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By means of lattice and molecular dynamics we study the theoretical strength of
homogeneously strained, defect-free 2D crystals whose atoms interact via pair
potentials with short- and longer-ranged interactions, respectively. We calculate
the instability surface, i.e. the boundary in the 3D homogeneous strain space
("xx, "yy, "xy), at which the first vanishing of the frequency of a vibrational
mode occurs, taking into account all 2(N� 1)þ 3 modes of a 2D periodic
system of N atoms. We also compute the strain energies of the crystal on the
instability surface, thus defining the most dangerous direction(s) of strain where
the critical energy density is small. A theory is developed to incorporate the effect
of loading device–sample interactions in the lattice instability criterion. The
results are applied to the model problem of bubble raft indentation. We
analyse the distribution of the unstable phonon modes in the first Brillouin
zone as a function of the loading parameter, and discuss the post-critical
behaviour of the lattice in the presence of strain gradients as in nano-
indentation experiments.

1. Introduction

In theoretical strength studies, one determines the domain of homogeneous strain
and temperature in which a perfect crystal is stable. This problem has been exten-
sively studied in physics in relation to the pressure- and/or temperature-induced
structural phase transformation in solids [1, 2] and also in elasticity theory and
structural mechanics in the context of elastic body instability [3, 4]. The huge gap
between the theoretical strength estimated for defect-free crystals and the measured
yield stresses of real materials stimulated the development of dislocation theory.
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The Peierls–Nabarro model of the dislocation core [5, 6] based on earlier work of
Frenkel [7] reconciles the above phenomena and reveals deep connections between
ideal strength and defect mobility. Defects like the dislocation core and crack tip
provide the necessary leverage to amplify an external shear stress to the level that can
break bonds locally, albeit in an inhomogeneous and asynchronous fashion. Thus,
the study of theoretical strength is an important area at the crossroad of several
fields. The first practical application of theoretical strength was related to whiskers,
nominally dislocation-free filamentary crystals [8]. Nano-indentation experiments
[9–11] have awakened fresh interest in the theoretical strength problem [12, 13].
In such experiments on nearly perfect crystals the measured load–displacement
response shows characteristic discontinuities attributed to the discrete generation
of crystal defects, which can be likened to observations of ‘quanta’ of plastic deform-
ation. Surprisingly, defects can be generated not only at the contact surface, but
also in the bulk of a defect-free single crystal.

Theoretical strength can be discussed in the framework of a microscopic analysis
or a phenomenological continuum theory. The former approach is exact while the
latter depends on various assumptions to coarse-grain the discrete system to a con-
tinuum. Microscopic analysis requires the knowledge of interaction forces between
atoms, and realistic interatomic potentials are now available for a few materials.
An advantage of the phenomenological theory is that it deals with the physical
characteristics measurable in a macroscopic experiment such as elastic moduli,
strain, stress, and temperature.

While the analysis of stability of an equilibrium state is a linear problem, the
nonlinear theory of finite strain [3] is needed to calculate the pre-critical behaviour of
the system. In principle, one can avoid the use of the finite strain elasticity by using
the incremental elasticity [14]. In this approach, the nonlinear pre-critical behaviour
is calculated as a sequence of linear problems for sufficiently small increments of
the external load with the correction in the geometry of the system and in the
accumulated initial stress at each step.

Let us turn to the discussion of the criteria of instability, but first we need to
define the concept of ‘stability’ or ‘instability’. Here we are interested in the stability
of an equilibrium state (in some other fields the instability of motion can be of
interest), which is called undisturbed equilibrium. In addition, we will consider
a disturbed form of motion or, in the case of potential external load, it is sufficient
to consider a disturbed form of equilibrium [3]. An equilibrium state is defined to
be stable with respect to a small disturbance if, for smaller amplitude of disturbance,
the deviation from the undisturbed state does not grow with time.

In the theoretical strength problem we are dealing with an infinite crystal under
slowly changing homogeneous strain and/or temperature. In this context the prob-
lem has been extensively studied in the theory of structural phase transitions in
solids and there exists an enormous literature on this subject [1, 2, 15–19]. The lattice
instability theory currently developed can accept many results of the theory of
structural phase transitions. The relationship between structural phase transitions
and the dynamical properties of lattices in the higher symmetry phase was first
pointed out explicitly by Anderson [15] and by Cochran [16]. From that time on
the soft mode concept has served as a criterion of instability (phase transition) in
a phenomenological treatment.

The harmonic phonon system does not change its eigen-frequencies upon a
change of temperature to become soft and, thus, the linear phonons themselves
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cannot cause a phase transition. From the microscopic point of view, Yamada [17]
categorized the phase transitions into two classes. The first class of lattice instability
is due to the anharmonic coupling of phonons which can take place at a high
temperature when the amplitudes of the atomic vibrations are not small. The second
class is the lattice instability in coupled systems. Here the harmonic phonons are
coupled strongly to other physical variables, e.g. lattice strain. In the first class of
instability the temperature plays a dominant role, while in the second type the finite
temperature may only lower the critical loads, but the essential features of the
instability can be understood even at zero temperature. In this paper we will consider
the second type of lattice instability and neglect the temperature effect, which is
acceptable especially for the bubble raft where any dynamics is damped.

It is, of course, desirable to express the lattice instability criterion in terms of
continuum mechanics and it has been done, first for the instability with respect to
homogeneous strains, B-criterion [20], and later for the instability with respect to
a long-wave phonon mode, �-criterion [13]. Some difficulties of the continuum
consideration have been pointed out, e.g. Hill and Milstein [21] noted the depen-
dence of the instability criterion on the parameters used to describe the crystal strain,
and Wang et al. [20] observed the path dependence of the instability criterion for
the so-called ‘constant-stress’ ensemble. Microscopically, for interatomic potentials
depending only on the coordinates of the atoms, there is no path dependence of the
internal energy of the crystal. In quasi-equilibrium loading, internal energy is equal
to work done by the external loads and, consequently, the criterion of instability of
an equilibrium state cannot be path-dependent, although it may depend on the
behaviour of the external load in response to a small deviation from the undisturbed
equilibrium.

In the present paper the lattice instability will be treated purely microscopically,
at the atomic level. In this case the application of the soft mode criterion implies the
calculation of the frequencies of all 2(N� 1)þ 3 linear vibration modes for a 2D
crystal having N atoms (3(N� 1)þ 6 modes for a 3D crystal). It is convenient to treat
separately the three modes corresponding to homogeneous strains from the 2(N� 1)
phonon modes. The loss of stability with respect to a homogeneous strain mode
requires taking into account the work of external loads done on the corresponding
‘macroscopic’ displacements. In contrast, the small amplitude vibration modes do
not cause thermal expansion or other changes in geometry and the external loads do
not produce work. Instability with respect to a homogeneous strain mode can be
called ‘bulk’ instability, and the corresponding criterion of instability is conveniently
called the B-criterion with the mnemonic B standing for bulk. We treat the bulk
instability microscopically, but the B-criterion was first presented phenomenolog-
ically [20]. Similarly, the criterion which checks for instability with respect to a
phonon mode is conveniently called the P-criterion. The P-criterion is similar to
the �-criterion introduced by Van Vliet [13] phenomenologically to check for
instability with respect to a long-wave phonon mode (vanishing of sound velocity).
The P-criterion, which is just the phonon soft mode criterion, is applied not only to
long- but also to short-wave phonons and it has a microscopic origin, i.e. when
formulating the corresponding eigen-value problem, there is no need to introduce
the notion of strain, stress, and elastic moduli.

It is also important to note that the fact of the instability of a crystal determined
from the linearized equations does not necessarily mean structural collapse. It is
well known that many soft-mode-driven structural phase transitions in crystals with
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more or less complex structures have only small effects on the macroscopic physical
properties. In the spirit of the theoretical strength investigations such critical
points should be ignored. Thus, analysis of the post-critical behaviour is the problem
of crucial importance. However, this problem is not that important for closed-
packed metals and also for the closed-packed 2D lattices studied here, because they
have primitive structures.

In the case of nano-indentation we have to take into account the boundary
conditions, since the instability takes place in a local volume in the presence of
the strain gradients. This is another peculiarity of the lattice instability problem
compared with the theory of temperature-driven or larger length-scale phase
transitions.

In the present paper we discuss the instability of a two-dimensional defect-
free homogeneously strained lattice with atoms interacting via pair potentials of
two types, the Lennard–Jones potential and a short-range potential qualitatively
describing the interaction of bubbles in the bubble raft model of the crystal [12].
We subject the lattice to a homogeneous strain ð"xx, "yy, "xyÞ ¼ � "0xx, "

0
yy, "

0
xy

� �
, where

the vector "0xx, "
0
yy, "

0
xy

� �
has unit norm and �>0. We systematically study the dis-

persion relations for the small-amplitude oscillation modes and the three frequencies
corresponding to the homogeneous strain modes, thus defining the instability surface
in the three-dimensional strain space, the surface at which the first imaginary
frequency appears. Then we calculate the cohesive energy at the points of the critical
surface and find the most dangerous combinations of the homogeneous strain
components. This should be the direction of strain that the material is most vulner-
able to. Thus we expect, for brittle materials, the most vulnerable strain direction is
of tensile nature, while, for ductile materials, it is of shear nature. The approach used
here is purely microscopic and the results obtained do not depend on a particular
definition of finite strain or a definition of stress at finite strain.

2. Simulation details

2.1. Geometry of the system

The two-dimensional hexagonal lattice with lattice parameter a0 is generated by the
vectors p0 ¼ a0ð1, 0Þ and q0 ¼ a0 1=2,

ffiffiffi
3

p
=2

� �
.

2.2. Application of homogeneous strain

We subject the lattice to the homogeneous strain with components ð"xx, "yy, "xyÞ ¼
� "0xx, "

0
yy, "

0
xy

� �
, where the vector "0xx, "

0
yy, "

0
xy

� �
has unit length and �>0. The gen-

erator vector of the strained lattice is p¼ p0þ p0H, q¼ q0þ q0H, where matrix H has
coefficients h11 ¼ �"0xx, h12 ¼ �"0xy=2, h21 ¼ �"0xy=2, h22 ¼ �"0yy, so that the (i, j)th
atom has the position vector rij¼ ipþ jq. One can see that here we use the linear
strain tensor, "ij. This is sufficient for our purpose, because, in the formulation of the
instability eigen-value problem, we actually use the atomic coordinates but not the
strain tensor and the latter is used only as a convenient way of parameterization.
Due to the rotational invariance, only three of the four components of the vectors p
and q are independent, so that any deformed state can be represented by a point
in three-dimensional space. We can choose different coordinates, for example lengths
of the vectors p and q, and the angle between them, but we prefer to use the three
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components of the symmetric strain tensor, "xx, "yy "xy, to describe the geometry of
the homogeneously deformed crystal. Our results obtained in the space of com-
ponents of the linear strain tensor can be readily transformed to any other measure
of strain.

2.3. Interatomic interactions

For the sake of comparison we take two different pair potentials, a long-range and
a short-range potential with only nearest-neighbour interactions. We would like to
check if the use of these two potentials would give some qualitative changes in the
mechanisms of lattice instability.

First is the Lennard–Jones (LJ) pair potential,

’ðrÞ ¼ 4"
�

r

� �12
�

�

r

� �6� �
, ð1Þ

where r is the distance between two atoms and, without loss of generality, we set
for the parameters "¼ 1/4 energy units and �¼ 1 length units. We also normalize
the mass of an atom to unity, which can always be done by proper choice of the time
unit. For a cut-off radius equal to 11, the equilibrium lattice parameter is
a0¼ 1.11146206. The cohesive energy per atom in the unstrained crystal is
E0¼� 0.845459. In the following we always calculate energies per atom. The poten-
tial energy of the crystal is sometimes defined as P¼E�E0 and sometimes as
P¼E�E*, where E is the cohesive energy of the crystal, E0 is the cohesive energy
of the unstrained crystal given above, and E* is the cohesive energy of the homo-
geneously strained crystal at r¼ r*, i.e. at the magnitude of strain parameter � where
the first imaginary frequencies in the vibration spectrum appear.

Another potential is similar to that used by Van Vliet [13] to simulate bubble
raft indentation. We modify that potential to eliminate the discontinuity in ’00(r),
which is important in the theory of instability, and assume for the bubble raft (BR)
potential

’ðrÞ ¼

ðr� rcÞ
8

ðrb � rcÞ
8
�
2ðr� rcÞ

4

ðrb � rcÞ
4
, r < rc,

0, r � rc,

8><
>: ð2Þ

where we have chosen the unit of length to be equal to the bubble radius, rb¼ 1, and
for the cut-off radius we set rc¼ 1.3. The energy unit is chosen in such a way that
’(rb)¼� 1. The BR potential, in contrast to the LJ potential, is a short-ranged
potential, each bubble interacting only with the nearest neighbours. The cohesive
energy of the unstrained bubble raft is equal to E0¼� 3 per bubble.

2.4. Indentation simulations

We consider two films of different crystal orientations, referred to as systems 1 and 2,
respectively. System 1 (2) contains N¼ 2880 (2856) atoms, Lx¼ 60a0¼ 66.69
(31/234a0¼ 65.45) and Ly¼ 31/224a0¼ 46.20 (42a0¼ 46.68). The top face of the film
is a free surface, the bottom face interacts with the rigid continuation of the crystal,
and we employ the periodic boundary conditions in the horizontal direction. Systems
1 and 2 are indented along directions 112h i and 110h i, respectively. In this study we
use a rigid half-sphere tip with diameter 56a0. There is no friction between the
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indenter and the material. We introduce a viscosity term into the equations of
motion of the atoms in order to study their relaxation to energy minimum positions.
As such, the temperature effect is not taken into account.

3. Stability of the homogeneously strained lattice

3.1. Critical surfaces in the strain space

The linear vibration spectrum of a 2D crystal having N atoms consists of 2(N� 1)
phonon modes plus three homogeneous strain modes. Application of the P-criterion
of lattice instability implies the calculation of the frequencies of 2(N� 1) small-
amplitude phonon modes, U(t)¼U0 exp[i(kxlþ kym�!t)], where i is the imaginary
unit, 0� kx, ky� 2p are the components of a wavevector in the first Brillouin zone,
l, m are integer numbers specifying a periodic cell, ! is the frequency of a particular
phonon mode, and U0 is the corresponding time-independent eigen-vector contain-
ing two components of the displacement vector of the atom in the periodic cell.
Stability with respect to the P-criterion is lost when a phonon with imaginary
frequency appears in the spectrum, which means a change from oscillatory motion
near the stable equilibrium to an exponential (in time) deviation from the unstable
equilibrium. To find the unstable phonons we scan the first Brillouin zone with the
steps �kx¼�ky¼ 0.01p.

The B-criterion is used to check the stability of the crystal lattice with respect to
a homogeneous strain mode (three remaining degrees of freedom). The eigen-value
problem here is formulated with respect to three parameters specifying the shape and
size of the primitive translational cell.

Thus, we calculate the phonon spectrum and the frequencies of the three
homogeneous strain eigen-modes for the 2D crystal strained with the components
of the strain tensor, � "0xx, "

0
yy, "

0
xy

� �
, where the unit length vector "0xx, "

0
yy, "

0
xy

� �
defines

a direction in the three-dimensional strain space and �>0 is a parameter defining
the strength of the deformation. For different strain relations, "0xx, "

0
yy, "

0
xy

� �
, we

numerically define the critical value, �*, at which the first eigen-frequency of the
vibration spectrum (P-criterion) or a homogeneous strain mode (B-criterion)
vanishes. The corresponding eigen-mode gives the instability mode of the crystal.
We also calculate the critical increase of the cohesive energy per atom, E*�E0, at
point �*.

When using the B-criterion, we assume that the external loads do not change
in magnitude or direction when the system deviates slightly from the undisturbed
equilibrium.

Critical values �* and E*�E0 make surfaces in the three-dimensional strain
space. In figures 1 and 2 we give the three sections of these surfaces, "xx¼ 0, "yy¼ 0,
and "xy¼ 0, for the BR and LJ potentials, respectively. The left columns of figures 1
and 2 show �* and the right columns show E*�E0. The P-criterion is fulfilled at the
solid lines and the B-criterion at the dashed lines.

The critical surfaces separate the stable and unstable regions in the three-
dimensional strain space. The distance from the origin, which corresponds to the
unstrained crystal, to a point of a critical surface specifies the magnitude of the
critical parameter, where the relation between strain components is proportional
to the relation between coordinates of the point.
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The following features of the critical surfaces should be noted.

(i) The quasi-static deformation of a crystal with potential energy depending
only on the coordinates of the atoms is path-independent and, in this sense,
the critical surfaces presented in figures 1 and 2 are the universal character-
istics of the theoretical strength.

(ii) The critical surfaces for the BR potential (figure 1) and the LJ potential
(figure 2) have the same topology in spite of the considerable difference
in the interatomic potentials. This is a reflection of the fact that both 2D
crystals have the same symmetry. It would be instructive to construct
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Figure 1. Critical surfaces in the three-dimensional strain space represented by the three
sections corresponding to (a, b) "xx¼ 0, (c, d) "yy¼ 0 and (e, f) "xy¼ 0. The distance from
the origin to a point of the instability boundary in the left column shows �* and in the right
column E*�E0. Instability with respect to a linear phonon mode (P-criterion) takes place at
the solid lines and with respect to a homogeneous strain mode (B-criterion) at the dashed lines.
The results are for the BR potential.
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similar surfaces for representative materials, for example for typical fcc,
bcc, and hcp metals and other materials.

(iii) The critical strain energy surface, E*�E0, is very important in
theoretical strength studies and in the nano-indentation problem because
it predicts the strain conditions at which lattice instability is most readily
inducible. The points that are closest to the origin in figures 1b, d and f and
figures 2b, d and f are the most dangerous strain directions because, here,
comparatively small energy is required to destroy the crystal. For the BR
potential, the smallest critical energy (distance from the origin) is
E*�E0¼ 0.33 (see figure 1b), which corresponds to �* "0xx, "

0
yy, "

0
xy

� �
¼

0:079 0, 1=
ffiffiffi
3

p
, 2=

ffiffiffi
3

p� �
. For the LJ crystal these values are E*�E0¼ 0.055

and �* "0xx, "
0
yy, "

0
xy

� �
¼ 0:143 0, 4=

ffiffiffiffiffiffiffiffi
116

p
, 10=

ffiffiffiffiffiffiffiffi
116

p� �
(see figure 2b).

Physically, for both potentials in the 2D closed-packed lattice, the most
dangerous strain direction is shear along the closed-packed atomic chains

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

yy

xy

ε

ε stable

un
st

ab
le

(a)
-0.2 0 0.2

-0.2

0

0.2

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

-0.2 0 0.2
-0.2

0

0.2

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

-0.2 0 0.2
-0.2

0

0.2

yy

xy

ε

ε

stable

un
st

ab
le

(b)

(E-E  )/

(E
-E

  )
/

0

0

α

α

xx

xy

ε

ε stable

un
st

ab
le

(c)

xx

xy

ε

ε
stable

un
st

ab
le

(d)

(E-E  )/

(E
-E

  )
/

0

0

α

α

xx

yy

ε

ε stable

un
st

ab
le

(e)

12

xx

yy

ε

ε

stable
un

st
ab

le

(f)

(E-E )/

(E
-E

  )
/

0

0

α

α

Figure 2. Same as figure 1, but for the Lennard–Jones potential.
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in combination with a small tension perpendicular to these chains. This is
in good agreement with the actual unstable phonon eigen-vector found in
2D bubble-raft indentation simulations [13, 22] under strong compressive
loading conditions, in which it was found that there is approximately 12�

between the phonon polarization vector w and the Burgers vector b, indi-
cating shear–tension coupling at the shear-dominated elastic instability.
The second most dangerous type of loading for both crystals is the uniaxial
tensile strain "xx (along the closed-packed atomic chains). In this case,
E*�E0¼ 0.40, �*¼ 0.058 for the BR potential (see figure 1d), and
E*�E0¼ 0.075, �*¼ 0.11 for the LJ potential (see figure 2d). This mode
corresponds to cleavage failure. Because the energy cost is 20–35% higher
than that of the shear failure mode, and since indentation creates
a predominantly compressive stress condition, we do not observe brittle
crack nucleation in our indentation simulations [13, 22] nearly as often as
dislocation nucleation. Interestingly, by changing the only dimensionless
parameter r0 of the original BR potential [13] from 0.85 to higher values,
we have observed increasing brittle activity. This phenomenon is associated
with the approach or even crossing-over of E*�E0 of the second (tensile)
mode with that of the first (shear) mode.

(iv) For some combinations of homogeneous strain, the P-criterion and the
B-criterion give considerably different critical values. However, it is
remarkable that, for the most dangerous cases described in (iii), both the
P-criterion and the B-criterion give very similar critical values �* and
E*�E0.

(v) A change in the symmetry of the crystal during the pre-critical deformation
is very important. An unstrained 2D hexagonal crystal is isotropic, but,
for example, the uniaxial strains "xx (along the closed-packed atomic
chains) and "yy (perpendicular to the closed-packed atomic chains) show
a noticeable difference in critical parameters (see figures 1e and f and
figures 2e and f).

(vi) As seen from figures 1e and 2e, the critical surfaces are unbounded. This is
because no lattice instability is observed in the hydrostatic compression
condition, "0xx, "

0
yy, "

0
xy

� �
¼ �1=

ffiffiffi
2

p
,� 1=

ffiffiffi
2

p
, 0

� �
, of the closed-packed 2D

crystal. In reality, of course, there are many pressure-induced phase transi-
tions for materials with complex structures.

(vii) From the analysis of the eigen-modes we found that, in all cases, instability
with respect to a linear phonon mode (P-criterion) indicates the vanishing
of sound velocity in a particular direction or, in other words, an acoustic
branch always vanishes at the �-point, i.e. at the origin of the first Brillouin
zone, k¼ 0. We obtained the whole critical surface, not only the three
sections presented in figures 1 and 2, and instability with respect to a
mode with k 6¼ 0 was not observed in any of the "0xx, "

0
yy, "

0
xy

� �
combinations.

This is consistent with the general trend that the incommensurate phase can
be more easily realized in crystals with more or less complex structure [18],
especially for crystals consisting of comparatively rigid atomic groups with
rotational degrees of freedom [23–25], although there can be exceptions
[26]. Theoretically, incommensurate modulation can appear in a simple
lattice [27], but, to the best of our knowledge, no incommensurate phase
has been discovered in a pure metal.
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3.2. Sample–loading device interaction

It is well known that the behaviour of the loading device when the body is perturbed
slightly from its equilibrium position can have a significant effect on its stability (or
instability) with respect to a homogeneous strain mode (B-criterion). This problem
has been addressed as the problem of the interaction of the sample with the loading
device [3, 4, 20, 21, 28]. If the external forces have a potential (conservative forces),
then, at the point of instability, purely imaginary frequencies will appear in the linear
excitation spectrum and the disturbance will then grow monotonically with time
(static instability). This may also occur for non-conservative forces, but, in this case,
there is another possibility, namely one can observe an oscillatory instability when, at
a critical point, two real frequencies merge and then transform into a complex
conjugate pair and the increase in the disturbance is of an oscillatory nature [3].

When the loading device can be regarded as an elastic body with fixed boundary
conditions, the external load has a potential or, in other words, it is conservative.
This is particularly important for the analysis of nano-indentation experiments, since
the local area of the lattice where the instability occurs interacts with the surrounding
stable medium, which behaves elastically.

Let us now take into account the interaction of the loading device with the
sample. We consider a perfect crystal deformed with homogeneous strain "ij, and
the stress components at this state are �ij. To apply the B-criterion of instability we
consider an infinitesimally close strain state, "ijþ �"ij. We write

�E ¼ �A, ð3Þ

where �E is the change in elastic energy density of the crystal due to the strain
increment �"ij, and �A is the work done by the unit volume of the crystal against
the external load. The magnitude of �A depends on how the crystal interacts with the
loading device. For example, let us imagine an experiment on the structural trans-
formation in a crystal under hydrostatic pressure. The sample is placed in a chamber
containing an absolutely incompressible liquid. We increase the pressure p in the
chamber by injecting very small portions of liquid and inspect the system after
adding each new portion. We consider a transition accompanied by volumetric
deformation �V. When the crystal volume starts to decrease at a critical point, the
energy stored by a very elastic chamber will keep the pressure almost constant and
�A¼ p�V. The more rigid the chamber, the faster the pressure decreases due to the
change in crystal volume. Assuming that the pressure decreases linearly with �V, one
has �A¼ p�V� (�/2)( �V)2, where �>0 is the coefficient describing the rigidity of
the chamber.

Our problem is to find the conditions for which the potential energy of the system
is stationary for a non-trivial �"ij. For a two-dimensional crystal, the three stationary
conditions �(�E� �A)/�(�"xx)¼ 0, �(�E� �A)/�(�"yy)¼ 0 and �(�E� �A)/�(�"xy)¼ 0
lead to the expressions

"xxðC11 � �xx þ �1Þ þ "yyC12 þ "xy C13 �
1

2
�xy

� 	
¼ 0,

"xxC12 þ "yyðC22 � �yy þ �2Þ þ "xy C23 �
1

2
�xy

� 	
¼ 0,

"xx C13 �
1

2
�xy

� 	
þ "yy C23 �

1

2
�xy

� 	
þ "xy C33 �

1

4
ð�xx þ �yyÞ þ �3

� 	
¼ 0, ð4Þ
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where �1, �2, �3 describe the rigidity of the loading device with respect to the stress
components �xx, �yy, �xy, respectively, and Cij are the elastic moduli in the current
state.

Equations (4) can have a non-trivial solution only if the determinant of the
system is zero. Applying this to the hydrostatic tension, �xx¼ �yy¼ p>0, �xy¼ 0,
of an isotropic crystal, C11¼C22, C33¼ (C11¼C22)/2, C13¼C23¼ 0, Cij¼Cji, we
come to the stability conditions

C11 þ C12 � pþ � > 0,

2C33 � p > 0, ð5Þ

where, for hydrostatic loading, we have set �1¼ �2¼ �, �3¼ 0.
Violation of the first condition in (5) results in spinodal decohesion and, unlike

the second criterion for shear instability, it depends on the rigidity of the chamber, �.
Obviously, for a chamber of finite rigidity (�>0), the crystal is more stable with
respect to spinodal decohesion than for an absolutely elastic chamber (�¼ 0).

To verify our conclusions we consider the hydrostatic tension of a 2D crystal
with the LJ interatomic potential. At zero temperature we find that, for an absolutely
elastic chamber (�¼ 0), the B-criterion (first condition of (5)) gives the critical lattice
parameter aB¼ 1.2323. The second condition of (5) is not important because it is
satisfied at a considerably larger lattice parameter, 1.2476. The P-criterion suggests
an instability (vanishing of sound velocity) at aP¼ 1.2361. Thus, under this loading
condition, one would expect spinodal decomposition at a¼ aB. However, at a finite
rigidity of the chamber the critical value will be greater than aB. Already at
�¼ 0.2629, one has aB¼ aP, and for a larger �, violation of the P-criterion would
be responsible for the instability.

After the above consideration, we note that the results presented in figures 1
and 2 were obtained under the assumption that the external loads do not change
during deviation from the undisturbed equilibrium, which corresponds to an
absolutely elastic loading device, � ¼ 0. However, in nano-indentation experiments,
in the presence of strain gradients, instability occurs in a local area. This area
interacts with the surrounding stable material, which can be regarded as a loading
device with finite rigidity, �>0. In this case, violation of the B-criterion will
be delayed and the P-criterion may become responsible for the instability. This
is particularly important for a 2D hexagonal lattice since, for this case, we found
a rather small difference in the critical values obtained from the P-criterion and
the B-criterion at �¼ 0 (see item (iv) in section 3.1). In the analysis of the nano-
indentation results presented in section 4, we only take into account the P-criterion.

3.3. Post-critical behaviour

Mode softening does not necessarily mean collapse of the crystal lattice. The critical
point is determined from the linearized equations, but the post-critical behaviour is
controlled by the full crystal potential. In nano-indentation experiments, there exists
a gradient of strains and the instability has local character so that boundary condi-
tions should be taken into account. Here we study the post-critical behaviour for the
hydrostatic tension and for the pure shear strain taking into account the size effect.
We carry out the MD simulation for a computational cell containing N�N atoms
and subjected to periodic boundary conditions. A small temperature, T¼ 0.00018,
for hydrostatic tension and T¼ 0.005 for pure shear were introduced to check
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the stability. Temperature is defined as twice the kinetic energy density of the crystal.
At these temperatures the amplitude of the atomic displacements is about 0.01a0.
We control strain, but not the external stress as in the Parinello–Rahman scheme.
This corresponds to an infinitely rigid loading device.

We found that the LJ and BR interatomic potentials give qualitatively similar
results and, in this section, we present the results for the LJ potential only.

As an example, the kinetics of the post-critical behaviour of the LJ crystal is
presented in figure 3 for a computational cell with N¼ 16 and for hydrostatic tension
� "0xx, "

0
yy, "

0
xy

� �
¼ � 1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
, 0

� �
, at � ¼ ��

HT � 0:0022, where ��
HT ¼ 0:1597 is the

critical value for the P-criterion. Note that the B-criterion at �¼ 0 gives a smaller
critical value, 0.1538, but here we will use the P-critical values for both cases, pure
shear and hydrostatic tension. Figure 4 presents the same as in figure 3, but for pure
shear strain, � "0xx, "

0
yy, "

0
xy

� �
¼ � �1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
, 0

� �
, at � ¼ ��

PS þ 0:0026, where
��
PS ¼ 0:0984 is the critical value at which sound velocity vanishes in a particular

direction (P-criterion). Hydrostatic tension and pure shear strain correspond to
paths 1 and 2, respectively, in figure 2e.

Figures 3a and 4a show the initial configurations with a small random
perturbation of the atomic positions. Due to the instability, atoms start to move
and structural reconstruction takes place. Figures 3b and 4b present the initial stages
of reconstruction. In figure 3b a microscopic crack appears, while in figure 4b a
pair of dislocations is formed. Figures 3c and 4c show the final results of the post-
critical transformation. When the transformations are complete the crystals appear
to be thermalized. Recall that, in our simulations, the computational cell has fixed
shape. If we use the Parinello–Rahman scheme with fixed stress and variable lattice
parameters then the volume of the computational cell would increase infinitely
because the crystal under these conditions can be in equilibrium with the external
stresses only if the latter decrease.

(a) (b) (c)

Figure 3. Post-critical behaviour of the hydrostatically stretched LJ lattice at � ¼ ��
HT�

0:0022 in the presence of small temperature.

(a) (b) (c)

Figure 4. Same as figure 3, but for pure shear strain with � ¼ ��
PS þ 0:0026.
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In figure 5 we present the time evolution of the kinetic and potential energies
during the structural transformation shown in figure 3. Here as the zero level for the
potential energy we choose the cohesive energy E*¼ 0.186 of the hydrostatically
strained crystal with �¼ 0.1575. After some incubation period the structural trans-
formation begins and the potential energy starts to decrease, while the kinetic energy
(temperature) increases, with the total energy being conserved.

An interesting precursor to the collapse of the lattice under pure shear strain
was observed. We found a bifurcation point at which the homogeneously strained
structure becomes unstable and a modulation wave with small amplitude
(�10�4a0) appears as shown in figure 6. The structure is stable in a narrow
interval of � and, with increasing �, the modulation wave very soon becomes
unstable and dislocation pairs are formed. This kind of structural transformation
has been reported for a homogeneously strained fcc crystal [29]. The appearance
of the small amplitude incommensurate modulation breaks the homogeneous
distribution of energy in the crystal and facilitates the nucleation of dislocations
[22, 29].

We have observed an influence of the size of the periodic computation cell, N, on
the critical values. This issue can be very important for dislocation nucleation during
nano-indentation because, in the presence of a strain gradient, the criterion of
instability is fulfilled first in a local area and the nucleation of dislocations can be
detained until this area reaches a critical size.

Figure 6. Stable modulated structure observed at � slightly lower than the dislocation
nucleation point at pure shear. The amplitude of the modulation wave is very small
(�10�4a0) and to make it visible we had to considerably enhance the atomic displacements
with respect to the homogeneously strained lattice positions. The appearance of the small
amplitude incommensurate modulation breaks the homogeneous distribution of energy in the
crystal and facilitates the nucleation of dislocations.
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Figure 5. Time evolution of the potential and kinetic energies during the structural trans-
formation of the hydrostatically stretched LJ crystal presented in figure 3.
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We found that the smaller N, the greater is the magnitude of � at which a
structural transformation occurs in a marginally thermalized crystal (figure 7).
Relative increases in � compared with the corresponding critical values found
from the P-criterion for infinite crystals are shown by dots as a function of N for
hydrostatic tension (figure 7a) and pure shear strain (figure 7b). The critical values in
figure 7a are a few percent smaller than ��

HT. This is because, for hydrostatic tension,
it is not the P-criterion but the B-criterion that gives a lower critical value. For the
same reason, the size effect in this case is one order of magnitude smaller than in the
case of pure shear strain, where, for example, for N¼ 4 the increase in � is about
19% compared with ��

PS.
The origin of the size effect is illustrated in figure 8. Black areas in figure 8 show

the points of the first Brillouin zone with imaginary frequencies for hydrostatic
tension (figure 8a) at � ¼ ��

HT þ 0:0050 and for pure shear strain (figure 8b) at
� ¼ ��

PS þ 0:0050. The first imaginary frequency points appear near the origin of
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Figure 7. Effect of the size of the periodic computational cell, N, on the magnitude of �
at which a structural transformation occurs in a marginally thermalized crystal. Dots show
the relative change in � compared with the corresponding critical values found from the
P-criterion for infinite crystals. Dashed lines show the shortest unstable waves (in units of a)
for different �, measured in units of the lattice spacing, a.
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Figure 8. Black areas show the points of the first Brillouin zone with imaginary
frequencies for (a) hydrostatic tension at � ¼ ��HT þ 0:005 and (b) for pure shear strain at
� ¼ ��PS þ 0:005.
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the first Brillouin zone and then the black regions grow in size monotonically. For �
only slightly greater than �*, the unstable waves have a large wavelength. If the
wavelength of an unstable wave is greater than the size of the computation cell, the
corresponding instability mode cannot be realized. Dashed lines in figure 7 show
the shortest unstable waves for different �, measured in units of the lattice spacing, a.
The dashed curves correlate with the dots obtained numerically for the finite size
computation cell.

4. Indentation

Here the results for the LJ potential will be reported since they differ only quantita-
tively from those for the BR potential.

In our indentation simulations we start from the defect-free system. System 1
(see section 2 for simulation details) deforms elastically until indentation depth
2.60, while system 2 deforms elastically until indentation depth 3.17. Pre-critical
stable atomic structures for systems 1 and 2 are shown in figures 9 and 11,
respectively.

We make an attempt to predict the location of the dislocation nucleation point
in the crystal by applying the soft mode instability criterion (P-criterion). To do this,
we define the local strain for each primitive cell of the indented crystal and calculate
the dispersion curves for a crystal homogeneously strained with this strain. Open
circles in figures 9 and 11 show the primitive cells for which the calculated spectrum
contained imaginary frequencies. This criterion can be applied to predict the disloca-
tion nucleation in the bulk of a defect-free crystal where the strain gradients are
relatively small. For the lattice instabilities near the surface or other heterogeneities a
more general approach should be used (see e.g. [30–32]). The actual dislocation
nucleation and subsequent gliding are in very good agreement with the instability
patterns. In system 1, the pair of dislocations 1 and 2 and then the pair 3 and 4
(see figure 10) were nucleated in the middle of the unstable region of figure 9. The
dislocations glide along the closed-packed directions tilted by p/3 and 2p/3 with
respect to the x axis. The position of the dislocation nucleation point in this case is
also in agreement with the experimental observation for bubble raft indentation [33]
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40

x

y

Figure 9. Indentation of system 1 (see text). Dots show the atoms and circles show the
primitive cells where the soft mode criterion of instability is already satisfied. The indentation
depth is 2.60.

Theoretical strength of 2D hexagonal crystals 2191



and also with the prediction based on the two-dimensional Hertzian indentation
theory (see e.g. [33]).

Dislocation nucleation and subsequent gliding observed for system 2 (figure 12)
are also in very good agreement with the instability pattern of figure 11. Note that
here dislocations glide along the y direction.
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Figure 12. Same as figure 10, but for system 2 at an indentation depth of 3.19. Note that, in
contrast to figure 10, dislocations glide in the vertical direction. Here also, the dislocation
nucleation centres and the gliding directions are accurately predicted by the soft mode
criterion (see figure 11).
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Figure 10. Stable configuration of system 1 at an indentation depth of 2.61. Four disloca-
tions were nucleated, first the pair 1 and 2 and then the pair 3 and 4. The nucleation centre and
the dislocation gliding directions are in agreement with the instability pattern of figure 9.
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Figure 11. Same as figure 9, but for system 2 at an indentation depth of 3.17. In this case
also, the dislocations are not nucleated until the volume of the unstable regions reaches a
critical value.
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5. Conclusions

For a 2D crystal with two different interatomic potentials we have calculated the
instability surfaces in the three-dimensional strain space and the crystal energy at the
critical points. The latter result helped us to specify the loading conditions when
lattice instability is most probable. The possibility of constructing the instability
surfaces relies on the fact that the criterion of instability of an equilibrium state
is path-independent. Some properties of instability surfaces are summarized in
section 3.1. The soft mode instability criterion is applied successfully to predict the
dislocation nucleation points and the dislocation gliding directions in the indentation
of a 2D single crystal along the 112h i and 110h i directions.

We offer an approach to incorporate the effect of the interaction of the
sample with the loading device into a criterion of lattice instability with respect to
a homogeneous strain mode (section 3.2).

In nano-indentation experiments, mode softening occurs in a local area and it
does not cause an immediate collapse of the lattice (nucleation of dislocations).
Collapse occurs after the size of the unstable region reaches a threshold value.
Analysing the distribution of the unstable modes over the first Brillouin zone we
put forward an explanation for this behaviour. In the homogeneously strained 2D
hexagonal crystal, mode softening occurs first infinitesimally close to the origin of
the first Brillouin zone (vanishing of sound velocity). Thus, in the beginning, the
crystal is unstable only with respect to very long waves. On a further increase in
the homogeneous strain, the modes with shorter waves become unstable. Collapse of
the crystal lattice in the presence of a strain gradient may occur when a mode with
wavelength nearly equal to the size of the unstable region becomes soft. Note that
the above is applicable to instability with respect to a phonon mode, but not with
respect to a homogeneous strain mode.

We have systematically compared the results obtained with the use of the long-
range Lennard–Jones potential equation (1) and the short-range potential equation (2)
and found only quantitative differences. For example, both potentials applied
to the instability of a homogeneously strained crystal (section 3) never gave an
instability with respect to a short-wave phonon. It is easier to observe this type of
instability for a crystal with complex structure but, in our case, the instability
mechanism was always the vanishing of sound velocity. In the non-homogeneous
set-up, i.e. in the indentation simulations, the difference was also only quantitative.
In our recent studies [34, 35] of near-surface lattice instabilities we also observed that
the structure and crystallographic orientation of the surface play a more important
role in controlling the instability mechanisms than the actual law of interatomic
interactions.

The size effect, i.e. the effect of the size of the periodic computational cell on
the value of the external loading parameters when a collapse of the crystal lattice
occurs, has been discussed. The effect is important only for instability with respect
to a phonon mode. In this case we also observed an interesting precursor of
lattice collapse, first reported by Dmitriev et al. [29] for a homogeneously strained
fcc crystal. In a computational cell of finite size, a stable modulated structure is
observed with a loading parameter slightly lower than the dislocation nucleation
point and slightly higher than the mode softening point. The amplitude of
the modulation wave increases with external load, but it does not reach a consider-
able value, and, in our numerical experiments, is of the order 10�4a0. Soon after
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appearance the wave becomes unstable and the crystal lattice collapses. The appear-
ance of the small amplitude incommensurate modulation prior to lattice collapse
breaks the homogeneous distribution of energy in the crystal and facilitates the
nucleation of dislocations.

We have demonstrated the reliability of the microscopic soft mode criterion
(P-criterion) in predicting the dislocation nucleation centres and the gliding direc-
tions during indentation. Our approach is to define the local strain for each primitive
cell of the indented crystal and calculate the dispersion curves for an infinite crystal
homogeneously strained with this strain. However, this criterion can be successfully
applied to predict the dislocation nucleation only in the bulk of a defect-free crystal,
for example in nano-indentation, where the strain gradients are relatively small and
the homogeneous consideration can be applied with a high expectation. For lattice
instabilities near the surface or other heterogeneities a more general approach should
be used (see e.g. [30–32, 34, 35]).
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