventually lead
to crack initiation.
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The interaction between a moving edge dislocation and a small self-
interstitial (SI) loop is considered in [18]. A four-interstitial cluster is intro-
duced away from the glide plane of the dislocation. The interstitial cluster
then relaxes into a prismatic dislocation loop that is highly mobile in the
direction along its Burgers vector. The loop is observed to move to the glide
plane of the dislocation and react with the leading partial. After the reaction,
the loop flips its Burgers vector to direction AD, which is in the dislocation
glide plane, but at 60◦ degrees to the dislocation Burgers vector, as shown in
Fig. 10(a). This interstitial loop acts as a dragging point impeding disloca-
tion motion. Fig. 10(d) shows the dislocation velocity as a function of stress
with and without the attached interstitial loop. When the dislocation is free
from the loop, its velocity is linear in stress at small stresses, with a friction
coefficient ν0 = σb/v = 5 × 10−6Pa · s (T = 100K). At higher stress the
velocity function bends and reaches a plateau at about 72% of the transverse
sound wave velocity (2.9nm/ps). This behavior is similar to that of the edge
dislocation in BCC metal Mo [40] (see Section 4).

When the loop is attached to the dislocation, as in Fig. 10(a), it increases
the friction coefficient to ν = 8× 10−6Pa · s at low stresses. The dislocation
velocity also saturates at a lower velocity of 0.9nm/ps. This appears to be in
line with the fact that motion direction of the loop is at 60◦ degrees to that of
the dislocation line, so that the terminal velocity of the dislocation with the
loop attached is limited to half of that of a freely gliding dislocation. Upon
further increase of stress, the trailing partial catches up with the leading
one, as shown in Fig. 10(b). More core reactions take place resulting in the
loop attachment to the trailing partial, with its Burgers vector rotated again
in the direction AC, parallel to the direction of motion of the dislocation
[Fig. 10(c)]. This allows the dislocation to resume motion at a higher speed,
as shown in Fig. 10(d).

The vacancy clusters in irradiated FCC metals are found to form stack-
ing fault tetrahedra (SFT) (see [41] and references therein). The interaction
between an edge dislocation and a SFT is examined in [38]. Fig. 11 shows
a series of MD simulation snapshots (in a near [111] projection) of the in-
teraction between a moving, dissociated edge dislocation and a perfect SFT
that lies on its path. The simulation was performed at an initial temper-
ature of 100K and under applied shear stress of 300MPa. Fig. 11(a) is a
snapshot showing the edge dislocation dissociated into two Shockley partials
and the SFT at 10ps after applying the stress. The next snapshot taken
at 19.5ps shows the leading partial that has just bypassed the SFT shear-
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Figure 11: MD snapshots of edge dislocation interaction with a perfect SFT
in Cu at (a) 10ps, (b) 19.5ps, (c) 23.3ps and (d) 115.0ps.
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ing its top by a/6〈112〉 in the process. The SFT is seen to act as a strong
but shearable obstacle whose strength is expressed by the cutting angle of
∼ 80◦. At 23.3ps the trailing partial passes through the SFT that offers now
significantly less resistance (Fig. 11(c)). Taking advantage of the periodic
boundary conditions, the simulation was continued long enough to allow the
dislocation to cut through the SFT five more times. Notably, the SFT was
neither destroyed nor absorbed. Although considerably sheared, it remains
largely intact (Fig. 11(d)). Qualitatively similar behavior was observed in
other simulations performed in a range of applied stress from 50 to 300 MPa
for varying SFT positions with respect to the glide plane. In all cases, the
initially perfect SFT acts as a strong barrier that, although considerably
sheared, remains intact following the dislocation passage.

However, a totally different behavior was observed in the case where
the SFT is not initially perfect but consists of two overlapping, truncated
SFTs [38]. The latter configuration has been predicted in the earlier MD
and kMC simulations [42] and is more consistent with HREM images. It was
found that upon contact the leading partial absorbs vacancies making up a
part of the truncated SFT and climbs, forming a pair of superjogs that effec-
tively pin this dislocation. The trailing partial eventually catches up with the
leading partial, climbs and absorbs the remaining vacancies, and constricts
with the leading partial at the superjogs. After that the constricted and
jogged partials move together albeit with a decreased velocity. Eventually
the climbed dislocation segment is seen to dissociate into separate partials
again, apparently after spewing out a vacancy cluster from one of the super-
jogs. Although the detailed mechanism of SFT absorption has not been fully
analyzed, it is clear that both perfect and truncated SFT offer considerable
resistance to dislocation motion.

Similar dislocation climb behavior resulting from defect absorption was
observed in [37] in molecular static simulations of the interaction between
edge dislocations and self-interstitial clusters in Ni. In that case of course the
dislocation climbs in the opposite direction. One of the superjogs produced
after collision is initially constricted, presumably in the form of a Lomer
segment. This superjog is sessile but can transform to a glissile configuration
through the incorporation of three self-interstitials, as discussed in [37]. This
mechanism could explain the vacancy cluster left by the superjog in the above
simulation of dislocation - SFT interaction [38].

Recent TEM observations suggest that screw dislocation in irradiated
FCC metals move faster than edges, and that the screws seem more effective
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in both absorbing and producing the point defects [43]. In light of these
observations it appears important to undertake a study similar to the one
described above but for screw dislocations.

2.6 Outstanding issues

A number of outstanding issues concerning core effects on dislocation mobil-
ity in FCC metals and alloys could be mentioned. Mobility of dislocations
containing extended jogs is one example. Unpinning from such obstacles
involves, in some cases, non-conservative mechanisms that produce or ab-
sorb point defects or clusters. This may be true not only for screw dislo-
cations but also for non-screws that are sometimes observed to engage in
non-conservative processes [37]. Mechanisms of screw dislocation motion un-
der high stress are poorly understood. In view of experimental indications
that fast moving dislocations produce a large amount of debris [43], it ap-
pears possible that cross-slip mechanisms at high stress are very different
from those at low stresses. The latter too may be a more complicated phe-
nomenon than is currently recognized; continuum elasticity estimates and
atomistic simulations both suggest that multiple mechanisms of cross-slip
are likely to operate even under low stress conditions. The effect of junction
nodes on the mobility of dislocations entering the node is interesting, due
to the possibility of allowing glide of otherwise sessile dislocation junctions,
such as extended LC locks. Finally, a major challenge for dislocation mod-
eling is an accurate and realistic description of interactions between moving
dislocations and impurity atoms and clusters. Such a description can provide
the basis for understanding the thermodynamics and kinetics of co-evolution
of dislocation and alloy microstructures.
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Figure 12: Diamond cubic structure of Si lattice. The two inter-penetrating
FCC lattices are shown as white and black atoms, respectively. (a) A prim-
itive cell of the diamond cubic lattice. (b) Glide and shuffle sets of (111)
planes.

3 Diamond-Cubic Semiconductors

3.1 Introduction

For over 40 years dislocations in semiconductors, especially in silicon, have
been an active field of research driven by the need for a better understanding
of defect behavior in electronic components. At the same time, the relative
ease of growing high purity single crystals with zero dislocation content makes
silicon an ideal test-bed material for experiment, theory and modeling. The
nucleation and migration of dislocations are of fundamental concern because
their electrical activity can seriously degrade device functionality.

To a considerable extent, dislocation behavior is determined by the struc-
ture of the host crystal lattice. Here we focus on the group with diamond
cubic structure among which are elemental Si and Ge and zinc-blende III-V
(GaAs) and II-VI (InP) compounds. The structure of diamond cubic lattice,
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Figure 13: Weak beam micrograph of a dissociated loop in silicon [44] de-
formed for 45 min at T = 420◦C and τ = 256MPa.

consisting of two inter-penetrating face-centred-cubic (FCC) lattices offset
by 1

4
[111] is shown in (Fig. 12(a)). A zinc-blende structure is obtained when

the two sub-lattices are occupied by different atoms, such as Ga and As. The
slip systems in diamond-cubic crystals are the same as in FCC metals (see
the preceding section), i.e. 1

2
[110](111). However, due to the coexistence of

two FCC sub-lattices, there are two different sets of (111) planes (Fig. 12(b)).
The closely spaced set, e.g. between atom layers b and C, is called the glide
set. The widely spaced set, e.g. between atom layers C and c, is called the
shuffle set. The set of (111) planes on which dislocations reside and move
has been a topic of controversy for over forty years.

Stable stacking faults can exist only in the glide set. TEM observations
have produced ample evidence that dislocations in DC crystals are dissoci-
ated both in motion and at rest, at least in the usual range of experimental
conditions (e.g. T = 800 ∼ 1000K, τ = 1 ∼ 1000MPa). A typical weak-
beam micrograph is shown in Fig. 13. This and other similar observations
have been used to argue for the preference for dislocations to reside on the
glide rather than the shuffle set, on the grounds that by dissociating into
partials, a dislocation reduces its elastic energy. However, a more detailed
analysis shows that core reconstruction of the partial dislocations also has
to be taken into account. At moderate temperature and strain the disloca-
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Figure 14: Dislocation microstructure at room temperature and under con-
fining pressure of 5GPa. The dislocations are mostly aligned along [110] and
[123] directions [45].

tions are observed to form hexagonal loops, as in Fig. 13. In these loops the
dislocations line up along the [110] directions which suggests a high Peierls
barrier for the motion of 0◦ (screw) and 60◦ (mixed) dislocations.

Recently non-dissociated dislocations have been observed after deforma-
tion at low temperature and under high confining pressure. The TEM mi-
crograph in Fig. 14 shows perfect dislocations aligned along the [110], [112]
and [123] directions. The latter two directions have not been seen previously
in the conventional experiments, suggesting a different core structure under
large pressure. The observation of wavy slip traces is still another indication
that the observed dislocations cross-slip frequently and therefore are likely
to be non-dissociated. All this evidence points to a transition from glide to
shuffle core occurring under low-temperature, high-stress deformation condi-
tions. This topic will be discussed in light of the atomistic simulation results
presented below.

Fig. 15 shows a typical set of stress-strain responses of silicon single crys-
tals at several test temperatures. A common feature is a pre-yield peak
followed by a post-yield drop. This transient behavior reflects the delayed
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Figure 15: Stress-strain curve of Si for strain rate ε̇ = 1.2× 10−4 and initial
dislocation density N0 = 2 × 104cm−2. (1) T=800, (2) 850, (3) 900, (4)
950◦C. The effective stress τeff is also plotted, which is the external stress
minus the (estimated) internal stress due to mutual interactions between
dislocations [46].
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Figure 16: (a) Lower yield stress as a function of temperature for dislocation
free Si samples [48]. (b) Yield stress of Si (∗), GaAs (2, �,4), InP (+, N,×)
and InSb (◦, •) as a function of temperature [49].

kinetics of dislocation multiplication and is a function of initial dislocation
density. Eventually, the rate of dislocation multiplication settles to a steady-
state flow value beyond the yield point. This stress value, called the lower
yield stress τly, is often used to characterize the plastic response of the mate-
rial. It is found that over a wide range of temperatures (T = 700 ∼ 2000K),
τly can be represented by an exponential function

τly = Clyε̇
n exp(

Q

nkBT
) , (11)

where Cly and n are constants independent of T and strain rate ε̇, and Q [47] is
the activation energy (Q ∼ 2eV). This observation suggests that dislocation
motion and, hence, plastic deformation in silicon are thermally activated.

Deviations from Eq. (11) beyond the usual mid-temperature range have
been reported recently. In particular, the effective activation energy was
found to increase at temperatures above 1200K. This transition is also seen in
dislocation mobility measurements although its origin remains controversial.
It has been suggested that a change of self diffusion mechanism in silicon
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at elevated temperatures is the cause [50, 48]. Alternatively, the effect of
dislocation-dislocation interactions has been proposed as an explanation [51].
At the low temperature end, the yield deviates from the mid-temperature
behavior but in a different sense; both the activation energy Q and the yield
stress become lower than what Eq. (11) would predict. This low temperature
behavior is observed in almost all diamond-cubic semiconductors, as shown
in Fig. 16(b). The aforementioned change of the dislocation core structure
from dissociated glide to perfect shuffle core is likely to be related to this
macroscopic transition.

In the following we discuss the current understanding of dislocation core
structure and the mechanisms of its motion. We will focus on those aspects
of atomistic and mesoscopic theory and simulations that help in interpreting
the experimental findings as well as give predictions.

3.2 Core structure and lattice resistance

3.2.1 Glide-set partial dislocations

Under moderate stress and temperature conditions the dislocations in sili-
con and other semiconductors are generally seen to stretch along the 〈110〉
directions forming hexagon-shaped loops on the (111) glide plane. The dis-
locations are dissociated into Shockley partials connected by an intrinsic
stacking fault (SF), as in

1

2
[110] =

1

6
[121] +

1

6
[211] (12)

Given the predominant screw or 60◦ character of the full dislocations, the
partials are either 30◦ or 90◦, as shown in Fig 17. The SF energy can be
estimated by comparing the separation between two partials observed in
experiment [1] to that predicted by linear elasticity theory [5]. The resulting
estimates range from 50 to 70mJ/m2.

A low SF energy is usually taken to be a sufficient condition for the dis-
locations on the glide set to dissociate, given that dissociation lowers the
elastic energy of the dislocation. However, recent atomistic calculations sug-
gest that core reconstruction can significantly alter the energy balance of
the dissociation reactions in silicon [52]. Using the Stillinger-Weber (SW)
interatomic model, it has been shown that only after bond reconstruction in
the cores of the two partials has taken place, does dislocation dissociation
become more energetically favorable than the undissociated (perfect) state.
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Figure 17: Preferred dislocation line directions in silicon.

That dislocations form hexagon-shaped loops by stretching under stress
along the 〈110〉 directions is clearly a core effect. Since the elastic energy
of dislocations is a smooth featureless function of the character angle and
does not favor any particular character, except possibly screw, it must be
the core energy or, even more likely, the anisotropy of dislocation mobility
that is responsible for this behavior.

Fig. 18(a) shows two atomic layers in a perfect diamond-cubic lattice;
atoms above and below the (111) glide plane are denoted by white and black
circles respectively. For compound semiconductors with zinc-blende struc-
ture, the open and closed circles sites would be occupied by atoms of differ-
ent species. In this projection, each atom layer forms a triangular lattice so
that black atoms are situated at the centres of the white triangles. Similar
to FCC metals, an intrinsic stacking faults can be formed by shifting the
black atoms into unoccupied white triangles. There are three ways of doing
this, as indicated in Fig. 18(a). When the boundary line between the stack-
ing fault and the perfect lattice region is drawn along a 〈110〉 direction, the
interface (line) becomes either a 30◦ or a 90◦ partial dislocation, depending
on the angle between the line and the shift direction. Fig. 18(b) shows a
30◦ partial. This dislocation is produced by shifting every black atom above
the line along the ~b30 direction. Fig. 18(c) shows a 90◦ partial obtained by

shifting all black atoms above the line along the ~b90 direction. In both cases,
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Figure 18: (a) Perfect diamond cubic lattice. Two layers of atoms, immedi-
ately above (white) and immediately below (dark) the glide-set (111) plane
are shown. Each atom has four bonds, but the fourth bonds are out of the
plane and are not shown. Stacking fault can be formed by dark atoms slipping
into adjacent centres of the white triangular lattice in three ways. (b) The
core of a 30◦ partial (unreconstructed), as an interface between the stacking
fault and the perfect lattice. (c) The core of a 90◦ partial (unreconstructed).
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the dislocation line separates the SF (top) from the perfect crystal (bottom).
It was shown that [52] a screw dislocation dissociated into two 30◦ par-

tials having the core structures given in Fig. 18(b) actually may have a higher
total energy than its perfect non-dissociated counterpart. Nevertheless disso-
ciation is still favored because the cores of the partial dislocation can recon-
struct to significantly reduce the final total energy. The final configuration
requires some additional lattice distortions to bring the core atoms together,
but this is more than off-set by a significant energy reduction associated with
the pairing of the dangling bonds present in the unreconstructed cores (see
Fig. 18). Removal of the dangling bonds by reconstruction is consistent with
the experiments suggesting that less than 3% of the atomic sites in partial
dislocation cores have unpaired orbitals [53].

In the reconstruction of the 30◦ partial dislocation, pairs of core atoms
move towards each other to form bonded dimers, as in Fig. 19(a). As a
result, the repeat distance along the dislocation core increases two-fold, from
b = 1

2
[110] to 2b. Ab initio calculations confirm that this double-period (DP)

reconstruction reduces the core energy very significantly, by 1.02eV per dimer
according to [54]. Core reconstruction energies in units of eV/b from different
calculations are listed in Table 1.

The 90◦ partial core can reconstruct in more than one way. In Fig. 19(b),
two rows of atoms with dangling bonds form bonded dimers by bridging
across the core. This entails some lattice distortion which, however, is more
than compensated by the energy gain from the pairing of dangling bonds.
The repeat distance along the dislocation line remains at b, but the mirror
symmetry with respect to the plane perpendicular to the dislocation line is
now broken. Ab initio calculations predict a lower energy gain for this single-
period (SP) core reconstruction, at 0.42eV/b according to [54]. Alternatively,
the dangling bonds in the 90◦ partial can be removed by a double-period
(DP) reconstruction, such as shown in Fig. 19(c). This atomic rearrange-
ment simultaneously breaks both mirror and translational symmetries of the
unreconstructed core. Recent ab initio calculations [54, 55, 56, 57] show that
the DP core has a slightly lower energy (by ∼ 0.03eV/b) than the SP core.
With the energy difference being so small, both core variants can co-exist at
room temperature.

Core reconstruction is expected to have a strong influence on dislocation
mobility [58], since it lowers the ground state dislocation energy and thus
anchors the dislocation more strongly to the lattice. A simple measure of
dislocation-lattice coupling is the Peierls stress, a minimal stress needed to
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Figure 19: Reconstructed core structures of partial dislocations in silicon.
(a) Double-period core of 30◦ partial. (b) Single-period core of 90◦ partial.
(c) Double-period core of 90◦ partial.
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move a straight dislocation at zero temperature. Atomistic simulations us-
ing SW potential have given [59] Peierls stress values for 30◦ and 90◦ partials
at 21GPa and 17GPa, respectively; however, these results have to be taken
with caution. First, the SW potential is known to have difficulty in prop-
erly describing the core reconstructions [60]. Second, the type of boundary
conditions used in this study [59] has been found to have a large effect on
the calculations of Peierls stress [52]. Nonetheless, it is generally accepted
that the Peierls stress of the glide-set partials is quite high, of the order of
10GPa, which is consistent with the observed low mobility of dislocations
in silicon and its brittle behavior at temperatures below 0.6 of the melting
temperature [61]. A possible way to interpret this brittleness is to say that
dislocation nucleation and propagation are insufficient to relieve the stress
concentration at the crack tip [62].

Conceivably the levels of stress approaching the Peierls value for glide
partials may never be achieved in a deformation experiment. This is because
recent data suggest that low-temperature, high-stress plasticity is controlled
by the shuffle dislocations. The highest stress of 2GPa so far achieved in the
experiment [49] is in the range of the Peierls stress for shuffle partials, but is
still considerably below the estimated 10GPa for the glide partials. On the
other hand, the situation may change for compound semiconductors, given
the strong influence of core reconstruction on dislocation mobility. As shown
in Fig. 19, core reconstruction in the partials requires bonding of atoms of
the same type. With the increasing polarity of compound semiconductors on
going from IV-IV alloys, to III-V and II-VI compounds, the energy reduction
by reconstruction is expected to decrease, and may eventually make core
reconstruction unfavorable [63]. Consequently, the Peierls stress for partial
dislocations may become much lower. Recent ab initio calculations suggest
a strong relationship between the strength of partial reconstruction and the
experimentally measured activation energy Q of dislocation mobility. As is
shown in Fig. 20, Q decreases with increasing polarity, hand in hand with
the decreasing reconstruction strength [64]. Additional complications arise
in the compound semiconductors where two types of dislocation exist with
two different types of atoms (e.g. Ga or As) residing in the core. The partials
then may become charged, giving rise to strong electro-mechanical coupling.
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Figure 20: Calculated core reconstruction energies for 30◦ partials versus
experimental activation energies of 60◦ dislocations in type IV, Si(2) and
Ge(3), and type III-V, GaP(4), GaAs(∇) and GaSb (◦), semiconductors.
Open and closed symbols represent α and β dislocations respectively. Half-
filled symbols are for type IV materials [64].
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Table 1: Core reconstruction energy (in eV/b, b = 3.84Å) of 30◦ and 90◦

partials from different calculations. The energy of double-period (DP) core
of 90◦ partial is given relative to that of the single-period (SP) core.

30◦ 90◦ SP 90◦ DP
SW [65] 0.81
Tersoff [66] 0.54 0.46
EDIP [58] 0.45 0.80
TB [67] 1.38 0.69
DFT [68] 0.53†

DFT [54] 0.52
DFT [54] 0.44
TB [69] 0.69
DFT [70] 0.88
DFT [54] 0.42
TB [56] ESP - 0.21
DFT [56] ESP - 0.26
DFT [57] ESP - 0.042
DFT [54] ESP - 0.19

† free energy at 930K

3.2.2 Shuffle-set perfect dislocations

Recent experiments indicate a change of deformation mechanism in semi-
conductors with decreasing temperature. The signatures of this transition
include a bend in the yield stress - temperature curves, such as in Fig. 16(b),
as well as a change in the dislocation microstructure, as in Fig. 14. Wavy
slip lines can be interpreted as indications of frequent cross slip events; they
also suggest that the shuffle-set perfect screw dislocations play an important
role in low temperature deformation.

Two different core structures can be considered for the perfect screw
dislocations in silicon on the shuffle-set plane, as shown in Fig. 21(a) and (b).
Core A [71] is centred in the 6-member ring of atoms, while core B [52] is
centred on the bond between two atoms. These two different core structures
allow the following interpretation. Of the two {111} planes on which the
screw dislocation can potentially move, core A is centred at the intersection
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(a) (b)

Figure 21: Core structures of shuffle-set screw dislocation in Si. The high
energy core atoms are shown in dark color. (a) Core A resides in a hexagonal
ring. (b) Core B resides at the boundary between two hexagonal rings.

of two shuffle-set planes, while core B is at the intersection of a glide-set
with a shuffle-set of planes. Core A, while on shuffle-set planes, is likely
to be involved in cross-slip often observed in the low temperature - high
stress experiments. Core B, being in the glide set, can dissociate into glide
partials and may be involved in transitions between the glide-set and shuffle-
set dislocations. To understand the various possible behaviors associated
with the perfect screw dislocations, an examination of the energetics of the
various core configurations is in order.

Recent atomistic simulations based on the SW potential [72] predicted
that core B has lower energy than core A by 0.14eV/b [52]. However, still
more recent ab initio calculations show that core A is the ground state of a
perfect screw dislocation in Si, while core B is metastable, with an energy
0.38eV/b higher than that of core A [73]. This is consistent with another
independent study giving E(B) − E(A) = 0.32eV/b [74]. In addition to
being metastable with respect to core A, core B is likely to be unstable at
finite temperatures with respect to dissociation into glide partials. Core A,
on the other hand, may be reasonably stable at lower temperatures and can
contribute to plastic response.

Several attempts have been made to determine the Peierls stress of a
perfect shuffle-set screw dislocation using the SW potential. The value of
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5GPa [59] first reported appears to be inaccurate, possibly due to inadequate
boundary conditions. A second calculation produced a lower value of 2GPa,
which was then confirmed by still another study, this time using periodic
boundary conditions [75]. Recent ab initio calculations predict the Peierls
stress to be 3.3±0.2GPa[73] (at zero pressure). This is reasonably consistent
with the low temperature yield stress measurements, which approach 1GPa at
300K [49]. Furthermore, compilation of low temperature data on the shear
stress in semiconductors produced an estimate of 0.05µ [76], where µ the
shear modulus. For silicon, this would correspond to 3.4GPa (µ = 98GPa),
in agreement with the ab initio results. Given that the experiments are
performed at high pressure ∼ 10GPa, it is of considerable interest to compute
the pressure dependence of Peierls stress ab initio.

3.3 Secondary core defects

The dislocation cores we have considered thus far are “perfect” one-dimensional
defects. In reality, secondary point-like defects should naturally exist in the
dislocation cores. Reconstruction defects (RD) are expected at the bound-
aries separating two core segments which have undergone atomic rearrange-
ments in the opposite sense. They are also known as anti-phase defects, or
topological solitons. Another type of point defect is a vacancy or an in-
terstitial bound to the core, which is the unit of dislocation climb between
shuffle-set and glide-set planes. Perhaps the most important core defects are
dislocation kinks, the nucleation and migration of which control the mobility
of dislocations at finite temperatures. In this subsection, we discuss these
three types of core defects and their possible combinations, as well as the
role they play in facilitating dislocation motion.

Our discussion focuses exclusively on core defects in the glide-set partial
dislocations because very little is known about the shuffle-set dislocations.
We should emphasize, however, that given the importance of the shuffle-set
perfect dislocations in low-temperature deformation that has been recently
established, the investigation of their core defects warrants attention. We
may speculate that because the core structure of the shuffle-set dislocations
is simpler than that of the glide-set partials, these defects are likely to be
less complex thus presenting an opportunity for a definitive study.

Much of the current understanding of the structure and energetics of core
defects has come from computer simulations that rely on the use of empirical
interatomic potentials and, more recently, on ab initio methods. Experimen-
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tal evidence, while useful, has been scarce and subject to the limits of HREM.
Atomistic simulation results have provided information on the various types
of core defects in the glide-set partials and their topological characteristics.
On the other hand, the energies of these defects are still uncertain. For
various reasons, there is considerable discrepancy among the calculations re-
ported by different groups, sometimes using the same computational models.
These differences remain the major obstacles to a quantitative and predic-
tive modeling of dislocation mobility (see next subsection) based on atomistic
mechanisms. With increasing computing capabilities allowing the use of more
accurate methods and larger simulation cells, many of the calculations should
be repeated to obtain converged results on the core defect properties.

3.3.1 Reconstruction defects

When a symmetry-breaking reconstruction takes place, symmetry is traded
for degeneracy, but it is not completely “lost” in the sense that different de-
generate variants of the reconstructed core are related to each other by this
symmetry operation. As an example, consider the reconstruction of the 30◦

partial, from Fig. 18(b) to Fig.19(a) where the translational symmetry along
the core with repeat period b is broken. As a result of reconstruction the
repeat distance along the core is doubled to 2b. At the same time, each core
atom in Fig. 18(b) can choose to bond with either of its two neighbors. This
leads to two variants of core reconstruction that are energetically degener-
ate and related to each other precisely by the broken-symmetry operation,
namely translation by b. The boundary between these two reconstruction
domains, a reconstruction defect (RD), is an atom that has no partner with
which to bond, as shown in Fig. 22(a).

The reconstruction defects in the 90◦ partial appear in more varieties and
are more complex. In the single-period (SP) core, the broken symmetry is the
mirror symmetry with respect to the plane perpendicular to the dislocation
line. Hence there are two degenerate variants of the SP core that are mirror
reflections of each other. As can be seen in Fig. 22(b), there are two RD’s at
the boundaries between the two variants. In the alternative double-period
(DP) reconstruction of the 90◦ partial both the translational symmetry and
the mirror symmetry are broken. To observe the breaking of the mirror
symmetry, notice that the bonds parallel to the core centre (dashed line)
connect either white to black atoms or black to white, on going from left to
right. Given that each of the two broken symmetries is a two-fold operation,
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Figure 22: Reconstruction defects (RD) in the partial dislocation cores in
silicon, indicated by vertical dashed lines. (a) RD’s on 30◦ partial. (b)
RD’s on single-period 90◦ partial. (c) RD’s connecting double-period 90◦

partial cores that are related by translation symmetry. (d) RD’s connecting
double-period 90◦ partial cores that are related by mirror symmetry. (e)
Combination of RD’s in (d) with interstitial and vacancy.
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the ground state of the DP core is four-fold degenerate.
Fig. 22(c) shows two DP cores that are related by translation symmetry

separated by RD’s. These types of RD’s can be considered as short seg-
ments of the SP core, the energy of which has been calculated to be around
0.4eV [55]. Two more reconstruction defects are shown in Fig. 22(d) sepa-
rating two DP cores related to each other by the mirror symmetry. Notice
that defect A has an over-coordinated atom while defect B has an under-
coordinated atom (with a dangling bond). To restore four-fold coordination,
one can remove the atom at B and insert it into A. The resulting configura-
tion can be considered as composed of complexes of two RD’s with a vacancy
and an interstitial, respectively (22(e)). The energies of these two complexes,
computed using tight-binding methods, are 0.65eV [55]. Complexes like these
are likely to be less mobile than those in Fig. 22(d) since their motion requires
that an interstitial and or a vacancy has to diffuse along with the RD’s.

3.3.2 Core vacancies and interstitials

Experiments have shown that plastic deformation in semiconductors pro-
duces an elevated density of point defects [77, 78, 79, 80]. The latter can
be detected by the electron paramagnetic resonance (EPR)technique, also
known as electron spin resonance - ESR. The g tensor of the line centres
was found to be of dangling bond type, because it is almost axially sym-
metric. Several line centres in the spectrum, such as Si-K3 and Si-K7, were
attributed to bulk vacancies and vacancy clusters, due to their comparable
intensity in all crystallographically equivalent orientations. It was also ob-
served that the production of such point defects does not seem to involve
dislocation interactions, because the signal was insensitive to single slip or
multi slip orientation [77].

On the other hand, line centres such as Si-K1, Si-K2 and Si-Y were at-
tributed to vacancies inside the dislocation core, because they are not ob-
served for all crystallographically equivalent orientations. By means of an
analysis of the orientation symmetry of the signal and energy spectrum,
these three line centres were identified with different vacancy configurations
along the 30◦ partial [79, 80]. Annealing the sample at T > 800◦C was found
to lead to the disappearance of K1, K2 and Y lines. Electric dipole spin res-
onance (EDSR) signals are also detected under such conditions, suggesting
complete elimination of dangling bonds in the core [80].

Consider an imperfectly reconstructed 30◦ partial dislocation core as
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shown in Fig. 22(a). Atom E in the RD is bonded with three atoms (the ver-
tical bond with an atom immediately above is not shown). Removal of atom
E creates a vacancy with three neighboring atoms, or V3c. The symmetry of
this defect, which is the combination of an RD and a vacancy, is found to be
consistent with the Si-Y line of EPR. If, on the other hand, a reconstructed
atom such as A is removed, the resulting vacancy has four neighboring atoms,
i.e. V4c. This defect is consistent with the Si-K1 line of EPR. If we remove
a string of core atoms, such as A, B, C, D, etc, the result is a linear chain
of V3c defects. This corresponds to the Si-K2 line, which was identified as a
linear chain of spin centres [79].

Ab initio calculations have been carried out to study the energetics of V3c,
V4c and V3c clusters in the 30◦ partial dislocation core [81], corresponding to
the Si-Y, K1 and K2 lines of EPR. The formation energies of such defects are
0.9eV, 2.4eV and 1.9eV per vacancy, and their formation entropy is around
2kB. In comparison, the formation energy of a bulk vacancy is 3.6eV. There-
fore, it is energetically favorable for bulk vacancies to agglomerate into 30◦

partial dislocation cores. Furthermore, they are likely to bind either with
the RD or among themselves to form short segments of “hollow” disloca-
tions. Because of its considerable formation energy, vacancy concentration
in the 30◦ core still should be negligible at thermal equilibrium. However,
this no longer needs to be the case when dislocations are driven to move
by external stress, which is a highly non-equilibrium process. Complicated
dislocation - point defect interactions can be expected under such conditions,
where a moving dislocation core can collect vacancies from the bulk, or inject
point defects into the bulk. The point defects can also facilitate or obstruct
the motion of dislocations, as discussed in the next subsection.

High resolution electron microscopy (HREM) observations of dislocation
cores provide valuable information [63], although the resolution is not high
enough to draw definitive conclusions. Images of 90◦ partials are found to
agree with computer models of perfectly reconstructed core atoms, indicating
a low concentrations of vacancies and interstitials in the 90◦ partial. On
the other hand, the HREM contrast in the 30◦ partial core is rather weak,
suggesting a density of core atoms to be between 0.5 to 1.5 per core site.
This suggests that the 30◦ partial could have a complex core structure with
alternating vacancy and interstitial segments.

The conglomeration of vacancies or interstitials in the glide-set partial
dislocations may give rise to structures that are equivalent to partial disloca-
tions on the shuffle-set [63]. Such partials, produced by the climb of glide-set
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Figure 23: Kink pairs on 30◦ partial, (a) LK and RK, (b) LK′ and RK′.

partials through the absorption or emission of vacancies or interstitials, round
out the possible types of dislocations in diamond cubic semiconductors.

3.3.3 Kinks

The most extensively studied defects in the dislocation core are kinks. Their
importance derives from the widely accepted belief that their nucleation and
migration along the dislocation line are the primary mechanisms of disloca-
tion motion at finite temperatures [5]. Atomic-sized kinks connect dislocation
segments lying in the adjacent Peierls valleys separated by the smallest trans-
lation period. A kink-pair on a 30◦ partial [65] is shown in Fig. 23(a). The
width of this kink-pair is 3b. This defect is formed by shifting three black
atoms (under the hump delineated by the dashed line) from their perfect
lattice positions. Notice that the atomic configurations of the left (LK)and
right (RK) kinks are topologically different from each other.

The kink-pair shown in Fig. 23(a) is not the smallest possible. The most
narrow kink-pair is obtained by shifting just one black atom to form a con-
figuration where LK and RK are immediately adjacent to each other. Sub-
sequent migration of LK to the left and RK to the right, such as under the
influence of external stress, increases their separation in discrete steps, even-
tually resulting in the translation of the entire partial upward by one repeat
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Table 2: Kink and APD formation energy Ek and migration barrier Wm (in
eV) in 30◦ partials in silicon. Experimental estimates of kink energies are also
listed. Note that experiments do not differentiate the various kink species.
Instead effective kink energies are estimated.

Ek Wm

LK RK LC RC APD LK RK LC RC APD
SW [60] 1.2 0.84
SW [65] 0.82 0.82 1.12 0.79 0.81 0.82 0.74 0.22 1.04 0.17
SW [54] 0.98 0.65 1.29 0.63
EDIP [58] 0.65 0.39 0.90 0.83 0.49 1.46 0.89
TB [67] 0.35 1.24 0.88 2.15 1.33 1.53 2.10 0.3
DFT [82] 0.65
DFT [83] 2.1
TEM [84] 1∼1.2
HREM [1] 0.8 1.55
TEM [85] 0.9 1.3
IL† [86] 0.62 1.58

† intermittent loading of 60◦ dislocations
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step from its original position. Fig. 23(b) shows the double-kink obtained
by moving LK to the left and RK to the right, both by one b, from their
positions in Fig. 23(a). Notice that the bonding configuration of the result-
ing left kink (LK′) and right kink (RK′) are different from their respective
counterparts in Fig. 23(a). This is a consequence of the doubled periodicity
in a reconstructed 30◦ partial core. Only after the left kink (or right kink)
moves by 2b along the dislocation line is its original bonding configuration
restored. A detailed discussion of the relationship between kink multiplicity
and symmetry breaking was given in [87].

Additional species of kinks can be formed by combining those we have
just identified, LK, RK, LK′ and RK′, with the reconstruction defect RD,
thus leading to kink-RD complexes. When the core of a kink overlaps with
an RD the resulting configuration has significantly lower energy. This means
that these two defect species will tend to bind and form a new type of core
defect. The following two reactions have been found to be energetically
favorable, resulting in the formation of a left kink complex (LC) and a right
kink complex (RC),

LK + APD → LC (13)

RK + APD → RC . (14)

The energy gains of the LC and RC reactions are 0.51eV and 0.84eV respec-
tively [65] computed using the SW potential, and 0.80eV and 0.42eV using a
TB model [67]. The complexes formed by combining LK′ and RK′ with RD
are not energetically stable [67]. The two important kink energy parameters
that affect dislocation mobility are their formation energies Ek and migra-
tion energy barriers Wm. Their values calculated for different kink species
and complexes are given in Table 2. By binding with kinks, RD’s are seen
to either lower or raise the kink migration barrier. It was found that RD
can facilitate kink-pair nucleation and pre-existing kinks can also serve as
preferential sites for RD-pair nucleation [65]. Thus, the complex interaction
between kinks and RD’s is expected to play a role in dislocation mobility.

The family of kink species is even more extended in the 90◦ partials,
given that it has two competing core reconstructions (SP and DP), each with
several species of RD’s that can combine with kinks. The unreconstructed
90◦ partial is symmetric under mirror inversion with respect to the plane
normal to the dislocation line. Therefore, in the unreconstructed 90◦ partial,
left and right kinks are exact mirror images of each other. However, since
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Figure 24: Kinks in 90◦ partial. (a) Kink pair LR and RL in a single-period
(SP) 90◦ partial. (b) Kink pair RR and LL on (SP) 90◦ partial. (c) A kink
pair on double-period (DP) 90◦ partial. (d) Dissociation of kinks shown in
(c) into partial kinks bounding short segments of SP core.
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both (SP) and (DP) reconstructions break the mirror symmetry, multiple
kink species are formed. At the same time, every left kink finds an exact
mirror image in one of the right kinks.

By convention, different types of kinks in the SP core are labelled accord-
ing to the geometric characteristics of their right kinks representatives [67].
All the left kinks then can be obtained by a mirror reflection. The kinks are
named by the sense of core reconstruction on both sides of the kink. Consider
the right kink in Fig. 24(a) as an example. Going from left to right side of the
kink, the reconstruction bonds first tilt to the right and then to the left. This
kink was therefore denoted as a right-left kink (RL). To label the left kink in
Fig. 24(a) according to the nomenclature first proposed in [67], one should
first mirror-invert this kink. The resulting right kink will have a left-right
sequence of tilts and is called left-right (LR) kink. Similarly, the two kinks in
Fig. 24(b) are called right-right (RR) and left-left (LL). Tight-binding (TB)
calculations [67] predicted the formation energies for LR and RL kinks to be
about 0.12eV. The LL and RR kinks can be considered as complexes of LR
and RL kinks with RD’s but were found to be unstable in finite temperature
simulations: the LL and RR kinks spontaneously dissociated into LR and
RL kinks while emitting RD’s.

In the DP core of the 90◦ partial, there must be five different species
of RD’s and eight topologically distinct species of kinks [54]. These have
not been examined and we will not attempt to enumerate all of them here.
Instead, we want to point out an interesting possibility in which a conven-
tional (full) kink dissociates into two partial kinks enclosing a segment of
the SP core. This is analogous to the dissociation of a perfect dislocation
into two partials, bounding an area of the stacking fault, except that kink
dissociation involves two 0D defects (partial kinks) and a 1D stacking fault
(the SP segment). An example of such dissociated kinks in the DP core is
shown in Fig. 24(c). Here we arbitrarily call the left and right kinks LK and
RK, respectively. Let us first observe that the minimal spacing between two
SP and DP cores in a 90◦ partial is only half of the full translation period.
Therefore, both the left and right kinks on a DP core can split into partial
kinks bounding a segment of the SP core, shown in Fig. 24(d), through the
following reactions,

LK → LK1 + SP + LK2 (15)

RK → RK1 + SP + RK2 (16)

Here the partial kinks are arbitrarily marked LK1, LK2 and RK1, RK2 to
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Table 3: Kink and APD formation energy Ek and migration barrier Wm (in
eV) on 90◦ partials with SP core reconstruction in silicon. Experimental
estimates of kink energies are also listed. Note that experiments do not dif-
ferentiate different kink species. Instead effective kink energies are estimated.

Ek Wm

LR/RL LL RR APD LR/RL LL RR APD
EDIP [58] 0.70 0.84 1.24 0.65 0.62
Tersoff [66] 0.12
Tersoff [60] 0.90 0.37
TB [89] 0.50† 1.74* 2.04* 1.31 1.87 0.04
TB [67] 0.12 * * 1.45 1.62 0.04
DFT [90] 1.2
DFT [91] 0.1 1.8
DFT [92] 0.04 1.09
TEM [93] ≥0.4 ≤1.2
TEM [84] 1∼1.2
HREM [1] 0.74 1.55

∗ approximate energy, defect unstable
† not fully converged [67]

acknowledge that many species of full and partial kinks can exist in the 90◦

partial.
Assuming that an SP core has slightly higher energy than a DP core [55],

an SP segment acts here as a “one-dimensional stacking fault”, exerting a
force on the partial kinks LK1 and LK2 (also between RK1 and RK2), which,
by themselves, repel each other through elastic interactions. The width of a
dissociated kink is dictated by the balance between elastic repulsion and the
stacking-fault attraction forces. For the Tersoff [88] potential, the equilibrium
partial kink separation between LK1 and LK2 was found to be 2b, with a
total energy reduction of 0.04eV due to dissociation [54]. While no systematic
study of the partial kink energies in 90◦ partial has been undertaken, it is
reasonable to expect that dissociation can reduce the kink energy, suggesting
that more kinks can be available on the 90◦ partial for dislocation motion.
The existence of two types of Peierls valleys can be yet another possible
reason why the 90◦ partials have higher mobility than the 30◦ partials.

Unfortunately, there is still a sizeable gap between the resolution of com-
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Figure 25: Kinks on 30◦ and 90◦ partials of a 60◦ dislocation observed in
HREM [1].

puter models and that of HREM observations. Direct observation of kinks
has been reported only recently using a new technique [1] that allows a
“plane-on” view of stacking faults using forbidden reflections. Shown in
Fig. 25 are two partial dislocations bounding a dark stacking fault. In this
case, dissociated 60◦ dislocations were examined to enable simultaneous ob-
servation of 30◦ and 90◦ partials.

Due to limited resolution, it was not possible to determine the exact
positions of the kinks, let alone the detailed atomic arrangements in the core
of kinks and partial dislocations. Nonetheless, this experiment is the most
direct observation of kinks to date. It provided useful information about
kinks spacing that can be compared with theoretical models. The sample
was initially deformed under high stress and temperature and subsequently
quenched so that the partials were trapped at non-equilibrium separations.
The sample was then heated in an electron microscope. Only the 90◦ partials
moved in the measurements and their kink density was consistently about
3 times higher than in the 30◦ partials. Measurements of kink velocities
in situ indicated that the kink migration barrier on 90◦ partial was Wm =
1.24±0.07eV. However, kink pinning at invisible obstacles was also observed.
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These obstacles have been postulated to be oxygen atoms. The energy barrier
for overcoming the obstacles was estimated to be 2.4eV. An analysis of the
width distribution of kink pairs led to an estimate of kink formation energies
of Ek ≈ 0.81eV for 30◦ partials and Ek ≈ 0.74eV for 90◦ partials (free
energies were estimated to be 0.797eV and 0.727eV, respectively). However,
the estimates of Ek could have large error bars due to the scarcity of data
points (only 7 kink pairs were counted for the 90◦ partial). Also, given that
the kinks might have been pinned at invisible obstacles, the observed kink-
pair width distribution could be a reflection of the obstacle spacing rather
than a function of the kink formation energy.

Tables 2 and 3 show various calculated and measured values of the forma-
tion energies Ek and migration energy barriers Wm for different kink species
and RD’s on 30◦ and 90◦ partials in silicon. A conclusion that can be drawn
from these data is that, despite decades of effort, there is not a single con-
verged data point in these two tables. Computations based on empirical
interatomic potentials, tight-binding methods, and ab initio methods, pro-
duced very different results. In a few cases, different groups using the same
potential models have reported significantly different values for the same pa-
rameter [59, 52]. This makes us think that, for the calculations of dislocation
properties to be accurate, one should use not only an accurate description
of interatomic interactions, but also a proper treatment of boundary condi-
tions. The boundary condition issue is much more serious for DFT and TB
simulations that employ relatively small computational cells. Possibly, some
of the ab initio calculations reported so far [94] have produced results that
are less accurate than the interatomic potential simulations.

Despite the limited accuracy, some qualitative trends can be seen in Ta-
bles 2 and 3. In cases when data for the same defect are available from
several models, we tend to trust ab initio results more than that of tight-
binding methods, and more than the data obtained using empirical potential
models.2 Considering the most accurate results to date, the kink formation
energies on 90◦ partials are generally smaller than those on 30◦ partials. In
this regard, tight binding results seem to agree with ab initio data in giving
very low kink energy (about 0.1eV) for the kinks on the 90◦ partials. Un-
fortunately, no ab initio data are available for kinks on 30◦ partials. The
smallest kink energy on 30◦ partial from tight-binding calculations is 0.35eV.

2This is on the condition that in all calculations the boundary effects have been properly
taken care of, and the convergence with respect to the simulation cell size has been reached.
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All the kink results given in Table 3 refer to the SP core of the 90◦ par-
tial. It is now generally accepted that this partial can also undergo the DP
core reconstruction that results in a slightly lower core energy than the SP
core. At present, there is little information on the kinks on DP core and the
partial kinks linking a DP core and an SP core. What is available are only
results from atomistic simulations using empirical potentials. Nonetheless,
if one accepts the fact that dissociation of full kinks into partial kinks fur-
ther reduces kink formation energies, then the arguments in favor of higher
mobility of the 90◦ partials become even more compelling.

It is not surprising that more data for different kinks species are avail-
able from empirical potential calculations than from ab initio calculations.
The technical difficulties and computational expense of the latter are the
reasons why very few types of kinks have been studied. On the other hand,
experimental estimates for kink energies cannot differentiate kink species at
all. Instead, an effective value describing the average effect of all kinks is
estimated. Therefore, it would be misleading to directly compare ab initio
results for a given kink species with experimental estimates.

So far we have discussed kink mechanisms of dislocation motion that
are purely conservative, i.e. do not involve mass transport by diffusion.
Diffusional mechanisms could play an important role at high temperatures.
It has been suggested that [63] vacancy pipe diffusion along dislocation core
can facilitate kink-pair nucleation and kink migration. This is because these
kink mechanisms entail either bond switching or exchange. If one of the
sites involved in the atomic rearrangement is occupied by a vacancy, then
switching of the bond can also be accomplished simply by a vacancy jump.
At high temperatures, such non-conservative kink mechanisms may well be
competitive with the conservative mechanisms discussed earlier.

3.4 Dislocation mobility

The main purpose of studying dislocation core and secondary core defects
is to understand how dislocations move. In principle atomistic simulations,
such as those discussed above, are capable of giving results that not only
enable the understanding of existing data on dislocation mobility, but also
lead to further predictions outside the range of experimental conditions. At
present, quantitative predictions of dislocation motion from first principles
are not feasible. At the same time, different measurements of dislocation
velocity show considerable scatter to such an extent that there is little con-
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(a) (b)

Figure 26: (a) Temperature dependence of velocity of screw (•) and 60◦ (◦)
dislocations in intrinsic Si at stresses (1) τ = 30, (2) 19, (3) 10, (4) 6, (5) 4
MPa. (b) Stress dependence of velocity of screw (•) and 60◦ (◦) dislocations
in intrinsic Si at temperatures (1) T = 800, (2) 710, (3) 650 ◦C [95].

sensus on what is the controlling mechanism for dislocation motion in semi-
conductors. Despite these problems, there are certain trends that may be
considered established and theoretical models that have found support from
the experiments.

3.4.1 General behavior

A set of experimental data on dislocation mobility in silicon is shown in
Fig. 26. The dislocations were imaged using X-ray topography and the ve-
locities v of screw and 60◦ dislocations were measured over a range of resolved
shear stress τ and temperature T conditions. Following [96] we refer to the
temperature and stress range of these experiments as the “central” range,
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i.e. 0.45Tm < T < 0.65Tm, 5×10−5µ < τ < 10−3µ, where Tm = 1693K is the
melting temperature and µ = 68GPa is the shear modulus of silicon. A num-
ber of measurements in this parameter range using various techniques have
been reported [84, 86, 93, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107].
While their general trends, particularly with regard to temperature depen-
dence, are consistent, the absolute values of the velocities can differ by about
a factor of two [96].

Dislocation mobility in this “central” range is often described using the
following empirical relationship

v(τ, T ) = C(τ) exp

(
−Q(τ)

kBT

)
. (17)

The Arrienus plots of dislocation velocity versus the inverse temperature,
such as in Fig. 26(a), show straight lines whose slopes are the activation
energies Q. In this series of measurements [95], a Qs value (for screw dislo-
cations) around 2.2eV was obtained over the entire stress range, while Q60◦

(for 60◦ dislocations) increases from 2.16eV to 2.43eV as the stress decreases
from τ = 30MPa to 4MPa. A later experiment [104] using in situ X-ray to-
pography together with presumably purer silicon samples gave Qs = 2.35eV
and Q60◦ = 2.2eV for stresses ranging from 2 to 20MPa. The effective ac-
tivation energy Q having a value 2.2 to 2.3eV has been verified by several
groups and is now widely accepted. All the experiments indicate that 60◦

dislocations (comprised of a 90◦ and a 30◦ partials) are generally more mo-
bile than screws (comprised of two 30◦ partials). This is also in agreement
with TEM observations showing that 90◦ partials are more mobile than 30◦

partials [53].
The stress dependence of dislocation velocity is by comparison more con-

troversial. For a given temperature the variation of dislocation velocity
with stress is empirically described as v ∼ τm. The standard kink diffu-
sion model [5], to be discussed later, predicts a linear relationship between
stress and velocity, i.e. m = 1. From Fig. 26(b) it is clear that this behavior
is not seen at low stress. Also, m is found to depend on temperature [95]
suggesting that the intrinsic mechanism of kink diffusion cannot account for
the details of the experimental findings. In order to explain this discrepancy
a concept of weak obstacles was invoked. On the other hand, later in situ
X-ray topography experiments [104] reported that the relationship between
stress and velocity remains linear from 2MPa to 20MPa.
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In the range of resolved shear stress τ between 30MPa to 300MPa, it has
been found that dislocation velocity can be expressed as v = v0(τ/τ0)

m, with
1.2 ≤ m ≤ 2.2 [102]. However, the actual value of m appears to depend
not only on the type of dislocations, but also on the orientation of Burgers
vector with respect to the compression axis. This observation suggests a
breakdown of the Schmid’s law in silicon at high stresses. We would argue
that Schmid’s law is also violated at low stresses, as shown by the large
scatter in the velocity data measured at the same resolved shear (Schmid)
stress. Mitchell et al. [108] have shown that velocity dependence of the type
observed in [104] can be fitted by the kink diffusion model [5] if one includes
the stress dependence in the free-energy of kink-pair formation.

At temperatures higher than 0.7Tm the dislocation mobility exhibits an-
other transition [102]. Fig. 27 shows that, as the temperature increases above
0.7Tm, the behavior of dislocation mobility undergoes a change. The ef-
fective activation energy increases to Q ≈ 4.0 ± 0.1eV, accompanied by a
corresponding increase in the pre-exponential factor. This behavior shows
up in the velocity plots as a characteristic bend. Mechanistic understand-
ing of this transition is still lacking even though it has been proposed that,
at such high temperatures, vacancies can facilitate kink-pair nucleation and
migration [63].

In analyzing the experimental data one can observe considerable scatter
among the different measurements that cannot be explained within a single
theoretical model. To establish a consistent picture of dislocation motion, it
is important to recognize the limitations and possible artifacts of the differ-
ent techniques used to measure dislocation velocity. Three approaches are
widely used to observe dislocations, selective etching [109, 103], X-ray topog-
raphy [95, 104], and transmission electron microscopy (TEM) [101, 93, 84].

In the case of etching the intersection between a dislocation line and the
free surface, an etch pit, is exposed. To measure the dislocation displacement
from the etch pit position, one has to assume the dislocation remains straight
beneath the surface. Although this can be verified by observing the shape of
the etch pit and by repeated etching, the confirmation is indirect. Chemical
solutions used in etching could introduce impurity atoms to the surface which
then can pin the dislocation. This can be the reason why a starting stress
effect (existence of a critical stress below which dislocations cease to move)
has been observed in etching experiments [109] but not in X-ray experiments.

The resolution of X-ray topography is about 2.5µm, comparable to that
of selective etching. Hence, only large scale behavior of dislocation motion
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Figure 27: Temperature dependence of 60◦ dislocation velocity in Si [103] for
different stresses (1) 2MPa, (2) 5MPa, (3) 10MPa, (4) 45MPa.

can be observed. Smaller scale details, such as impurity clusters, jogs, etc,
are not observed, as these effects are smeared out in the overall dislocation
velocity that is measured. The exposure time in the X-ray topography is long
so that it is difficult to image dislocations in situ, unless a strong X-ray source
is used. If the measurements are not performed in situ, dislocation and point
defect microstructures can change during heating and cooling cycles between
loading, which may affect the measured dislocation velocity [104].

Because a small concentration of impurity atoms (such as oxygen) can
have a large effect on dislocation mobility, careful characterization of all im-
purity species in the specimens is a requirement for all experiments. For
example, it was found [104] that boron has essentially no effect on disloca-
tion mobility up to a concentration of 1.4 × 1019 atoms·cm−3, while earlier
measurements seemed to show a pinning effect associated with boron. It was
argued [104] that the discrepancy could be a result of an unnoticed oxygen
impurity concentration in other experiments.

Non-Schmid behavior also has been observed in silicon. The dislocation
velocity was found to have a dependence on stress components other than
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the Schmid (or glide) stress τs. In particular, the velocity of the 60◦ dislo-
cation is dependent on the climb stress (τc). Which of the two partials, 30o

or 90o, is leading also seems to make a difference. As we will explain in the
next subsection, it can be expected that the Escaig stress component (τe),
which exerts opposite glide forces on the two partials, can play an important
role in dislocation mobility. These observations suggest that it is necessary
to take the other stress components (besides the glide stress) into account
when comparing two experimental reports. This may resolve some of the dis-
crepancies among the different experiments. Parenthetically, the discrepancy
between the two mentioned X-ray topography measurements [95] and [104]
may be attributed, at least partly, to differences in loading conditions. In
[95] a tensile load was applied along [123] direction while in [104] the tensile
axis was [112].

In situ TEM measurements offer a unique opportunity to observe dis-
location motion in detail but the method has its own disadvantages. The
application and measurement of stress are difficult. Stress is usually esti-
mated from the local curvature of dislocations, or from the width of the
stacking fault between the partials. This makes any reported stress value
only approximate. Because very thin films are used in TEM, surface effects
are more serious than in other techniques. Examples of surface effects in-
clude the image stress on dislocations and enhanced kink nucleation at the
free surfaces which can significantly increase the dislocation velocity [101].
Dislocations under TEM are often seen to be pinned by invisible strong ob-
stacles [93, 1], possibly impurity atoms (clusters) diffused from the surface of
the thin film, or produced as a radiation damage by-product of the electron
beam itself. At the same time, the electron beam increases the dislocation
mobility by producing excitations, e.g. electron-hole pairs, that enhance the
rate of kink-pair nucleation and kink migration. All in all, the dislocations
may behave differently in the bulk than under the electron microscope.

3.4.2 Stochastic discrete kink model of dislocation mobility

In this subsection we discuss a mesoscale model that overcomes the compu-
tational limitations of direct atomistic simulations to reach the length and
time scales of dislocation motion in the laboratory experiment. To provide
a reference point for the model development, we briefly recall a few relevant
features of a well known kink diffusion model due to Hirth and Lothe [5],
referred to here as the HL model.
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Figure 28: Schematic of the Peierls barrier and kink mechanism for disloca-
tion motion. Dislocation is represented as a continuous line, which resides
mostly at the bottom of the Peierls energy surface except at kinks.

The basic assumption of the HL model is that a dislocation moves in a
stochastic sequence of thermally activated, random kink-pair nucleation and
migration events. The rate of kink-pair nucleation is defined by the nucle-
ation barrier that depends on the kink-pair formation energy, kink migration
barrier, elastic attraction between two kinks of the same pair and the applied
stress. Once nucleated, kinks diffuse along the dislocation line and either re-
combine with other kinks or pile up at the ends of the line. By considering
the balance of kink-pair nucleation and migration rates under stress, it is
relatively straightforward to obtain (in the limit of long dislocations)

v = νD
τabh2

kBT
exp

(
−Ek + Wm

kBT

)
, (18)

where v is the dislocation velocity, νD is the Debye frequency, τ is the resolved
shear stress on the dislocation, a, b and h are the dislocation period, Burgers
vector and kink height, respectively, Ek is the kink nucleation energy and
Wk is the kink migration barrier. Experimental data on the temperature and
stress dependence of dislocation mobility in the “central” range is generally
consistent with Eq. (18). Furthermore, the estimates for kink formation and
migration energies based on this equation are in reasonable agreement with
the atomistic simulation results.

Overall, despite reports of its shortcomings and given its analytical sim-
plicity, the HL model is remarkably successful in describing dislocation mo-
bility in silicon. As an example, let us consider the claim that experimental
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data presented in [104] can not be explained by the HL model. By comparing
Eq. (18) with the empirical relationship found in [104],

v = v0τ exp

(
− Q

kBT

)
, (19)

one can readily see that

v0 = νD
abh2

kBT
(20)

Q = Ek + Wm . (21)

Using their own experimental data Imai and Sumino obtained v0 ≈ 104m·s−1·MPa−1

whereas by plugging into the right hand side of Eq. (20) the values appro-
priate for silicon, one obtains v0 ≈ 10m·s−1·MPa−1 which is lower by three
orders of magnitude than the measured value.

However, this discrepancy is only apparent, because the entropy factors
in double kink nucleation and kink migration processes have been ignored
in [104]. In Eq. (18) Ek and Wm should be replaced by free energies, Ek −
TSk and Wm − TSm, where Sk and Sm are entropies for the nucleation and
migration processes. Therefore, Eq. (20) should be replaced by

v0 = νD
abh2

kBT
exp

(
Sk + Sm

kB

)
(22)

To account for the difference in three orders of magnitude, Sk + Sm ≈ 7kB

would be needed. This is actually not unreasonable considering the estimate
of 3kB for both Sk and Sm obtained in the earlier atomistic calculations [110].
Therefore, the experimental data of [104] should not be viewed as evidence
of the failure of the HL model, but instead as confirmation of the importance
of the entropy factors.

The HL model is nevertheless a simplification that ignores, for example,
the fact that dislocations in silicon, at least in the “central” parameter range,
are dissociated. Although the values for Ek and Wm used in the HL model
refer to partial dislocations, the process where two partials interact strongly
with each other and move together is usually not considered. When the ap-
plied stress is much larger than the interaction stress between the partials,
the partials are likely to be relatively independent of each other, in which
case this simplification is justified. The simplification is also valid for ma-
terials with a small stacking fault energy γISF , in which case the separation
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between partials X0 is large and their coupling becomes weak. If, on the
other hand, the applied stress is small, then the coupling between partials
can have a significant effect on dislocation mobility in silicon. In other words,
the mobility of two interacting partials forming a bound state may not be well
described by the generic HL model. There have been a number of reports of
anomalous behavior of dislocation velocity at low stress [95]. It appears pos-
sible to attribute such low-stress anomalies to the coupling between partial
dislocations.

The effect of coupling between the partials on their mobility has been
examined by Möller [111]. It was assumed that nucleation of kink-pairs on
two partials becomes correlated when stress is lower than a critical value
τc, while it is not correlated at higher stress. Below the threshold stress
kink-pairs have to nucleate simultaneously on both partials in close vicinity,
which makes kink-pair nucleation considerably less frequent than what the
HL model would predict. Using this model Möller attempted to explain
the experimental mobility data at low stress without the need for the ad
hoc postulate of weak obstacles which had been previously introduced for
this purpose. Unfortunately, the model was not successful in accounting for
the experimental data, making it necessary to re-introduce some obstacles
back into the description. Besides this inconsistency, the model was unable
to resolve another controversy. While some experiments found a non-linear
stress-velocity behavior [95], other experiments found a linear relation down
to very low stress [104].

To make his model analytically tractable, it was necessary for Möller [111]
to introduce simplifying approximations. Recently a different approach, one
based on kinetic Monte Carlo (kMC) simulation, has given new insights into
the effects of partial dislocations interacting with each other on their mo-
bility [112]. In the kMC description, two partial dislocations move together
via kink-pair nucleation and kink migration while interacting through the
Peach-Koehler forces. The simulations reveal a rather subtle coupling effect
between the partials.

To understand the effect, assume for a moment that there is no Peierls
barrier and consider the equilibrium separation X0 between the partial dislo-
cations. This distance is determined by a force balance between two compet-
ing terms. One is the repulsion between the partials, an elastic interaction
with a force inversely proportional to their separation. Another arises from
the stacking fault which exerts a constant attractive force between them. X0
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is the separation at which these two forces balance each other, i.e.

X0 = µb2α/(γISF − τebβ) , (23)

where α = [1/4 − 1/12(1 − ν)]/(2π), β =
√

3/6 for screw dislocations dis-
sociated into two 30◦ partials, µ is the shear modulus, τe is the so called
Escaig stress, i.e. the resolved shear stress along the edge components of the
partial Burgers vectors, which exerts equal but opposite forces on the two
partials. Therefore, X0 is a continuous function of the stacking fault energy
and the Escaig stress τe. However, because of a very high Peierls barrier in
silicon, the actual separation X between the partials can only be an integer
multiple of h = b

√
3/2. If X0/h happens to be an integer, then the ideal

spacing is commensurate with the lattice period. Any perturbation of this
ideal spacing, such as kink-pair nucleation, will incur additional energy cost.
However, this cost is significantly reduced if kink-pair nucleation takes place
on both partials simultaneously so that the ground state spacing X0 is pre-
served between the two kink-pairs. Such correlations are suppressed when
the stress driving kink-pair formation and motion becomes high enough to
overcome the interaction between kinks on the two partials.

The situation is different when X0/h is a half-integer, in which case the
ground state of the two partials becomes doubly degenerate, i.e. X = X± =
X0 ± 1/2. When the partials are separated by X−, forward kink-pair nucle-
ation and propagation on the leading partial extends the stacking fault width
to X+, which is another ground state. Likewise, in the state X+, forward
kink-pair nucleation on the trailing partial does not require any kink activity
on the leading partial. In this case, there is no commensurability barrier
and mobility of the whole assembly should be relatively high because the
two partials can now move sequentially through alternate contraction and
expansion of the stacking fault.

Fig. 29 shows the simulated velocity of a dissociated screw dislocations
as a function of Schmid stress. Two sets of data are shown with X0 equal
to 10.0h and 10.5h, respectively. The change of X0 can be realized by either
changing the stacking fault energy (by 5%) or by applying an Escaig stress
of 25MPa. When X0/h is a half-integer, the function remains linear down to
very low stresses. On the other hand, when X0/h is an integer, the mobility
drops super-linearly below 20MPa. Also plotted in Fig. 29 are two sets of
conflicting experimental data [100, 104] resembling the two simulated curves.
While a linear velocity-stress relationship was reported in [104], a non-linear
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Figure 29: Velocity of a screw dislocation in Si as a function of stress. kMC
prediction at temperature T = 1000K for a commensurate case (X0 = 10.0h)
is shown as �, with a “starting stress” at about 20MPa. Experimental data
from [100] at temperature T = 983K shows similar velocity variation, plotted
as ♦. kMC results for a non-commensurate case (X0 = 10.5h) are plotted as
•, demonstrating linear stress-velocity relationship, in agreement with other
experiments, at temperature T = 1005K plotted as ◦ [104].
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velocity reduction was observed in [100], albeit at a smaller critical stress.
The magnitude of this mobility reduction is also smaller than in the simulated
case of X0/h = 10.

It was argued in [104] that the discrepancy between the two experiments
was due to a higher purity of samples used in [104]. However, given that a
small change of X0 can have a large effect on the low-stress mobility, another
explanation could be the different averaged values of the parameter X0 in the
two experiments. Assuming that both measurements used similar materials
with the same stacking fault energy (albeit unknown to within an accuracy
of 5%), then the difference in X0 could potentially come from the different
values of Escaig stress. Indeed, the experiment [100] was conducted with
a tensile axis [123]. The corresponding primary slip system was (111)[101],
with a Schmid factor of s = 0.4667. By analogy to the Schmid factor, let us
define an Escaig factor as the ratio of Escaig stress to the tensile stress. The
Escaig factor was e = 0.1347 in [100] while the ratio of Escaig and Schmid
factors in this experiment was τe/τs = 0.2887.

The tensile axis in [104] was [112], with the primary slip system (111)[011].
The corresponding Schmid and Escaig factors were s = 0.4082, e = 0.0786,
respectively, and their ratio was τe/τs = 0.1925. We notice that the velocity
data points reported were plotted against Schmid stress only, although Escaig
stresses in these two experiments were markedly different. For example, for a
Schmid stress of 4MPa, X0 for these two loading conditions can be different
by 0.008h. This is not large, compared with the two extreme cases studied in
the kMC simulation in which X0 changes by 0.5h. However, it is reasonable
to expect that such a change of X0 could lead to a noticeable change of
dislocation mobility, comparable to the discrepancy that exists between these
two experiments.

It appears possible to directly observe the effect of Escaig stress on dis-
location mobility through the modulation of stacking fault width by exper-
iments. Evidently this effect should be more pronounced when the Escaig
stress is large. For example, when the loading condition is such that the ratio
of Escaig and Schmid stresses is τe/τs = −6.25, kinetic Monte Carlo simu-
lations [112] predict that the variation of dislocation velocity plotted with
Schmid stress should exhibit oscillatory behavior with a period of about
8MPa. This is consistent with the fact that it takes 25MPa of Escaig stress
to change X0 by 0.5h. A possible set up for the experiments to verify this
effect has been proposed [113].
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3.4.3 Kink diffusion versus obstacles

While the HL kink diffusion model and its extensions have been quite widely
adopted, alternative views on the mechanisms controlling dislocation mobil-
ity in semiconductors also have been put forth. The basic assumption of the
HL model has been called into question (see for example [114]) and point de-
fects, instead of dislocation kinks, were suggested as being responsible for the
lattice resistance to dislocation motion [115, 116]. As was already discussed,
the generic HL model can not explain the low stress dislocation mobility be-
havior, which shows significant non-linearity. To remedy this situation the
idea of “weak obstacles” was proposed as an extension of the HL model in
order to explain such behavior [117, 47]. These obstacles are assumed to im-
pede kink migration along the dislocation line; they must be weak so that at
high stress they are no longer effective and the dislocation velocity-stress re-
lationship becomes linear. The weak-obstacles theory, on the other hand, has
its difficulties; to fit the experimental data a very high density of obstacles is
required. In pure silicon, it is hard to imagine what kind of extrinsic defects
can fit the description [114]. As mentioned above, the HL kink diffusion
model, when extended to account for the coupling between the partials, can
explain the low stress mobility behavior without the need for any additional
entities, such as weak-obstacles.

One way to make use of the HL kink diffusion theory is to extract values
of kink formation and migration energies from velocity measurements which
are normally inverted to give the sum of the two energies. The results can
be tested against TEM data which can give the two energies separately. For
example, it is found that dislocation velocity is proportional to dislocation
length for lengths smaller than 0.2 ∼ 0.4µm. [93], a behavior which is given
by the HL model. From this value one can estimate the kink migration
energy (see previous subsections). In other experiments, the samples were
first deformed at high stress and temperature and then quickly cooled down,
so that dislocations were trapped at non-equilibrium configurations with large
stacking fault widths and high density of kinks. Subsequent annealing under
the electron microscope allows direct observation of dislocation motion via
migration of pre-existing kinks[84], from which kink migration energy was
estimated (Wm = 1 ∼ 1.2eV). These findings are in general agreement with
the HL model and atomistic calculations of kink energies.

Kink nucleation and migration contributions can be also isolated in the
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intermittent loading experiments [86, 107]3, where a stress pulses of length
ti are separated by pause periods of length tp. Kinks of the kink-pairs nucle-
ated during the pulse period may become unstable during the pause period
and may recombine with each other. In such conditions, the dependence of
dislocation velocity on ti and tp can be used to estimate kink formation and
migration energies. The data reported in [86] leads to Wm = 1.58eV for the
kink migration energy and to Ek = 0.62eV for the kink formation energy,
consistent with the atomistic models. Alternatively, if one adopts the ob-
stacle theory, the same data can be used to estimate the strength and the
length distribution of obstacles.

The authors [86] present their data as evidence against the HL model on
the basis of the following argument. From the estimated value of Ek, one
can also estimate the dislocation Peierls stress according to [86],

τPN =
π3E2

k

2a2b4µ
≈ 760MPa (24)

where a is the kink height, b is the Burgers vector, and µ is the shear modulus.
This value is indeed too low compared with other experiments that clearly
show that τPN > 1GPa. On the other hand, recent atomistic calculations
show that kink energy of Ek ≈ 0.6eV is fully consistent with very high
values of the Peierls stress for partial dislocations, at τPN > 5GPa. This
suggests that Eq. (24) is inaccurate and should not be used for quantitative
comparison.

While we argue that much of the observed phenomenology of dislocation
motion in semiconductors can be explained quite well within the HL kink
diffusion model, there is no doubt that point defects, such as vacancies,
interstitials, and impurity atoms, interact with dislocations and can affect
dislocation mobility under certain conditions. Intrinsic point defects can also
be produced by dislocations during deformation, making for rather complex
interactions between point defects and dislocations.

In situ high resolution TEM experiments [1] provide possibly the most
direct observation of obstacles for dislocation motion in showing that kinks
can be trapped by invisible strong pinning centres. Yet, such obstacles may
well be experimental artifacts, produced, for example, by impurity atoms

3Internal friction [118, 114] measurements were also performed earlier that could achieve
the same effect, but they became less popular because of the difficulty of relating the data
on absorption peak to kink energies[101].
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diffusing in from the surface, or by the high energy electron beam itself.
Thus they may be irrelevant for bulk semiconductors.

Certain types of impurity atoms are found to have a strong effect on
dislocation mobility while others do not. In situ X-ray topography [104]
data suggests that impurity atoms, such as nitrogen, oxygen, phosphorus and
boron, tend to make dislocations immobile at stress below certain critical
value, 3 ∼ 5MPa, depending on impurity type and concentration. Above
the critical stress, these impurities are reported to have different effects.
Nitrogen is seen to have no effect after reaching the threshold stress, while
oxygen causes dislocation velocity-stress relationship to become non-linear in
the low stress regime. Likewise, boron (in p-type Si) does not seem to have
much effect once dislocations begin to move, but phosphorous (in n-type Si)
is known to enhance dislocation mobility. Because it is difficult to ensure
that there is only one type of impurity in the sample, the above conclusions
must be taken with caution. The effect of electrically active impurities (B
and P) on dislocation mobility was explained by the electron hole transfer
between bulk crystal and dislocation levels [119].

Selective etching experiments also showed that phosphorous doped silicon
sample has a starting stress of about 2MPa for dislocation motion [107]. This
was explained by kink expansion through randomly distributed obstacles.
This result too may be subject to experimental artifacts due to surface effects.
Starting stress behavior was also observed in SiGe crystals with different
Ge concentrations[120]. It was proposed, that at small Ge concentration,
dislocations drag a Cottrell atmosphere, while at large Ge concentrations
kinks drifting along a dislocation would interact with random obstacles.

While the dragging effect of impurity atoms is expected, the effect of in-
trinsic point defects on dislocation mobility in pure silicon remains unclear.
It was found that 60◦ dislocations, when subject to climb forces, may become
unstable during motion, i.e. some segments move faster than others so that
the dislocation line becomes ragged [97]. It was postulated that this is due to
vacancy absorption or emission by a dislocation, which in turn modifies the
dislocation core. However, detailed atomistic mechanism is lacking. Double
cross slip of screw dislocations also has been proposed as a mechanism for
dislocation point defect interaction[116]. The motion of screw dislocations
after double cross slip requires jog dragging which depends on the rate of
emission or absorption of point defects. Interaction with intrinsic point de-
fect and climb also seem to be necessary to explain the forward-backward
asymmetry of dislocation mobility observed in [105].
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3.5 Outstanding issues

Although silicon has been a favorite material for theoretical and experimental
investigations on dislocation mobility, many issues still remain unresolved.
It appears that dissociated glide-set dislocations and perfect shuffle-set dis-
locations control the plastic deformation of semiconductors at high and low
temperature regimes, respectively. However, a satisfactory explanation of the
origin of this transition is lacking. Specifically, the atomistic pathways for a
shuffle-set dislocation to transform into the glide-set are poorly understood.
Atomistic modeling coupled with experimental observations should be able
to resolve this issue.

The disagreement among theoretical values for the formation and mi-
gration energies of kinks on the glide-set partial dislocations reported by
different groups is a serious concern. While some of the disagreement can
be attributed to the multiplicity of kink species, the fidelity of the atom-
istic models themselves is an issue. Ab initio DFT calculations are the most
accurate among the approaches currently in use, but they suffer from the
artifacts of boundary conditions in small computational volumes. The situa-
tion is expected to improve with the increasing availability of more powerful
computers and algorithmic improvements. One particular aspect ripe for the-
oretical exploration is kink mechanisms in the perfect shuffle-set dislocations.
Recent experimental data provide ample evidence for their importance. In
fact, given the relative simplicity of the shuffle dislocations compared to the
glide partials, it may be possible to establish a consistent picture of kink
dynamics in the shuffle-set perfect dislocations first.

Better mechanistic understanding of interactions between intrinsic point
defects and the dislocation core is needed. These include climb and cross
slip, as well as point defect generation as a result of dislocation motion, such
as by jog dragging. There are still debates on whether kinks or point defects
are the controlling factor for dislocation motion. The effect of electrically
active dopants on dislocation core, i.e. the electro-mechanical coupling, is
a promising area where ab initio calculations and experiments can be com-
bined to address technologically important questions. Atomistic mechanisms
of dislocation nucleation in misfit layers and surface effects on dislocation
mobility and multiplication are two more issues of significant technological
importance and theoretical interest.

Evidently, the complexity of atomistic mechanisms in the dislocation core
is nearly “bottomless”. A “bottom-up” approach, in which one attempts to
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predict the complete behavior of dislocations after mastering “all” the atom-
istic mechanisms, seems to be impractical. Instead, a “top-down” approach
could be more promising where a larger scale dislocation model is used to
provide guidance on which of the atomistic mechanisms are important and
under what conditions. Once this is established, high-accuracy calculations
can be performed to determine a selected set of important parameters.
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4 BCC Metals

4.1 Introduction

BCC metals and alloys have been heavily used by humankind since the Iron
Age. Their most useful property is high strength over a wide range of tem-
perature and straining conditions. Combined with the abundance of the iron
ores, the relatively straightforward technologies for metal extraction and the
high formability at reasonable temperatures, iron alloys naturally became
and continue to be the kings of structural materials. BCC metals, e.g., the
refractory metals Mo, W, Nb, Ta and others, also served as important ele-
ments for more specialized applications; when used in combinations with Fe,
they can greatly improve the quality of structural materials.

Although there are considerable variations in the plasticity behavior of
BCC materials, it is well recognized that certain generic behavior can be
attributed to their common lattice crystallography. Among these character-
istics are the prominent temperature and strain-rate dependence of the yield
stress, features of slip crystallography, and the existence of a ductile-to-brittle
transition at low temperatures. This last property is a manifestation of the
inability of dislocations to multiply and/or move fast enough, at low temper-
atures, to relieve the stress concentrations that are the causes of cracking.

As shown in Fig. 30(a) [121], TEM micrographs of deformed specimens
show characteristic features of long screw dislocations often stretching along
many microns, with no or very little deviation from the perfect screw ori-
entation. This anisotropy of dislocation microstructure directly reflects the
anisotropy of dislocation mobility. In situ TEM observations [122] show
very clearly that at low and moderate temperatures screw dislocations move
much slower than edge and mixed dislocations. For example, in pure molyb-
denum at room temperature the velocity of screw dislocation has been esti-
mated to be 40 times lower than that of edge dislocations [123]. The pre-
strained microstructure dominated by long screw segments is produced by
rapidly moving edge dislocations under stress. Some early dislocation ve-
locity measurements have suggested that screws actually move faster than
edges [124, 125, 126]; however, such behavior could be due to surface related
enhancement of screw mobility or even the artifacts of chemical etching used
to monitor dislocation motion, and in any event it is unlikely that such data
are representative of dislocation behavior in the crystal bulk.

Another common element of the microstructure in BCC metals is a high

73



(a)

(b)

Figure 30: (a) Dislocation microstructure in Mo under 2% tensile strain along
[110] at 77K. (b) Dislocation microstructure in Mo under 5.8% tensile strain
at 293K [121].
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concentration of debris in the form of vacancy and interstitial loops, which
are often observed after deformation, as shown in Fig. 30(b) [121]. The
debris concentration typically increases with increasing straining rate. While
mechanisms of such debris production are not entirely clear at present, a
possible explanation for this behavior will be discussed later in this section.

The dominant dislocation type has Burgers vector 1
2
〈111〉, which is the

smallest repeat vector of the BCC lattice. 〈100〉 dislocations are also ob-
served. The latter are thought to be products of reactions between 1

2
〈111〉

dislocations. Slip trace analysis reveals slip in {110}, {112} and even {123}
planes of the 〈111〉 zone [127, 5]. At higher temperatures, the so-called pencil
or non-crystallographic slip is observed such that the slip plane, on average,
follows the maximum resolved shear stress (MRSS) plane, with the slip traces
having a wavy appearance [128, 129, 130]. The zonal character of dislocation
slip and the mentioned TEM observations underscore the prominent role of
screw dislocations in the plasticity of BCC metals. In the kinematical sense,
at low and moderate temperatures (below ∼ 400K) the non-screw disloca-
tions behave as “slaves” to the dominant screws.

Both calculations and experimental observations suggest that there are
no stable stacking faults in BCC metals, at least in ambient conditions. If
so, then the dislocations in these solids should not dissociate in a planar,
FCC-like fashion. Combining this with the fact that the BCC dislocation
cores are observed to be rather compact and the pre-dominance of screw
dislocations already mentioned, one sees that plasticity in BCC metals should
be strongly influenced by cross-slip processes. The very term “cross-slip”
coined to describe rather infrequent events where the dislocation changes
glide plane in FCC metals, could be somewhat misleading when used to
describe the motion of screw dislocations in BCC metals. Given its compact
core, a screw dislocation does not have to first constrict in order to change
its glide plane; there would be always more than one glide plane that is
available. The selection of glide plane and resulting slip crystallography are
likely to be governed by rather more subtle effects in the core of the screw
dislocation than the planar dissociation invariably observed in FCC metals.
As recently emphasized by Duesbery and Vitek [131], existing perceptions
about dislocation behavior in BCC metals are heavily influenced by the views
developed earlier for FCC and HCP metals. Since the extrapolation of these
views beyond these crystallographic classes has not been well justified, the
“FCC ideology” should not be applied to BCC metals without a sound basis.
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(a) (b)

Figure 31: Differential displacement map of screw dislocation core in BCC
metals, (a) symmetric core, (b) asymmetric core [139].

4.2 Core structure and lattice resistance

4.2.1 Screw dislocations

The early ideas about the structure of screw dislocation core are centred
around the hypothesis of FCC-like planar splitting for explaining the ob-
served slip phenomenology [132, 133, 134]. In a drastic departure, Hirsch
suggested that screws can dissociate in more than one plane and that such
a non-planar dissociation can explain the observed high Peierls barrier and
the strong temperature dependence of the yield stress [135]. Initially, various
variants of screw dislocation splitting were considered (for a review see [136]).
Eventually, with the help of computer simulations, the thinking converged
to the well-known three-way dissociation into three equivalent {110} planes.
Vitek et al [137, 136] and Duesbery et al [138, 131] have clearly shown that
such a dissociation can occur even when no plane of the {111} zone contains a
stable stacking fault. Still, the use of the term “dissociation” implies that the
perfect screw dislocation somehow splits into several partials or, fractional
dislocations. We think that such a picture is not necessarily appropriate
for describing the screw dislocation core in BCC metals as it could lead to
complications and even misunderstanding. In the following, we will refer
to dislocation core spreading as “polarization”, resulting from a symmetry-
breaking core reconstruction.

Fig. 31 shows differential displacement maps (DDM) [140] of screw dislo-
cations. Each circle represents a column of atoms. The dislocation line and
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Burgers vector are parallel to the atom columns, i.e. along z direction (out
of the plane). The DDM map is constructed by first computing the atom dis-
placement (along z direction) with respect to perfect lattice for each column.
The arrows then indicate the difference between displacements of neighbor-
ing columns. The length of the arrow is proportional to the magnitude of
displacement difference and the direction of the arrow indicate the sign of
the displacement difference, i.e. the column that the arrow points to has a
larger displacement than the column on the other end of the arrow. Because
the lattice is periodic in z direction by Burgers vector b, the displacement
difference, i.e. the differential displacement, between any two columns can be
only defined modulo b. By convention, the differential displacement is always
mapped into the domain of (−b/2, b/2] by adding or subtracting multiples
of b. Among the three atoms in Fig. 31(a) that surround the centre of dislo-
cation, the DDM arrows form a closed circuit. The differential displacement
between any two atoms out of these three, going counterclockwise, is b/3. By
going around any circle containing the dislocation centre, one accumulates
a total displacement b. We should emphasize that while the arrows in the
DDM are all in the plane for convenience of visualization, the displacement
component they represent is strictly out of the plane.

It should be noted that, regardless of the details of misfit distribution,
the core is rather compact. That the core spreads is a consequence of elastic-
energy reduction; any such spreading can be interpreted as fractional split-
ting of the perfect screw dislocation core into the planes of the {111} zone.
Less obvious is which directions and planes the spreading entails. The fine
structure of the core would depend on subtle details of atomic interactions in
the core. Some atomistic models predict nearly equal core extensions in all
directions while others show a characteristic splitting into three directions on
three {110} planes of the zone. The latter can be interpreted as a core recon-
struction that also spontaneously breaks the symmetry of the host lattice.4

The atomistic meaning of this core reconstruction is very simple: three rows
of atoms immediately bounding the geometric centre of the screw dislocation
shift in the same direction along the Burgers vector [141]. This shift can take
place in either of the two directions along the dislocation line, giving rise to

4The symmetric core configuration is sometimes unfortunately referred to as six-fold
symmetric, whereas the symmetry-broken structure is described as three-fold symmetric.
This description is incorrect and misleading. The symmetry around the {111} zonal axis
remains three-fold, regardless of the core reconstruction. The symmetry that is broken is
that with respect to 180◦-rotation around any of three {110} axes of the zone [5](p. 370).
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two energetically equivalent but geometrically distinguishable core variants.
We will discuss the possible consequences of such core reconstruction, aka
polarization, later on in this section.

The detailed structure of screw dislocation core in BCC metals has been
examined through atomistic simulations [142, 143, 144, 145, 146, 147, 139],
particularly with regard to the effects of in-core relaxation. Most of the earlier
calculations predicted a polarized core structure that was seemingly observed
in HREM experiments [148]. Polarization was a significant issue since the
details of the atomic rearrangement in the core were thought to have an effect
on the lattice resistance to dislocation motion. Specifically it has been an
almost universal belief that the high Peierls stress of the screw dislocation
is a direct consequence of their non-planar core structure. According to
this view, the mobility of the screw dislocation must be limited because, by
spreading into several planes of the zone, the dislocation effectively anchors
itself to the lattice, such that in order to translate through the lattice it
has to retract some of its extension, a process that requires considerable
energy. The anchoring effect of non-planar dissociation is thought to be more
pronounced when the core is polarized, since then the core extension would
be maximum [149]. Recently this belief has been called into question by ab
initio calculations [139] which presented evidence that even non-polarized
screw dislocations in Mo and Ta have high Peierls stress, of the order of
1GPa. On the other hand, it has also been observed that the Peierls stress is a
sensitive function of core polarization [150]. In view of the these contradictory
results, it seems prudent to conclude that high Peierls stress is not necessarily
caused by non-planar core dissociation or polarization, and yet, with all
things being equal, core polarization may have an effect on the Peierls stress.
That core polarization may not be the dominant factor for the magnitude
of Peierls stress is consistent with the observation that, under shear stress
approaching the maximum (Peierls) sustainable level, the dislocation core
undergoes profound changes that effectively wipe out the features of core
structure observed at zero stress [151, 152].

That the compactness of the core gives rise to a large Peierls stress is also
an effect described by the Peierls model of dislocation core. It is evident that,
for a dislocation to translate from one lattice position to the one adjacent, the
more extended the core the less each atom in the core has to move relative
to its neighbors. While clearly more atoms take part in the translation of a
wider core, the Peierls barrier for the wider core is lower because of the highly
non-linear character of interatomic interactions in the core. This effect is also
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seen from a well known correlation between the core width and Peierls stress
in FCC metals [6]. The opposite effect can also occur - a dislocation with
narrow core, notably in Si, can have very high Peierls stress, approaching the
ideal shear resistance of the crystal [59] (see the preceding section).

In atomistic simulation when the applied stress reaches the Peierls value, a
screw dislocation responds by moving along one of the crystallographic planes
of the 1

2
〈111〉 Burgers vector zone, most often a {110} plane closest to the

MRSS plane. Depending on the interatomic potential, the translation plane
can be {112} [152] as well. For example, the FS model potential predicts
that screw dislocations in Mo move along {110}, but in Ta they move along
{112} [131]. Also, screw dislocations simulated by using Finnis-Sinclair’s
model of bcc-Fe are observed to move on either a {112} or a {110} plane
depending on the orientation of the MRSS plane [33]. The slip-plane selection
and critical stress condition for screw dislocations are clearly in violation of
the Schmid law [153]. For example, in cases where the screw dislocations show
a definite preference to glide, say, on {110} plane the Schmid law specifies
which of the three {110} planes of the zone will be selected, as well as the
level of applied stress σij at which the dislocation should begin to move, the
latter being given by

σijsij = τPN , (25)

where τPN is the Peierls stress and sij is the Schmid tensor of the given
plane. For a pure shear stress σ applied along the Burgers vector, the relation
reduces to

σ = τPN/ cos(χ), (26)

where χ is the angle between the MRSS plane and the nearest {110} plane.
Relative to the Peierls stress for χ = 0, the Peierls stress variation specified by
the Schmid law is shown in Fig. 32. The variation simulated using an atom-
istic model of Mo, also shown, is clearly in considerable disagreement with
the Schmid law [154, 153]. This and almost all other atomistic calculations
reported so far showed that the motion of screw dislocation in BCC metals at
low temperature does not follow the prescriptions of Schmid law [153]. The
origin of the non-Schmid behavior is largely due to the twining-antitwining
asymmetry of the BCC lattice, which makes χ = 30◦ and χ = −30◦ drasti-
cally different from each other. In addition to the non-Schmid χ-dependence,
other stress components have been found to affect the critical stress, most no-
tably the components perpendicular to the Burgers vector [155, 156]. Dues-
bery and Vitek [131] traced such non-Schmid effects to a coupling between
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the applied stress and a small but resolvable edge components of displacement
observed in the core of the screw dislocations. An extensive and thorough
analysis of various non-Schmid couplings affecting the motion of screw dislo-
cations in BCC metals was presented by Duesbery in volume 8 of this series.
An alternative to coupling with edge components is that the activation en-
ergy for motion couples to other stress components via the activation strain.
A specific case would be coupling of isostatic stress to a variation in the
nonlinear dilatometric field of the dislocation, which could vary during kink
formation.

Given that the Peierls stress of a screw dislocation is considerably higher
than that of non-screw components, it is usually assumed that the macro-
scopic yield stress at low temperatures is closely related to this stress, a
reasoning that finds support in the results of Dislocation Dynamics simu-
lations [157]. As we have just discussed, the well-documented violations of
the Schmid law in the yield behavior of BCC metals are in general agree-
ment with atomistic simulations [143, 145, 147, 139]. In this context, the
current discrepancy between the computed and experimental estimates of
the Peierls stress is puzzling. The atomistic calculations consistently over-
estimate the yield stress (see e.g. [121, 158]) by a factor of 2-4. For ex-
ample, the zero-temperature limit of yield stress for Mo is 750MPa [121]
while the Peierls stress for screw dislocation from atomistic calculations is
around 2 ∼ 3GPa [146, 147]. Attributing the discrepancy to the inadequacy
of interatomic potentials, while seemingly reasonable, is not supported by
recent DFT calculations [139] which also gave Peierls stress values for Mo
and Ta several multiples of the experimental estimates. Another hypothesis
suggests that the lower experimental values reflects the collective motion of
dislocations in groups and amplification of the applied stress through the
mutual interaction of dislocations in each group [159]. This explanation ap-
pears tenuous and does not provide a mechanistic interpretation. At present
the consistently lower values of the experimental yield stress point to a fun-
damental aspect of dislocation behavior in BCC metals that remains to be
explained. In the next subsection concerning secondary core defects, we will
discuss simulation findings that relate the yield-stress discrepancy to partic-
ular features of interaction between screw dislocations.

80



(χχχχ)

Figure 32: Screw dislocation Peierls stress for different loading stress direc-
tions in the {111} zone. The solid line shows the prediction of Schmid law
and the symbols show typical atomistic simulation results [145].
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Figure 33: Core structure of an edge dislocation. Two layers of atoms imme-
diately above and below the glide plane are shown. Atoms with local energy
0.1eV higher than the bulk are plotted in black to show the dislocation core.

4.2.2 Non-screw dislocations

The core structure of edge (Fig. 33) and other non-screw dislocations, is
relatively unremarkable when compared to the screws. The core shows mod-
erate spreading in the glide plane although no clear planar dissociation can
be detected. The Peierls stress of non-screw dislocations in BCC metals is
commonly assumed to be low. Duesbery and Xu [160] have challenged this
belief by presenting atomistic simulations that gave a high Peierls stress for
pure edge dislocations in Mo (FS potential), of the order of 0.5 GPa. The
authors assumed that mobility of edge dislocations at non-zero temperatures
should be controlled by kink mechanisms, similar to the ones operating in
screw dislocations. This interpretation was in turn called into question by
another simulation study giving more attention to the effects of boundary
conditions as a source of error in determining the Peierls stress [40]. The
present status is that a converged Peierls stress value for pure edge disloca-
tions, obtained using the FS model of Mo, is just 25 MPa, more than an order
of magnitude lower than that reported in [160]. Although different boundary
conditions, fixed and periodic, respectively, were used in the two studies, it
is evident that finite-size simulation cell effects, if not properly treated, can
lead to serious errors.

An implication of the above noted discrepancy is that the relation between
Peierls stress and the dislocation character remains to be clarified. There is
an indication from atomistic calculations that some non-screw dislocations
have much higher Peierls stress than the others [161]. In contrast to the
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Figure 34: Core energy of non-screw dislocations in BCC Mo as a function
of character angle, with core radius rc = 1b.

earlier work [160], it is not the pure edge dislocations that have exceptionally
high Peierls stress but the 71◦-mixed dislocations denoted M111 in [162, 161].
For the latter the fully converged Peierls stress value for the same FS model
potential is 320 MPa, whereas for the other non-screw dislocations on {110}
planes the stress is generally 20-30 MPa. These values are in contrast to
the value of 2.4 GPa obtained for screw dislocations using the same potential
model. That the M111 dislocations are special is indicated by the observation
of a cusp-like dependence of the dislocation core energy on the character
angle, with the cusp centred precisely on the M111 character angle (Fig. 34).
This cusp resembles the well-known behavior of the grain boundary energy as
a function of the misorientation angle, near a special low-Σ boundary [163].
The essential difference here is that dislocations, unlike grain boundaries,
produce long-range elastic fields; their energy is dominated, in most cases of
interest, by the elastic energy. Since the dominant elastic component of the
dislocation energy is generally a smoothly varying function of the character
angle, the cusp-like feature shown in Fig. 34 is not as distinct as that seen
in the grain-boundary energy. It takes a special effort and the use of very
accurate methods [164] to observe cusp-like features in atomistic calculations
of dislocation energies.

The observation of dislocation energy cusps implies that the two orienta-
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Figure 35: Schematics of reconstruction defects (RD) on screw dislocation
core in BCC lattice. The arrows indicate the direction of reconstruction
displacements of the three atom columns in the core. They are opposite in
A and B type cores, forming two types of RD’s, AxB and BxA [141].

tions (screw and M111) correspond to particularly favorable packing of atoms
in the dislocation core. Analogous to special grain boundaries, at both ori-
entations the dislocation displays special properties, notably a high Peierls
stress. It would be useful to examine whether kink mechanisms operate in the
M111 dislocations at non-zero temperatures and if the cusp-like behavior can
result in experimentally detectable features of dislocation microstructure.

4.3 Secondary core defects

4.3.1 Reconstruction defect

It has been already noted that polarization of the screw dislocation core
in BCC metals is a special case of symmetry-breaking core reconstruction.
Symmetry arguments in fact provide a unique perspective from which to an-
alyze the core structure. This particular core reconstruction breaks a dyadic
symmetry with respect to 180◦-rotation around a 〈110〉 axis, resulting in
a two-fold degenerate core, i.e. there exist two geometrically distinguish-
able but energetically equivalent variants of the reconstructed (polarized)
ground-state core structure. This suggests that reconstruction defects (RD),
or anti-phase defects should appear where the dislocation core divides into
two segments, each with a different reconstructed core. As noted in [141, 165]
there are two types of RD in a reconstructed 1

2
〈111〉 screw dislocation in BCC

lattice, denoted as AxB and BxA flips. The meaning of these terms is easy to
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understand by observing that the core reconstruction involves moving three
central rows of atoms together in the same direction with respect to their
immediate neighbor rows. One variant of the core reconstruction produces a
shift in, say, positive Z direction (along the Burgers vector), while the other
variant results in an identical shift in the opposite direction. When two adja-
cent core segments shift in opposite directions, they will either shift towards
each other or move apart, to produce respectively a compressed region (BxA-
flip, positive pressure), as shown in Fig. 35, or an extended region (AxB-flip,
negative pressure). If the displacement of three central rows is equal to b/6,
the maximum possible value, then a BxA-flip is an interstitial-like defect
while the AxB-flip defect is vacancy-like. In atomistic calculations smaller
displacements leading to partial interstitial or vacancy-type defects have been
observed [166].

Given that core degeneracy can affect screw dislocation motion, it is ap-
propriate to examine if and how this degeneracy can be removed by stress.
Using the Finnis-Sinclair potential model, we find [73] that energy degener-
acy of the two variants of a polarized screw dislocation core in Mo is indeed
removed by either one of the two glide stress components, shear stresses ap-
plied along the Burgers vector on any plane of the zone. Furthermore, the
non-glide stress component, called “edge” stress, also removes the degener-
acy. This means that under the action of an appropriate stress component,
one of the polarization variants of a screw dislocation core becomes energet-
ically favored relative to the other, and occupies a larger fraction of the core
length. Furthermore, if the “wrong” core variant were somehow created, it
would have a tendency to convert to the low energy variant, most probably
by the stress-induced drifting of RD’s. In other words, the motion of RD’s
along the screw dislocation core could be coupled to the external stress. Acti-
vation of one or the other core variant and the conversion rate will depend on
the magnitude of the degeneracy splitting and the kinetics of flip nucleation
and motion. This effect contributes further to the already complex picture
of how the glide and non-glide stress components can affect the choice of slip
planes of screw dislocation.

4.3.2 Kinks

A Peierls stress of the order of 1 GPa signifies a correspondingly high energy
(Peierls) barrier and motion of screw dislocation at non-zero temperature,
via thermally and stress-activated kink-pair mechanisms (see the preceding
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section). Early calculations by Duesbery showed that nucleated kinks experi-
ence very low resistance to their motion along the screw line [141], consistent
with the observation of very long and geometrically straight screw disloca-
tions [122]. Therefore, the overall rate of dislocation motion seems to be
controlled by kink-pair nucleation events. Later calculations confirmed that
the kink migration barrier [40] is indeed low relative to the kink-pair nucle-
ation barrier and the energy of a stand-alone kink [143]. For example, the
FS model potential for Mo predicts that kink-pair nucleation energy is 1.2
eV while the Peierls stress for kink motion along the line is 20 MPa, quite
similar to the Peierls stress of pure edge dislocations [40].

Historically, various continuum models have been used to model kinks in
screw dislocations in BCC metals. Dorn and Rajnak [167] have applied a
line tension model to examine analytically the transition state for kink-pair
nucleation. This model provides a useful relationship between the Peierls
stress, Peierls barrier, and kink-pair formation energy, which is given earlier
in Eq. (24). Early in the 70’s several other continuum models were proposed
based on the understanding at the time of the structure of screw dislocation
core [168]. Recently, Ngan developed a Peierls-Nabarro model that accounts
for the observed non-planar extension of the screw core [169, 170]. This model
allows numerical evaluation of kink energies using the γ-surface data as an
input. In comparison, direct atomistic calculations of kinks to be discussed
below, are still too expensive and/or inaccurate and have so far produced rel-
atively few data points for kink energetics. The continuum models, although
approximate, provide an inexpensive alternative to atomistic calculations for
a general study of variation of kink-pair energy with stress. By matching the
continuum models to suitable atomistic counterparts at selected data points,
one can hope to achieve results valid over a wide range of temperature and
stress conditions.

An interesting continuum model of kink-pairs in screw dislocations in
BCC metals was suggested by Edagawa et al [171] which departs completely
from the FCC-inspired notion of the γ-surface as the core misfit potential.
Instead it is assumed that the dislocation-lattice coupling (Peierls potential
for the screw dislocation) can be specified as a 2D surface in the XY plane
perpendicular to the direction of the Burgers vector:

E[x(z), y(z)] =

∫ ∞

−∞

{
Γ

2

[(
dx

dz

)2

+

(
dy

dz

)2
]

+ Vp(x, y)− τb(x cos χ + y sin χ)

}
dz,

(27)

86



where E is the total-energy of the dislocation having the configuration r(z) =
[x(z), y(z)] with respect to the initial equilibrium configuration at r0 =
(x0, y0), Γ denotes the line-tension of the dislocation and Φ(x, y) = Vp(x, y)−
τb(x cos χ + y sin χ) is the effective Peierls potential including the work done
term. The dislocation containing a kink-pair is represented by a continuously
curved line in 3D whose shape is obtained by the variation of the total energy
containing three terms: (1) a positive elastic (line tension) self-energy of the
curved dislocation, (2) a positive Peierls energy per unit length integrated
over the entire dislocation line, and (3) a negative mechanical work by the
applied stress causing the line to bow out from its initially straight config-
uration. This model appears to be most appropriate for describing screw
dislocations in BCC metals, accounting correctly for their non-planar core
structure and motion. The model also provides a reasonable description of
the kink-pair nucleation barrier and its dependence on stress, and even the
χ-dependence of Peierls stress discussed above is correctly reproduced [171].
Consequently, such a formulation may be suitable for parametrization against
atomistic calculations, in which case just two parameters are sufficient to fully
define the non-planar misfit potential (equation above). One may use, for
example, an atomistic value of the kink-pair energy at zero stress and, in
the opposite limit, a value of the Peierls stress, say, for χ = 0. The misfit
potential thus produced can be used to compute and tabulate the kink-pair
nucleation barrier in the entire range of applied stress. Used in this manner,
the model serves as an interpolation function for kink-pair nucleation barrier
between two limits, a state of zero stress and that of Peierls stress.

However useful, the continuum models nevertheless cannot account for
salient atomistic features of the dislocation core structure and dislocation
motion. Only calculations taking into account explicitly the atomic degrees
of freedom can properly describe the subtleties of dislocation behavior in
BCC metals in their full complexity. These are discussed below.

Fig. 36 shows the schematics of core atoms in screw dislocations with
kinks on the (110) plane. Because the BCC lattice is not symmetric with
respect to 180◦ rotation along 〈111〉 directions, the left and right kinks on the
screw dislocation are not degenerate, even when the core is not polarized [87].
For the polarized core, there are six different kink types in various combina-
tions of two RD’s and two original kinks [87]. Duesbery has referred to the
kinks with the same sense of polarization on each side and the kinks sepa-
rating two segments of opposite polarization as homokinks and heterokinks
respectively [141]. In view of the possible kink pairs on {110} planes, there
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LK RK

Figure 36: Core atoms of a screw dislocation in BCC lattice with left kink
(LK) and right kink (RK). LK and RK are different because of the lack of
180◦ rotation symmetry along 〈111〉 direction of the BCC lattice.

are several distinct combinations of homo- and heterokinks that may con-
tribute to dislocation motion [159]. Atomistic calculations performed so far
indicate that one particular kink-pair, namely the pair called BnApB in [159],
has the lowest nucleation barrier. When the dislocations move by nucleating
and expanding this kink pair, its core polarity will be reversed each time it
moves by a unit step on the (110) planes. As shown in [159], this kink pair
provides a 3D atomistic path for dislocation translation that is consistent
with the zig-zagging motion of straight screw dislocations observed in the
earlier 2D simulations [152]. Thus, a case can be made for this particular
kink pair as the dominant translation mechanism below the Peierls stress.
As a cautionary note, we observe that, just like in the case of kinks in glide
partials in Si (see the preceding section), the flips that must be present in
the core may facilitate the nucleation of other kink-pairs that can compete
with this pair. If this is the case, dislocation motion under stress can proceed
through a complex sequence in which several types of kink-pairs contribute
simultaneously. Later on, we will discuss yet another possible contribution
of flips to the “rough” motion of screw dislocations under high stress.

Atomistic simulations have found that the centre of the dislocation has to
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Figure 37: Double kink nucleation barrier as a function of stress. Solid and
dashed curves represent kinks on (110) and (112) planes respectively.

reside in one type of the triangles (either 4 or ∇, depending on the Burgers
vector) in the triangular lattice of atom rows when looking along the Burgers
vector direction (Fig. 31). Centering the dislocation in the “wrong” triangle
will result in three core atoms sitting on top of each other, resulting in the
high energy “hard core” configuration, instead of the low energy “easy core”
configuration [143]. For this reason, translation of the dislocation core on the
{110} plane, or equivalently along the 〈112〉 direction requires a minimum
core displacement from one “easy” position to another. Translation on the
{112} plane, or equivalently along the 〈110〉 direction requires a displacement
that is

√
3 times larger. Therefore, most atomistic simulations have focused

on kinks on the {110} plane. Duesbery has shown that at zero stress the
{112} kink pairs, being unstable, dissociate into shorter {110} kinks. In this
as yet unpublished work, Duesbery used the NEB technique [172, 173] to
explore the atomistic paths for kink-pair nucleation in which the final (des-
tination) state of the dislocations contains a {112} kink pair. The search
showed that the dislocation, although forced to make a large {112} step,
preferred to do it in two smaller {110} steps. On the other hand, Seeger con-
sidered kink-pairs in the {112} plane and developed a theory that agrees well
with experimental data on internal friction. Therefore, which kink matters
in what conditions is still an open issue.

According to the elasticity theory kinks on {110} plane should have 1/3
the energy of those on {112} plane simply because kink energy is proportional
to the square of its height. Atomistic simulations of straight screw disloca-
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tions at zero temperature show that, depending on the interatomic potential,
dislocations can move on {112} planes under stresses equal to or exceeding
the Peierls value [131]. Such motion can be viewed as a limiting case in
which the stress is sufficiently high to overcome any effect of the kink-pair
nucleation barrier. That dislocations move along the {112} planes at stress
equal to the Peierls stress implies that as the stress levels approaches this
critical value from below, the effective barrier for {112} kink-pair nucleation
must have been greatly reduced to allow this mechanism to operate. At low
stress the {110} kink-pairs should be still favored given their lower nucleation
energies at zero stress. The overall stress dependence of kink-pair nucleation
barrier can be one which connects smoothly the the high-stress limit favor-
ing the {112} kink-pairs with the low-stress limit where the {110} kink-pairs
dominate, as depicted schematically in Fig. 37. A crossover between the two
regimes offers a possible resolution of the current controversy.

Recently Wen and Ngan presented an exploration of atomistic mecha-
nisms of kink-pair nucleation in α-Fe [174]. Their results show that the
BnApB kink-pair has the lowest activation barrier among all possible candi-
dates. Seen in Fig.7 in their paper [174] are signs of a degeneracy-removing
coupling between the glide stress and the core polarization. This work is
a definitive description of atomistic mechanisms of kink-pair nucleation in
the relevant range of applied stress, from zero to Peierls, which should pave
the way for similar future studies. The main conclusion that core polariza-
tion favors pencil glide, however, appears to be questionable. The mixing
of two different translation directions, as required for pencil glide, is more
likely when the core is not polarized so that the screws can translate by any
of the six {110} kink-pairs. In this case, the ratio of glide stress resolved
on two neighboring {110} planes can be anywhere between 0.5 and 1.0. In
the case of a strong core polarization considered by the authors, i.e. when
translations can take place only by three kink pairs of the BnApB type, the
resolved stress ratio spans a significantly wider range from -0.5 to 1.0. Most
of this range is far from the ratio of 1.0 ideal for the pencil glide mixing.

4.3.3 Junction Nodes

The junction node where three dislocation segments meet is a special (point-
like) entity which can play a significant role with regard to the above men-
tioned discrepancy between the Peierls stress determined atomistically and
the observed low temperature limit of the yield stress. Matsui et al. [175]
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Figure 38: Peierls stress of the dislocation network as a function of stress
orientation. Filled symbols show the values of critical stress for the four
directions actually tested. Open symbols are obtained by symmetry. Dashed
lines indicate the range of error in the computed Peierls stress [179].

have suggested that the 3-nodes at the ends of a dislocation junction can
act as sources of dislocation kinks, thereby explaining the anomalous slip be-
havior observed in some high-purity BCC metals at low temperatures [176].
According to the proposed Co-planar Double Slip (CDS) mechanism, the
enhanced kink nucleation at the nodes can more than compensate for a low
resolved stress on the anomalous slip system which then becomes more ac-
tive than other more highly stressed systems. Subsequently, Saka et al. [177]
observed motion of co-planar junction networks using in situ TEM. How-
ever, this observation was challenged by Garratt-Reed and Taylor [178], who
noted that dislocations had to move against the applied stress in some stage
of the CDS glide and therefore such a mechanism was unlikely to operate.
Garratt-Reed and Taylor suggested an alternative mechanism for facilitat-
ing screw dislocation motion in the glide plane [178]. In their mechanism
the dislocations approaching each other do not need to form a junction to
move faster; they can exert torques on each other causing them to bend in
the anomalous {110} plane. While such trajectory change may prevent the
dislocation from getting any closer, it can also be an efficient source of kink
nucleation. The two hypotheses, although differing in details, both empha-
size that dislocation interactions, whether local as in CDS or remote as in
Taylor’s mechanism, can enhance dislocation mobility rather significantly.
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Recently, direct atomistic simulations of the motion of a screw dislocation
network have been performed to verify the feasibility of the CDS mechanism
in BCC metals [179]. As two sets of 1

2
〈111〉 screw dislocations zipped to-

gether to form 〈001〉 junctions, a dislocation network is generated on the
{110} plane. It was found that the network can move conservatively in any
direction in the {110} plane, provided the stress direction and magnitude are
chosen appropriately. It was also found that the network begins to move at
stress levels well below the Peierls values for its constituent dislocations, for
all directions of stress in the {110} plane. The results of these calculations
are shown in Fig. 38, in terms of the critical stress required to move the junc-
tion network as a function of stress direction, expressed in polar coordinates
with stress magnitude and direction angle as variables. The nodal effect on
dislocation mobility is seen here in the clustering of the data points from
atomistic calculations inside the envelope formed by the Peierls stress values
computed for each of the three constituent dislocations in isolation.

While kink nucleation at the nodes appears to be the mechanism for en-
hanced mobility, contrary to the original hypothesis of Matsui and Kimura
the kinks were observed to nucleate at the trailing node of the moving junc-
tions and then to converge on their leading nodes. Otherwise, the CDS
mechanism seems to be supported by the atomistic calculations. It was also
confirmed that such a nodal enhancement of dislocation mobility requires
two conditions to be satisfied simultaneously, a high barrier for kink-pair nu-
cleation on a straight screw dislocation, and a low kink migration barrier. In
these calculations using the Finnis-Sinclair model of Mo, the Peierls stress
value of 2.4 GPa obtained indeed indicates a high nucleation barrier. At the
same time, the Peierls stress for kink migration is 20 MPa, two orders of
magnitude lower. We expect that when these energetic conditions are met,
the nodal effect on dislocation mobility will be even more dramatic at finite
temperature. Even though the atomistic study confirms the CDS mechanism,
it is possible that the mechanism suggested in [178] also can be important.
Similar simulations examining the effect of torques on dislocation mobility
would be instructive.
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4.4 Dislocation mobility

4.4.1 Experiments

Experimental measurements of dislocation mobility in BCC metals are more
difficult compared to the case of Si (see the preceding section), mainly due to
the problem of obtaining samples with low dislocation density. Early experi-
mental results on screw and edge dislocation mobility may be contaminated
by the interaction of moving dislocations with grown-in dislocations and the
free surfaces. For example, it was reported that edge dislocations [124] have
a lower mobility than screw dislocations [125, 180, 181, 182]. This has led
to the conclusion [126] that kink mechanisms do not play a role in screw
dislocations, which is in contradiction with the current understanding.

More recent in situ TEM observations have established that edge disloca-
tions move much faster than screw dislocations [122], consistent with TEM
observation of dislocation microstructures dominated by screw dislocations.
Unfortunately, it is difficult to estimate the actual stress exerted on disloca-
tions in in situ TEM experiments. This can be seen from the large difference
between the applied stress and the estimated local stress on dislocations in
Fig. 39 [122].

In addition to the large mobility difference between edge and screw seg-
ments, TEM observations have provided ample evidence that dislocation mo-
tion by itself can produce high density of point defects and point defect
clusters, in the form of prismatic dislocation loops. This behavior is simi-
lar to FCC metals, where large density of Stacking Fault Tetrahedra (SFT)
is observed in pure material deformed at high strain rate [183]. Generally,
the higher the strain-rate the larger the observed concentration of defect de-
bris [184]. The resolution of TEM observations of defect size distribution is
limited to about 2 nm; defects at smaller sizes are not visible. The defect
spectrum appears to be similar to the microstructures found in the same ma-
terials after irradiation. These observations also reveal characteristic shapes
of screw dislocations with extended cusp-like features, as shown in Fig. 30(b).
Although some of these features are likely to be due to dislocation interaction
with extrinsic defects (impurities, precipitates), a large density of debris is
also observed in very pure metals. The implication is that such behavior is
intrinsic to high strain-rate deformation of metals. Recent simulation results
revealing the underlying mechanisms of debris production will be discussed
in later this subsection.
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Figure 39: Velocity of edge (e) and screw (s) dislocations in Mo as a func-
tion of stress by in situ high voltage electron microscopy [122]. Solid lines
represent external stress, and dashed line represent estimated local stress on
dislocations taking into account mutual dislocation interactions.

Atomistic simulations have been carried out to make direct contact with
measurements of dislocation mobility. While it is still too early to expect
quantitative comparisons with experiments (which show large error bars as
well), the simulations have been helpful in elucidating the qualitative behav-
ior and mechanisms of dislocation motion. In the following we will discuss a
number of recent results of direct Molecular Dynamics simulations of screw
and edge dislocations in BCC metals.

4.4.2 Screw dislocations

Fig. 40 shows two snapshots from a series of MD simulations of screw dislo-
cation motion in BCC Mo (Finnis-Sinclair model [185]) at 10K [186]. The
simulations are quasi 2-dimensional in that the simulation cell is periodic
along the dislocation line of length equal to five Burgers vectors. A con-
stant strain rate is imposed to move the dislocation at the average velocity
200m/s on the (110) plane. The internal stress fluctuates with considerable
amplitude about the Peierls value as the dislocation moves intermittently,
with bursts over several atomic spacings. This behavior, reminiscent of the
Portevin-LeChatelier (PLC) effect in crystal plasticity [187], is likely due to
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(a) (b)

Figure 40: Snapshots of quasi-2D MD simulation of screw dislocation motion
in BCC Mo at 10K. Atoms with local energy 0.1eV higher than that of the
perfect lattice atoms are plotted in dark color to show the dislocation core.
The simulation cell is periodic along the horizontal direction (along which
dislocation moves) as well as along the dislocation line (out of plane). The
gray atoms in the upper and lower layers of the cell are forced to displace at
a constant velocity corresponding to a fixed strain rate.
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the small size of the simulation cell and the constant strain rate boundary-
conditions. Nonetheless, certain qualitative features observed from these
simulations may be relatively free from simulation artifacts. First, the dis-
location core under stress, at rest and in motion, looks very different from
the core under zero stress. The three-way splitting is not observed, instead,
the core structure seems rather planar, as shown in Fig. 40, similar to ear-
lier calculations of static relaxation under high stress [151]. Second, several
cross-slip events were detected, prior to each the core was seen to fork or
bifurcate onto the two candidate cross-slip {110} planes at 60◦ to the hor-
izontal plane, as shown in Fig. 40(b). In all cases, cross-slip occurs in the
upward direction even though the resolved stress on both potential cross-slip
planes is the same. On reversing the straining direction, the cross-slip di-
rection remains upward, which can be understood as a manifestation of the
twinning-antitwining asymmetry on the atomistic level.

While capturing certain mechanistic aspects of screw dislocation motion,
the foregoing simulations are not expected to be able to adequately account
for the three-dimensional motion of a screw dislocation. An obvious con-
straint is the short dislocation length of 5 Burgers vectors which cannot ac-
commodate even a single kink. According to previous simulations, a minimal
kink would have to be at least 5b to 10b in width. Extending the simulations
to much longer screw dislocations, one finds a greater complexity of kink
mechanisms during dislocation motion.

A series of MD simulations of a 100b long screw dislocation moving in
α-Fe (Finnis-Sinclair model [188]) has been performed [33]. The boundary
condition is similar to that in Fig. 40 except that surface traction forces
are applied to top and bottom layers of atoms to impose a constant-stress
condition. As a point of reference, the Peierl stress for this dislocation is
900MPa. At 300K and under applied stress of 400MPa, dislocation mo-
tion via a sequence of kink-pair nucleation and kink migration events was
observed. Almost equal number of kinks were nucleated on the horizontal
{110} plane as on the “cross-slip” {110} plane inclined at 60◦. This possibly
reflects the twinning-antitwinning asymmetry in BCC lattice, just as in the
2D simulation above. During the simulation the dislocation was resting most
of the time, whereas the kinks moved rapidly along the dislocation line once
nucleated. On average, the dislocation moved at a velocity 88m/s at 25◦ to
the horizontal (MRSS) plane.

A high mobility of the nucleated kinks is to be expected given that the ap-
plied stress (400MPa) far exceeds the Peierls stress for kinks (20MPa), so that
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kink motion is limited only by the phonon drag mechanisms. The interplay
between the rate of kink-pair nucleation and the kink migration velocity gives
rise to a particular length scale λ such that, when a dislocation is shorter than
λ, kink-nucleation would be rare and existing kinks will tend to glide along
the dislocation line through the periodic boundary and recombine, before
the next kink-nucleation event occurs. Under this condition, the dislocation
velocity should be proportional to its length, since the number of double-kink
nucleation sites is proportional to its length. This behavior has been repro-
duced in mesoscale kinetic Monte Carlo simulations [189]. For the simulation
conditions described above, taking vk ∼ 2000m/s, J ∼ 3 × 1017m−1s−1, one
can estimate that λ =

√
vk/J ∼ 300b, which is consistent with the actual

observation of at most only one kink pair on the dislocation line.
On dislocations with length longer than λ, another kink-pair can form

while the previously nucleated kinks are still gliding along the line. Kinks
from the same pair will not be able to recombine with each other while en-
countering kinks from the subsequent nucleation events. It is then generally
expected that the dislocation velocity will reach a plateau value and become
length-independent [5]. However, results of both atomistic and mesoscale
simulations reveal the possibility of a much more complex behavior for screw
dislocations in BCC metals due to their ability to cross-slip easily.

The characteristic length λ can be readily varied by setting the tempera-
ture and/or applied stress. This is because stress and temperature have very
different effects on the thermally activated kink-pair nucleation and phonon-
drag controlled kink migration. In particular, kink migration velocity should
be proportional to stress and must decrease with increasing temperature. At
the same time, the kink-pair nucleation rate should rise very quickly with in-
creasing stress or temperature. Thus λ must be a sensitive function of σ and
T . For example, the condition of λ < 100b is reached in a similar simulation
at the temperature of 100K and a stress of 750 MPa. A snapshot of such a
simulation is shown in Fig. 41. The dislocation is seen to leave a significant
amount of debris in its wake. This observation of debris formation confirms
our earlier hypothesis [189] that, given the ease of cross-slip, a moving screw
dislocation can contain both “glide” kink-pairs and “cross-slip” kink pairs,
provided l > λ. A collision of glide and cross-slip kinks produces non-planar
defects which have been called “cross-kinks” in the context of TiAl [191], as
shown in Fig. 42(a). Such collisions create topological conflicts that, accord-
ing to [191], can be resolved by one of two ways, sweeping the cross-kinks
along the line akin to the pinning-unpinning mechanisms suggested in [191],
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Figure 41: Snapshot of MD simulation of screw dislocation motion in BCC
Fe at temperature 100K and 750MPa shear stress. Only atoms with central
symmetry parameters [190] significantly deviate from that of perfect BCC
lattice are shown. Debris in the form of vacancy and interstitial loops are
left in the wake of the moving dislocation.
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Figure 42: Schematic representation of the formation of (a) two kinks forming
a cross-kink, (b) more kinks joining the cross-kink at point A, and (c) debris
loop L formation with the primary dislocation breaking away from the self-
pinning point A.
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Figure 43: Edge dislocation velocity (•) as a function of stress in MD simu-
lations of BCC Mo at 300K [40]. Linear relationship is observed at low stress
- low velocity regime, indicated by the dashed line.

or non-conservative jog-dragging previously suggested in [192]. Our MD
simulations show that the way the conflict is resolved is completely different.
Similar to a previously suggested mechanism [189], the dislocation extracts
itself from the conflict by moving by purely conservative double-kink nucle-
ation, leaving behind prismatic loops, as shown in Fig. 42(b) and (c). No
diffusional transport of vacancies or interstitials is involved in this process.
That diffusion-less jog-dragging is possible was also suggested in [5] (p. 596).

The results just discussed show how important it is to let dislocations
evolve freely in 3D and to probe the mechanisms of dislocation motion by
large-scale MD simulations. In the 2D simulations shown in Fig. 40, such
observation would not have been possible. In fact, the very same simulation
depicted in Fig. 41 but repeated for a dislocation that is just 50b long, shows
no roughening transition: the dislocation glides smoothly through nucleation
and propagation of kink-pairs. These observations suggest that one must
exercise caution in interpreting the data of 2D simulations that, thus far,
have greatly outnumbered 3D simulations.
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4.4.3 Edge dislocations

The mobility of the non-screw dislocations has been observed to be much
higher than that of the screws. It is then generally expected that the velocity
of non-screw dislocations is limited only by the viscous drag due to their
interactions with the lattice vibrations. While this belief was challenged
by Duesbery and Xu [160], who found a rather high Peierls stress for edge
dislocations in Mo (∼ 0.5GPa) and were then compelled to postulate the kink
mechanisms to account for the known high mobility, more recent Peierls stress
calculations found that this result is probably inaccurate. The value of the
Peierls stress for an edge dislocation obtained using the same potential [40] is
predicted to be only 25MPa. Subsequent direct MD simulations [40] confirm
that the mobility of edge dislocations is indeed controlled by phonon drag,
and that kinks do not play a significant role.

The simulations made use of a simulation cell with a periodic boundary
condition containing an edge dislocation dipole [40]. A constant stress is
applied by the Parrinello-Rahman method [193]. The shape of the cell is
chosen such that the interaction between the two dislocations and their pe-
riodic images is negligible. Fig. 43 shows the stress variation of dislocation
velocity at 300K. The two edge dislocations moved readily and smoothly at
100MPa stress, consistent with their low Peierls stress. The velocity-stress
relationship remains linear at velocities up to 1000m/s. From the ratio be-
tween stress and velocity in this linear regime one can extract the phonon
drag coefficient B = σ/v = 0.7MPa · s/m. The drag coefficient is found
to increase with increasing temperature. All of these features indicate that
edge dislocation mobility is controlled by the phonon drag mechanism. Sim-
ilar simulations were repeated for edge dislocations with a pre-existing kink,
which gave essentially the same results, thus providing direct evidence that
kinks play no significant role in edge dislocation motion.

At stresses above 500MPa, the dislocation velocity starts to level off,
possibly due to relativistic effects, as shown in Fig. 43. In simulations us-
ing sufficiently large cells, the velocity value was found to be always lower
than the transverse sound speed (3000m/s). Recent MD simulations of edge
dislocation motion have been focused mostly on very fast motion in which
dislocation velocity can approach the sound speed [194]. Whether disloca-
tions can move with velocities exceeding the sound velocity is still an open
question. On the one hand, it has been argued that supersonic motion is im-
possible [195]. On the other hand, several direct MD simulations show that
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dislocations can move trans-sonically (between transverse and longitudinal
sound velocities) and even supersonically, provided that they are nucleated
directly into such a fast moving state [194]. In the above set of simulations,
trans- and super-sonic dislocation motion were observed, when a small sim-
ulation cell was subjected to a high shear rate. However, such high speed
dislocation motion was not observed in larger cells, in which the dislocation
could not keep up with the shear rate and the crystal undergoes a shear
collapse. Given that the effective dislocation density in the smaller cells is
unrealistically high, in the range of 1016 − 1017m−2, the behavior observed
in the larger cells is more convincing, in which the dislocation density ap-
proaches more realistic values, around 1015m−2.

It is generally believed that there should be a transition from kink mech-
anism to phonon drag for dislocation motion as the applied stress increases.
Interestingly, this transition has not yet been observed by direct MD simula-
tions for either screw or edge dislocations. For screw dislocations, their ease
of cross-slip introduces a new mechanism at high stresses, i.e. the formation
of “cross-kink” and debris loops, which significantly limits the dislocation ve-
locity even above the Peierls stress. For edge dislocations, their exceedingly
small Peierls stress makes the kink mechanism unlikely under most temper-
ature and stress conditions. In the search for a direct realization of such a
transition, we note that the mixed 71◦ (M111) has a much higher Peierls
stress (320MPa), and being non-screw, is not able to cross-slip. Therefore,
the 71◦ dislocation is a promising candidate to reveal the transition from kink
mechanisms to phonon drag in dislocation motion. One interesting question
that can be raised in this regard is, does the Peierls stress indeed define the
transition?

4.5 Outstanding issues

The above discussions centred on the core effects on dislocation mobility
in BCC metals. One of the key uncertainties yet to be settled is whether,
in what sense and how much core polarization affects the motion of screw
dislocations. The idea that polarization is the reason for the high Peierls
barrier is well ingrained into the thinking about plasticity of BCC structures.
Recent results [144, 139] obtained with DFT methods suggest that both in
Ta and Mo the ground state of the core is not polarized, while previously
most empirical potentials models predicted substantial core polarization in
Mo [143, 145] and, with some exceptions, also in Ta [196]. At the same time,
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some of the same recent calculations show that, despite the observed absence
of polarization, the Peierls stress is high, of the order of 1-2 GPa. Although
these latest calculations may contain some errors from the necessary use of
small supercells, the notion that a high Peierls stress can be sustained in
the absence of polarization seems to be well grounded. It is tempting to
conclude that high lattice resistance to screw motion is a generic property of
all BCC materials. Supporting this assertion is the observation that, under
high stresses approaching the Peierls value, the structure of the dislocation
core looks unpolarized. Thus, it is not clear how the zero-stress structure,
even when it shows a strong polarization, can affect the magnitude of the
Peierls stress.

Recent MD simulations indicate that the mechanisms of dislocation mo-
tion in the vicinity of the Peierls stress may be more complex than previously
assumed. A common expectation is that below the Peierls stress level dislo-
cations move via kink-pair nucleation and migration, while above the Peierls
stress the motions are controlled by phonon-drag. This view now has been
called into question by simulations which show that the screw dislocation
motion becomes rough below Peierls stress and continues to be rough at and
above the Peierls stress, with no visible signs of a transition to phonon drag.
Furthermore, the screw motions produced large quantities of debris, both
isolated defects and clusters. There is little or no mass transport associated
with this defect production. Instead, the debris seemed to be formed entirely
via conservative mechanisms. Given the singular character of the screws, it
will be important to investigate if and how the transition takes place for
non-screw dislocations.

The discrepancy between calculated and experimental estimates of the
Peierls stress is a lingering issue despite attempts to reconcile the two values.
Recently, Moriarty et al [197] presented calculations for Ta using a newly
developed potential based on the Generalized Pseudopotential Theory. The
Peierls stress computed using the new MGPT potential is 500 MPa, con-
siderably closer to the experimental estimates of 260 MPa, whereas all the
previous calculated results were around 1.5 GPa. This “convergence” could
be taken to mean that it was the inaccuracy of the previous potential models
that is responsible for the discrepancy. On the other hand, recent calcu-
lations based on the DFT method, which are presumably more accurate,
produced Peierls stress values which are still around 0.7 GPa [139]. In light
of these results, the discrepancy is still a fundamental issue that reflects an
incomplete understanding of the mechanisms of dislocation motion in BCC
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metals.
The cross-slip of screw dislocation, with its compact core, must be suf-

ficiently frequent to make the dislocation motion fully three-dimensional,
especially in the so-called pencil glide regime. When this is the case, both
screw and non-screw dislocations may find themselves in almost any plane
of the 〈111〉 zone. Hence, it is important to examine dislocation mobility
as a function of its generalized character, by which we mean a combination
of two angles defining the orientation of the dislocation line with respect to
the Burgers vector. One of these angles is the usual character angle, while
the other one defines the angle between the glide plane and some reference
plane of the zone. For BCC materials, it would be appropriate to re-examine
the mechanisms and resistance to dislocation motion for different combina-
tions of the two character angles. So far, attention has focused mostly on
the {110} plane with occasional emphasis on the {112} plane. However,
even within one plane, say {110}, the mechanisms and magnitude of resis-
tance to dislocation motion can vary significantly. Our recent results for the
M111 dislocation is just one example. All these considerations indicate that
dislocation mobility in BCC metals is a more complex phenomenon than it
appeared some 10 years ago.
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5 Concluding Remarks

The discussions presented in this chapter focused on the intimate connec-
tion between the structure and energetics of dislocation core and dislocation
mobility mechanisms. From the theory standpoint, the ultimate objective
is to be able to compute dislocation mobility from the underlying atomistic
processes, preferably with no adjustable parameters. The feasibility of this
program depends on a successful resolution of several issues, each posing
a challenge in and of itself. A foremost concern is our ability to compute
accurately. The increasing use of more reliable descriptions of interatomic
interactions is expected to continue in the future, gradually making it pos-
sible to study dislocation behavior in increasingly more realistic physical
environments. A second challenge is to connect predictive theory and sim-
ulation with experiments. A gap still exists between the time and length
scales accessible to simulation and those pertinent to experiments. Recent
and continuing advances in various experimental techniques for microscopic
analysis, including in situ and subatomic scale resolution methods, create
much excitement in the materials theory and modeling community. In re-
sponse, new and more powerful computational methods spanning multiple
time and length scales are being developed to deal with microstructural ef-
fects which need to be incorporated into our understanding. The core effects
on dislocation mobility and crystal plasticity considered here are a microcosm
of these more general developments in the physics of materials.

Multiscale modeling has come to symbolize the emerging notion of link-
ing simulation models and techniques across the micro-to-macro length and
time scales. The expectation is that by combining the different methods of
calculation, one can attack a fundamental problem in a more comprehensive
manner than where the methods are used individually. As we unravel the
structural complexities of the dislocation core and begin to understand how
it responds to stress and temperature effects at the local (atomistic) level, it
would be important to transfer the “unit process” description of nucleation
and migration to the microstructural (mesoscale) level where the collective
behavior of dislocation interactions dominate. Work is on-going to feed the
results of atomistic calculations into dislocation dynamics simulations of the
evolution of a large collection of dislocation lines, and into finite-element and
continuum models capable of dealing with system behavior on length and
time scales appropriate for measurements. This is a vision that has con-
siderable appeal to the community as can be seen from recent conferences
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[for example, the Workshop on Multiscale Modeling of Materials Strength
and Failure, Bodega Bay, CA, Oct. 7-10, 2001, and International Conference
on Multiscale Materials Modelling, Queen Mary, Univ. London, June 17-
20, 2002], special issues of journals, and funding initiatives. In view of the
current interest and activities, one can look forward to significant advances
in the microscopic understanding of the dislocation core and its effects on
dislocation mobility.
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