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We calculated all the independent elastic constants of �-quartz under hydrostatic pressure up to 20 GPa
using density functional theory. The predicted pressure-dependent elastic behavior differs significantly from a
recent Brillouin spectroscopy measurement �E. Gregoryanz et al., Phys. Rev. Lett. 84, 3117 �2000��, but is
consistent with x-ray data in the literature.
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I. INTRODUCTION

Quartz, one of the common allotropes of SiO2 and the
most abundant mineral in Earth’s crust, is an important ma-
terial in diverse fields. Quartz-crystal oscillators are used in
many devices such as electronic watches, computers, and
cellular phones, as a reference signal generator. Also, the
quartz-crystal microbalance �QCM� technique1 is widely
used in biochemical and biomedical applications to sense
molecular adsorption at solid-gas or solid-liquid interfaces.
These applications are based on the inverse piezoelectric ef-
fect of quartz and its characteristic elastic behavior associ-
ated with mechanical compression or tension.

The effect of pressure on the propagation of elastic waves
in materials is essential for predicting and understanding in-
teratomic forces, mechanical stability,2 phase transition
mechanisms,3 dynamic fracture,4 earthquakes, and the inter-
nal structures of Earth. However, not much is known about
the elasticity of solids at high pressure, since measurement of
the elastic constants is challenging under high pressure. Tra-
ditional methods have been applied only to moderate pres-
sures. �Ultrasonic measurements are generally limited to a
few gigapascals and Brillouin spectroscopy has been applied
up to 25 GPa.� While numerous experimental studies of the
elastic constants of quartz have been performed,5,6 few en-
tailed the hydrostatic pressure P as a variable.7 Gregoryanz
et al.8–10 recently reported the Brillouin spectroscopy mea-
surements of the single-crystal elastic moduli of �-quartz to
above P=20 GPa using diamond-anvil cell, which yielded
the values of the individual elastic constants as functions of
pressure.

On the other hand, a number of calculations have been
performed on the mechanical properties of various high-
pressure and/or temperature silica phases, including
�-quartz, via molecular-dynamics and first-principles calcu-
lation approaches �see, for example, Refs. 11–18�. Modern
ab initio modeling is expected to provide a good description
of the elastic behavior of condensed phases19 over a wide
pressure range. However, to our knowledge, a systematic ex-
planation has not been available on the pressure evolution of
the complete set of elastic constants of quartz, since such
calculations of the individual elastic constants are quite
elaborate for systems with relatively low symmetries.

In the present study, we report the individual high-
pressure elastic constants of quartz as determined from first-
principles variable-cell-shape calculations. The main objec-
tive of the present article is to provide results of the density-
functional-theory �DFT� calculations that can be used to
evaluate quantitatively the high-pressure elasticity of quartz
up to 20 GPa, and to investigate the microscopic mechanism
for the elastic-constant behavior associated with compres-
sion. The data thus obtained can be compared with the nu-
merous experimental compressibility data and also the elastic
constants reported by Gregoryanz et al.8

II. SIMULATION TECHNIQUES

We use the Vienna ab initio simulation package �VASP�,20

with addition of a variable-cell-shape algorithm under ap-
plied stress. Gibbs free-energy minimization under an ap-
plied pressure at T=0 K is performed using the projector-
augmented-wave �PAW� method.21,22 For the exchange-
correlation potential, the local-density approximation �LDA�
functional given by Ceperley and Alder23 and parametrized
by Perdew and Zunger24 is used. The calculations employ the
primitive cell of �-quartz �space group P3121�,25 containing
nine atoms. A plane-wave basis set with 1400 eV kinetic-
energy cutoff is adopted. Such a large energy cutoff is found
to be necessary to achieve convergence for all the elastic-
constant components. We also employ a 4�4�4 �-centered
k mesh �13 irreducible k points� for carrying out the
Brillouin-zone integration using the tetrahedron method with
Blöchl correction.26 We increase the pressure in 0.5 GPa in-
crements for pressures up to 20 GPa. Forces on atoms and
internal pressure are calculated, and atom positions and cell
parameters are allowed to relax using a conjugate gradient
technique until their residual forces have converged to less
than 0.0005 eV/Å.

The definition of elastic constants Cijkl�X� at a finite-stress
state X is given by the free-energy expansion,27

F�Y� � F�X� + ��X���ij�X���X
Y�ij +

1

2
Cijkl�X���X

Y�ij��X
Y�kl�

+ O���X
Y�3� , �1�

where �X
Y is the Lagrangian strain connecting states X and Y,
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��X� is the volume of X, and F�X�, F�Y� are the Helmholtz
free energies of X and Y. This definition is convenient be-
cause it can be shown that �ij�X� is precisely the physical
“force per unit area” at X if at equilibrium, and both �ij�X�
and Cijkl�X� can be evaluated at X without requiring an extra
reference state.

In our calculations, a complete set of Cij’s �in Voigt nota-
tion� are computed from numerical derivatives of the internal
energy with respect to strain. The symmetry of the crystal
structures of �-quartz is trigonal, which means that there are
six independent elastic constants. The total energy is calcu-
lated in the strained lattice for several values of the magni-
tude of the linear strain �. Generally, six values of � are
chosen, �=0.0025, 0.004, 0.005, 0.006, 0.0075, and 0.01.
The unit cell is slightly deformed with every � in different
directions, each corresponding to a certain component of
elastic constants, and then the atomic coordinates are al-
lowed to relax. Cij’s are then obtained by fitting a polynomial
to the total energy F as a function of ����, and then taking
the quadratic derivatives �2F /��2.

In strained crystals, the sound velocities correspond to the
effective elastic constants or Birch coefficients �Bij� rather
than Cij �see, for example, Refs. 28 and 29�. The equality
Bij =Cij holds only at zero external stress. In order to com-
pare with the experimental data, the Bij’s are calculated from
the following equation:30

Bijkl = Cijkl + P�	ij	kl − 	ik	 jl − 	il	 jk� , �2�

where P denotes the internal hydrostatic pressure and 	ij the
Kronecker delta.

III. RESULTS AND DISCUSSION

A. Structural variations with pressure

The lattice parameters �a and c� and unit-cell volume ���
of �-quartz at ambient pressure are evaluated using the DFT
calculations. The obtained values are a0=4.863 �4.9134� Å,
c0=5.364 �5.4052� Å, and �0=109.9 �113.01� Å3, where the
numbers in parentheses are the experimental values25 at
298 K. For the present method, the calculated theoretical
values are found to be slightly small �within 1% for lattice
parameters and 3% for unit-cell volume�, but fairly close to
those obtained from the neutron-diffraction data.25 With in-
creasing pressure from 0 to 20 GPa, the unit-cell parameters
decrease continuously with pressure and the system succes-

sively undergoes compressive deformation. Also, the trigonal
phase of quartz survives compression up to the applied pres-
sure of 20 GPa under the present symmetry conditions, as
shown in Fig. 1.

From the first-principles total-energy minimization calcu-
lations, the theoretical pressure-volume data were obtained.
Figure 2�a� shows the volume compressibility curve, along
with the x-ray-diffraction data from Refs. 31–36. It is note-
worthy that our theoretical data obtained from the DFT cal-
culations are in good agreement with the experimental data
under hydrostatic pressure. Figure 2�b� shows the axial com-
pressibility curves for a and c axes. The compressibility of

FIG. 1. Effect of pressure on the structure of �-quartz as viewed
down the c axis at �a� 0 GPa and �b� 20 GPa. The oxygen and
silicon atoms are represented by the gray and black spheres,
respectively.

FIG. 2. Pressure evolution of the �a� unit-cell volume and �b�
lattice constants of �-quartz. �a� The open circles represent data
from the DFT calculations, and the solid curve is the best-fit Birch-
Murnaghan equation of state with parameters K0=37.7�3� GPa and
K0�=4.9�1�, where K0 and K0� denote the zero pressure bulk modulus
and its pressure derivative, respectively. The x-ray-diffraction data
�solid symbols� are from Refs. 31–36. For comparison, the
pressure-volume curves for cristobalite �K0=11.5, K0�=9.0 in Ref.
37�, coesite �K0=96, K0�=8.4 in Ref. 38�, and stishovite �K0=313,
K0�=2.8 in Ref. 39� are shown as dotted lines. �b� The open triangles
and squares represent normalized lattice lengths a /a0 and c /c0 ob-
tained from the DFT calculations, respectively. The x-ray-
diffraction data �solid symbols� are from Refs. 31–35.
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quartz is anisotropic and a axis is more compliant than c
axis. Also, our theoretical data are found to agree well with
the experimental data both for a and c, as indicated in Fig.

2�b�. This result suggests that our calculations have an ability
to satisfactorily reproduce the anisotropic compression be-
havior of quartz in this pressure range.

B. Elastic constants

The elastic constants �Cij� of quartz are evaluated under
pressures from 0 to 20 GPa using the DFT calculations. The
obtained Cij values are given in Table I, and the Birch coef-
ficients Bij derived from Eq. �2� are also tabulated. We have
included the experimental values5,6 at ambient pressure for
comparison.

At 0 GPa, our calculated values are in good agreement
with the experimental data. With increasing pressure up to
20 GPa, the B11, B33, B12, and B13 values tend to increase,
while B44 and B66 change gradually in this pressure range.
Figure 3 displays the pressure evolution of B11, B33, B12, and
B13, together with experimental values reported by Gregory-
anz et al.8 �According to Ref. 10, the Cij’s plotted in Ref. 8
are actually Bij’s.� Similar monotonous pressure dependence
is observed; however, their magnitudes are quite different. In
particular, the discrepancy of B33 amounts to approximately
110 GPa at pressure of 20 GPa. Also, the B12’s obtained
from the experiment change little in this pressure range and
exhibit a very low magnitude compared with the other com-
ponents, whereas B12 and B13 increase similarly in our DFT
data. In addition, a recent DFT calculation18 indicates a simi-
lar evolution with pressure and a large discrepancy between
the experimental and the theoretical values of elastic con-
stants.

FIG. 3. Pressure evolution of the Birch coefficients of �-quartz:
B11 �solid circle�, B33 �solid square�, B12 �solid triangle�, and B13

�solid inverted triangle�. The Brillouin scattering experimental data
�small open symbols� are from Ref. 8, where the B12 values are not
directly shown, and are thus derived from the equation B12=B11

−2B66.

TABLE I. Calculated values for elastic constants �Cij in GPa� and Birch coefficients �Bij in GPa�, bulk
modulus �K in GPa�, and the anisotropy of linear compressibility �
2 in 10−3 GPa−1� of �-quartz, together
with experimental values. At 0 GPa, the equality Bij =Cij holds.

P=0 GPa

5 GPa
Calc.

10 GPa
Calc.

15 GPa
Calc.

20 GPa
Calc.Expt.a Expt.b Calc.

C11 86.8 87.7 81.1 96.6 132.6 164.4 176.4

C33 106.4 106.3 104.8 163.1 233.4 269.8 294.9

C44 58.0 59.0 49.7 62.7 67.0 80.8 69.6

C66 39.8 40.5 36.4 31.5 38.3 61.0 57.5

C12 7.2 6.8 8.3 33.6 56.0 42.4 61.4

C13 12.0 12.3 7.5 21.3 49.6 54.3 69.5

C14 17.9 18.7 23.3 3.7 −4.1 −6.8 −19.9

B11 91.6 122.6 149.4 156.4

B33 158.1 223.4 254.8 274.9

B44 57.7 57.0 65.8 49.6

B66 26.5 28.3 46.0 37.5

B12 38.6 66.0 57.4 81.4

B13 26.3 59.6 69.3 89.5

B14 3.7 −4.1 −6.8 −19.9

K 37.5 37.8 34.4 56.3 88.2 98.1 114.9


2 2.51 2.47 2.48 2.82 2.70 2.72 2.57

aReference 5.
bReference 6.
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In most materials, elastic constants change with tempera-
ture and the possibility that the above discrepancy comes
from the difference in temperature conditions is considered;
the DFT data are obtained at zero temperature, while the
Brillouin scattering experiment10 is conducted at ambient
temperature. However, according to the ultrasonic
measurements7 of �-quartz at 77 and 298 K under ambient
pressure, the individual elastic constants only slightly vary at
low-temperature region below 298 K and the differences in
each Cij value are within 0.3–3.4 GPa. They are orders of
magnitude significantly smaller than the pressure evolutions
of elastic constants, and thus the effect of temperature can be
almost ignored in the present case.

In a trigonal crystal, the connection between pressure in-
crement and instantaneous strain is given by

− dP�1

1

1
	 = �B11 B12 B13

B12 B11 B13

B13 B13 B33
	�da/a

da/a

dc/c
	 . �3�

The bulk modulus �K� for trigonal crystals yields the combi-
nation of Birch coefficients,

K =
B33�B11 + B12� − 2B13

2

2B33 + B11 + B12 − 4B13
, �4�

from Eq. �3� and K�−dP /d ln �. According to Eq. �4�, the
K values derived from the Bij’s at various pressures are also
tabulated in Table I. On the other hand, we can determine K
by another way from fitting a polynomial to the pressure
dependence of ln � based on Fig. 2�a�. With the best-fit co-
efficients of a third-order polynomial, K �=−dP /d ln �� is
calculated as a function of P. The obtained values are 34.2,
62.7, 83.6, 101.3, and 117.1 GPa at pressures of 0, 5, 10, 15,
and 20 GPa, respectively. Figure 4 shows the pressure evo-
lution of the bulk modulus obtained in the analysis, along
with the Brillouin scattering experimental data from Ref. 8.
The numerical derivative of the pressure with respect to vol-
ume �−dP /d ln �� is shown as a solid curve as a function of
P, based on the volume compressibility data. It is noteworthy
that the K values derived from our Bij values are slightly off

the curve at 5 and 10 GPa but sufficiently consistent with the
volume compressibility data, while the K values obtained for
experimental Bij’s are fluctuating and strongly underesti-
mated at high pressures.

C. Liner compressibility

The pressure dependence of the c /a ratio is also related to
a combination of Birch coefficients, and thus, we make use
of the linear compressibility 
, i.e., the relative change in
length of a line under hydrostatic pressure,40,41 to check the
validity of the obtained Bij’s. The linear compressibility of a
trigonal crystal is in general anisotropic and can be derived
from an expression similar to Eq. �3�. In particular, the axial
compressibilities 
a and 
c are of the form


a = −
d ln�a�

dP
=

B33 − B13

B33�B11 + B12� − 2B13
2 , �5�


c = −
d ln�c�

dP
=

B11 + B12 − 2B13

B33�B11 + B12� − 2B13
2 . �6�

Thus, the logarithmic pressure derivative of the axis ratio
c /a, for which we use here the notation 
2�d ln�c /a� /dP, is
related to the anisotropy of the linear compressibility by the
following equation:


2 = 
a − 
c, �7�

where the coefficient 
2 can be expressed in terms of the
Birch coefficients,

FIG. 5. Logarithmic axis ratio c /a for �-quartz as a function of
pressure. The open squares represent the DFT data in this study, and
the solid line is the best fit with the slope of 3.12�10−3 GPa−1. The
x-ray-diffraction data �small solid symbols� are from Refs. 31–35,
and the dot-dashed line is the best fit with the slope of 2.97
�10−3 GPa−1. The dotted lines with the slope of 14.8 and 7.7 �in
10−3 GPa−1� are based on the Birch coefficients of quartz measured
in Ref. 8, at 10 and 20 GPa, respectively.

FIG. 4. Pressure evolution of the bulk modulus of �-quartz. The
DFT values derived from Eq. �4� are indicated as solid squares. The
solid curve represents the numerical derivative, −dP /d ln �. The
Brillouin scattering experimental values �open triangles� are from
Ref. 8.
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2 =
B33 + B13 − B11 − B12

B33�B11 + B12� − 2B13
2 . �8�

We can determine 
2 by fitting a polynomial in finite strain
to the pressure dependence of c /a. Thus, we have examined
the consistency between 
2 derived from the c /a values and

2 derived from the Bij values.

Figure 5 displays the c /a ratio for quartz as a function of
pressure, along with the diffraction data from Refs. 31–35.
As clearly shown in Fig. 5, the logarithmic c /a ratio of
quartz changes linearly with pressure both for the DFT and
experimental data, and the slopes of their least-squares fits
are almost the same �3.12�10−3 GPa−1 for the DFT data and
2.97�10−3 GPa−1 for the experimental data�.

Our predicted elastic constants for quartz as listed in
Table I yield the 
2 values at various pressures. At ambient
pressure, the 
2 values derived from the DFT data and the
experimental data5,6 agree well with one another. At above
5 GPa, the 
2 values ranging from 2.57 to 2.82 �in
10−3 GPa−1� apparently coincide with the above 
2 values
over the pressure range up to 20 GPa. This suggests that the
present Bij’s are quantitatively consistent with the compress-
ibility behavior, both for the experimental and DFT data. On
the other hand, the Bij values reported by Gregoryanz et al.8

yield the 
2 values ranging from 1.0 to 14.8 �in 10−3 GPa−1�
over the pressure range of 0 to 20 GPa, which are shown as
dotted lines in Fig. 5. This large discrepancy in 
2 indicates
that their Bij values are not compatible with the compress-

ibility behavior in literature, and numerical reexamination
may be needed.

IV. CONCLUSIONS

We have obtained the high-pressure elastic constants of
�-quartz via state-of-the-art ab initio calculations with a
variable-cell algorithm. A large discrepancy is found com-
pared to the elastic constants/Birch coefficients obtained
from Brillouin scattering measurements; however, our results
are consistent with the experimentally established fact that
the logarithmic axis ratio c /a of quartz changes linearly over
a wide range of pressure. To this end, our calculations pro-
vide insight into the elastic behavior of quartz at high pres-
sure, and it is noteworthy that first-principles techniques
have such predictive capability.
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