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Abstract. Recent developments in multiscale computation allow the solution of coarse equations for
the expected macroscopic behavior of microscopically evolving particles without ever ob-
taining these coarse equations in closed form. The closure is obtained on demand through
appropriately initialized bursts of microscopic simulation. The effective coupling of micro-
scopic simulators with macroscopic behavior requires certain decisions about the nature
of the unavailable coarse equation. Such decisions include (a) the highest spatial deriva-
tive active in the coarse equation, (b) whether the equation satisfies certain conservation
laws, or (c) whether the coarse dynamics is Hamiltonian or dissipative. These decisions
affect the number and type of boundary conditions as well as the algorithms employed.
In the absence of an explicit formula for the temporal derivative, we propose, implement,
and validate a simple scheme for deciding these and other similar questions about the
coarse equation using only the microscopic simulator. Simulations under periodic bound-
ary conditions are carried out for appropriately chosen families of random initial conditions;
evaluating the sample variance of certain statistics over the simulation ensemble allows us
to infer the highest order of spatial derivatives active in the coarse equation. In the same
spirit we show how to determine whether a certain coarse conservation law exists or not,
and we discuss plausibility tests for the existence of a coarse Hamiltonian or integrability.
We believe that such schemes constitute an important part of the equation-free approach
to multiscale computation.
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ing
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1. Introduction. It is often the case that a microscopic (fine scale) description
of a physical system is available, but we are interested in its macroscopic (coarse
scale) behavior. As a simple example of a microscopic model consider a collection of
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particles, each performing a random walk in one dimension—say on the line between
−1 and 1. The microscopic state consists of all particle locations. If the particles are
indistinguishable, we are most likely to be interested in how particle density varies
over space and time rather than information about individual particles; the under-
standing is that particle density is studied over scales that are large compared to
the average particle spacing. The particle density distribution might then be a good
macroscopic variable describing the system state; it may be possible to derive (ap-
proximate) equations for its evolution. If we can derive equations for the macroscopic
variable(s), called the coarse equations, we can work directly with them. This is the
case for the random walk model, and it is well known that (at the appropriate limits)
the macroscopic model is the diffusion (heat) equation [1]. However, in some cases we
may be unable to derive coarse equations even though we believe that they exist.

To continue with our trivial random walk model, let us assume that we did not
know the limiting coarse equations but that we believe that the system can be de-
scribed by some evolutionary equations in terms of the particle density (in the limit
as the number of particles becomes large). In that case we might opt to perform a
simulation using the microscopic model but extract from the results the macroscopic
evolution. In this example, we might choose as a finite-dimensional approximation for
the macroscopic description the average density of the particles over a set of spatial
bins. For example, we could divide the interval [−1, 1] into N equal boxes (segments of
length 2/N) and count the number of particles in each box to obtain an approximate
description of the macroscopic variable (the density). After a “burst” of microscopic
simulation we can compute the new macroscopic state. We could continue the micro-
scopic simulation, reporting the macroscopic state as time evolves; alternatively, we
can use consecutive computed macroscopic states to estimate the time derivative of
the average density in each box. Normally, when a macroscopic model is available,
this quantity would be obtained by evaluating the discretized right-hand side of the
evolution equation; here, an approximation to this quantity has been evaluated with-
out knowledge of the actual equations for the macroscopic evolution. This assumes,
of course, that the macroscopic description provides a useful model of the system
evolution.

As we stated, for this simple example it is easy to show that the density is a
suitable macroscopic variable, and its evolution is described by the diffusion equation.
A particular macroscopic state prescribes the number of particles in each box; clearly,
there are many microscopic states consistent with such a description. In a diffusion
context, one might expect the distribution of particles with each (small) box to be close
to uniform. Even if the initial particle distribution within each box is far from uniform,
however, we expect that within a very short simulation time the distribution will
equilibrate to something close to smooth. Thus, although the macroscopic description
does not uniquely prescribe the details of the microscopic state, different microscopic
states with the same macroscopic description will quickly evolve to appear similar.
We say that the system closes on the (discretization of the) density, our low-order
description: knowing the (discretized) density profile at a moment in time suffices
to predict its evolution. One can indeed write an equation for the evolution of the
particle density in terms of the instantaneous particle density. In particular, we know
that this is a partial differential equation—a local evolution law: we only need to
know a few local spatial derivatives of the density profile to evaluate the local time
derivative.

Solving such a coarse equation numerically involves the specification of bound-
ary conditions; specifying these requires some knowledge of the nature of the coarse
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differential equation, knowledge which sometimes can be obtained by simple visual
inspection of the equation formulae. This paper addresses the problem of finding
those aspects of the nature of the coarse equation that affect issues such as appropri-
ate boundary condition prescription as well as macroscopic solution methods when
no explicit closed formulae are available.

Typically, the study of macroscopic behavior starts with obtaining a closed de-
scription (a coarse evolution equation, often a partial differential equation but also
possibly a nonlocal, integrodifferential equation) for the temporal behavior of the
coarse variables. For our example, this would be the diffusion equation for the density
field. Then an array of mathematical and computational tools (numerical integration,
fixed-point algorithms, etc.) can be brought to bear on the coarse equation.

Over the last few years we have been developing a class of numerical algorithms
which attempt to analyze the coarse behavior without ever obtaining the coarse equa-
tion in closed form [2, 3, 4]. The common characteristic of these schemes is to use
short, appropriately initialized bursts of microscopic simulations to estimate the quan-
tities which, if the coarse equation were available, we would simply evaluate using the
equation itself. Such quantities, estimated on demand, include the time derivative
of the evolving coarse fields, to be used in coarse projective integration [5], or the
sensitivity of the solution to changes in the initial conditions (the action of the coarse
Jacobian), to be used in Newton–Krylov-type contraction mappings like the recursive
projection method (RPM) [6, 7] or in eigenvalue/vector computations. These meth-
ods are based on matrix-free large scale scientific computing, and we collectively refer
to them as equation-free methods. What makes these computations possible is the
assumption of a separation of time scales or large gaps between the eigenvalues of the
operators governing the collective dynamics. As we already discussed in the context
of our simple illustrative example, a short simulation will quickly locally smooth ir-
regular density profiles. Alternatively, one can say that higher-order statistics of the
particle distribution, such as pair or triplet probabilities, quickly become slaved to
(i.e., become functionals of) the density (a lower-order moment of the particle dis-
tribution). The consequence of this slaving, realized after a short computation that
uses the particle simulator as an input-output black box, embodies the closure that
allows us to solve for the coarse behavior. Fundamentally it is no different than if
the closures are expressed in closed form first and then evaluated later. This way of
thinking and newly developed computing technology may in practice improve upon
the traditional approach in both accuracy and cost, especially if the constitutive re-
lation is multidimensional and nonlinear. An example of this type is given in [8, 9].
An additional advantage of such methods is their ability to detect parametric regimes
where the present closure model is inadequate, and hence appropriate refinements
(including higher-order moments) are necessary.

In the projective integration method [5] one takes advantage of the slow dynamics
of the coarse variables to carry out only bursts of microscopic simulations connected
via extrapolations and/or interpolations over gaps of time. In the same spirit, but
now in space, we have developed the so-called gap-tooth scheme [10, 11] by evolving
the system only in an array of small spatial boxes (the teeth) separated by empty
regions (the gaps). Clearly, the two methods are closely related by the physics of
the problem, i.e., the dispersion relation of the coarse excitations. Indeed we can
have a combined gap-tooth–projective integration scheme, and in fact the spatial and
temporal intervals then need to be chosen properly to satisfy a Courant–Friedrichs–
Levy (CFL) condition as do finite-difference schemes; this is the focus of another
paper [2]. Here, we simply want to point out the fact that in the gap-tooth method,
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the teeth communicate with each other via appropriate boundary conditions for the
microscopic simulations performed inside them. And here lies the raison d’être of this
paper.

It is well known that certain features of a given equation affect the nature of the
appropriate numerical solver. It might be appropriate, for example, to integrate a
Hamiltonian dynamical system using a symplectic integrator; often, finite-difference
solvers of PDEs are built to preserve certain properties of the PDE, such as conser-
vation laws. Most importantly, the highest spatial order of an evolution equation
critically affects the number and type of boundary conditions leading to a well-posed
problem.

In a completely analogous manner, the way in which the microscopic model is
solved separately in each tooth in the gap-tooth scheme, and the boundary conditions
applied to the edges of each tooth, must respect the nature of the unavailable equations
and their order. Furthermore, gap-tooth algorithms compatible with conservation
laws (e.g., using fluxes to estimate temporal derivatives; see, for example, [12]) are
predicated upon knowing that the unavailable equation possesses certain conservation
laws.

When the closed-form equation is available, some of these questions (e.g., the order
of the highest spatial derivative in an evolution equation) can be answered by direct
inspection. Other issues (such as the existence of conservation laws or integrability)
may, in the case of closed-form equations, be relatively obvious or may require a lot
of work.

What we explore in this paper is the development of computer-assisted method-
ologies to answer some of the above questions when closed-form equations are not
available. The idea is that we can probe the consequences of these answers on the
dynamics of the unavailable coarse equations using microscopic particle- or agent-
based simulators by trying out large classes of appropriately chosen initial conditions.
We will illustrate what we call the baby-bathwater algorithm on examples of particle
systems realizing the Burgers and Korteweg–deVries (KdV) equations for the task
of inferring the highest order of spatial derivative on the right-hand side, and for
answering questions concerning coarse conservation laws.

The paper is organized as follows. In section 2 we briefly present our illustrative
particle-based example. In section 3 we discuss the determination of the highest-
order spatial derivative active in the unavailable equation. In section 4 we explore
the possible existence of conservation laws. In the concluding section we discuss the
scope and limitations of the procedure, as well as additional questions that may be
addressed through this approach. An interesting twist about reverse coarse integration
arises in discussing the exploration of whether the unavailable coarse equation may
be Hamiltonian.

2. Numerical Experiment Setup. Our illustrative example will be based on
simple numerical experiments. We will first, as a sanity check, demonstrate the ap-
proach using a traditional numerical simulator of a known evolution equation as a
black box. We will then substitute the simulator of the known continuum equation
with a particle-based simulator and repeat the procedure. Our first illustration will
be the Burgers equation,

(2.1) ut + uux = νuxx,

as well as a particle-based simulator constructed so that the evolution of its density
resembles the Burgers evolution. Since one of the issues to be explored is the number
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and type of boundary conditions in evolving the equation, our simulations must be
possible without this a priori knowledge. We therefore use periodic boundary condi-
tions (PBCs) enforced on x ∈ [0, 2π) in all our exploratory simulations. One of the
attractive features of the Burgers equation is that for any initial profile u(x, t = 0),
and even with PBCs, the Cole–Hopf transformation [13, 14] provides an analytical
solution. The accuracy of the numerics can thus be checked directly.

A biased random walker–based particle simulator mimicking the Burgers dynam-
ics is constructed, following the proof of strong convergence of such methods [15]. As
a reference, the diffusion equation,

(2.2) ut = νuxx,

has the well-known microscopic realizations of Langevin dynamics or unbiased random
walkers. It is not too difficult to conjure up a similar system: a unit mass in the coarse
description (

∫
u(x, t)dx = 1) corresponds to Z walkers, where Z is a large integer

constant. In the simulation, N random walkers move on [0, 2π) at discrete time-steps
tn = nh. At each step, (a) the walkers’ positions {xi} are sorted, and (b) each walker
i checks out the position of the walker m-places ahead, xm+

i , and m-places behind,
xm−i (properly accounting for PBCs, of course). The difference xm+

i −xm−i is inversely
proportional to the local density of walkers; therefore (c) every walker moves by ∆xi
sampled from N(mh/Z(xm+

i − xm−i ), 2νh), a biased Gaussian distribution. The xi’s
are then wrapped around to [0, 2π), and the process repeats. This achieves a coarse-
grained flux of j ≡ u2/2− νux as motivated by (2.1) by assigning each walker a drift
speed of u/2. Here, m is analogous to the number of directly interacting neighbors
in a molecular dynamics simulation. It is only for benchmarking purposes that the
relation to a known macroscopic equation is brought up. One can start by presenting
a microscopic evolution law without knowing anything about its corresponding coarse
equation, and apply our algorithms directly.

Relating the fine with the coarse description requires the use of lifting and re-
striction operators µ̂, M̂ [7]. Lifting µ̂ constructs a particle system sample (a phase
point) conditioned on some of the phase-space distribution’s lower moment fields (here
the zeroth moment, the coarse density field); it clearly is a one-many operator, and
multiple microscopic realizations of a given macroscopic initial condition are often
required [2, 7, 16]. The restriction operator M̂—here estimating the moment fields of
a given particle distribution [17, 18]—is a form of projection. Clearly, M̂µ̂ should be
the identity, or close to it, due to noise effects. The lifting and restriction operators
we construct for this work, with u interpreted as the coarse density on [0, 2π) with
PBCs, are given in the appendix. Figure 1 shows a result of the “reversibility test”:
we randomly generate a coarse density u(x), lift it to a random walker sample, then
restrict back to ũ(x) and observe the very good agreement between ũ(x) and u(x).
Notice that the only point where this agreement may be less satisfactory is close to
local maxima or minima, where the derivative changes sign.

While the proximity of our particle scheme to the Burgers evolution is not the
issue in this paper, we briefly illustrate the correspondence of the evolution of an initial
profile through the two approaches. Figure 2 shows the analytical solution obtained
through the Cole–Hopf transformation; it also contains the result of a 21991-particle
simulation after the configurations have been processed by the M̂ operator in the
appendix to extract the coarse density field. A small value of viscosity ν = 0.1
is picked to accentuate the behavior of the steepening wavefront with time. The
microscopic simulation clearly captures the important features of the coarse behavior.
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Fig. 1 Reversibility test (M̂µ̂ ≈ Î) of the µ̂,M̂ operators constructed in the appendix: Z = 1000,
M = 10, and u(x) is generated by randomly drawing its Fourier approximation coefficients
nan,nbn from N(0, 1), n = 1, . . . ,M (see the appendix for details).

Ensemble averaging with the same initial condition in coarse field, u(x, 0), would
reduce the error, but, as we can see, even a single microscopic simulation using a
reasonable number of particles may still perform quite well.

Last, we mention the existence of particle methods [15, 19, 20, 21] in solving PDEs
such as the following KdV equation:

(2.3) ut = 6uux − uxxx,

which can be formulated as a conservation law. In this paper we use our construction
above for the Burgers example. We should highlight once more that our ultimate goal
is not to construct particle solvers of given equations but rather to deduce features of
the unavailable coarse equations for given microscopic schemes.

3. Identifying the Highest Spatial Order of Coarse Derivatives. As we men-
tioned in the introduction, system identification lies at the heart of the equation-free
approach. Here, we suppose the coarse dynamics follows a certain time-evolution
equation of the following form:

(3.1) ut = f(u, ux, uxx, . . . , u(p)
x ),

which is unavailable. However, suppose we have already identified u, the coarse
variable for which we believe a coarse deterministic equation exists, and constructed
the lifting and restriction operators that connect macro-/microdescriptions. We seek
a general approach to answer qualitative questions such as (a) what p is and (b)
whether f can be written as −∇ · j without having f in closed form. The motivation
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Fig. 2 Analytical solution of the Burgers equation at ν = 0.1 and solutions of our particle-based
scheme. (a) Initial condition u(x, 0) = 3.5 + 3 sin(x); comparison between an initial profile
and after the application of M̂µ̂ for Z = 1000, M = 10; (b) comparison of analytical solution
and simulation (after restriction) at t = 0.2 (two spatial periods are plotted to make the wave
steepening more apparent); and (c) t = 1. The microscopic simulation is carried out with
m = 10, h = 5× 10−4.
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for this is that equation-free computation (for example, through the gap-tooth scheme)
does not require knowledge of f , but is affected by the knowledge of p through the
teeth boundary conditions. What we have is a microscopic simulator embodied in a
computer code that can be initialized at will, which we use as a coarse input/output
(I/O) black box. By probing the I/O response of the black box, the question is
whether we can decide on (a) and/or (b).

It may appear that we are trying to answer a circular question: in order to probe
the coarse I/O response of a microscopic simulator we need to run it, and to run
it we need well-posed boundary conditions which, among other factors, depend on
(a) and (b). To untie the knot, we use PBCs at the decision stage. We are going
to assume that the microscopic simulations can be carried out in PBCs, which is an
option prevalent among microscopic simulators. This enables us to probe the system’s
response to only the initial profile u(x, 0) input.

The so-called baby-bathwater identification scheme works as follows:
(i) Take an integer n, starting from 1.
(ii) Pick a random point x0 in the spatial periodic box.
(iii) Generate n random numbers, designated as u(x0, 0), ux(x0, 0), uxx(x0, 0),

. . . , u(n−1)
x (x0, 0) of u(x, 0).

(iv) Generate a conditionally random profile u(x, 0) compatible with the PBC and
consistent with the above u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . , u

(n−1)
x (x0, 0) re-

quirements. This can almost always be accomplished, for example, by sum-
ming 2L sine and cosine harmonics of the PBC:

(3.2) u(x, 0) = b0 +
L∑
i=1

al sin(lx) + bl cos(lx), x ∈ [0, 2π),

with L > 	n/2
. Because we have 2L + 1 coefficients, even though there
are n constraints to satisfy, we still have some random degrees of freedom
left in (3.2). In practice, this initialization can be accomplished by applying
conjugate gradient minimization of the n-dimensional residual norm starting
from a random {al, bl} vector.

(v) Lift u(x, 0) of (3.2), run it in the microscopic simulator for time ∆, restrict it
back to ũ(x,∆), and estimate:

(3.3) ũt(x0, 0) ≡
ũ(x0,∆)− ũ(x0, 0)

∆
.

Note that ũ(x0, 0) is used here instead of u(x0, 0) in the finite difference.
This will cancel out some numerical noise from the lifting and restriction
operations.

(vi) Repeat step (v) I times to obtain an ensemble-averaged ũt(x0, 0) to reduce
the microscopic noise.

(vii) Repeat step (iv) J times; collect the ũt(x0, 0) estimates:

(3.4) (ũ1
t (x0, 0), ũ2

t (x0, 0), . . . , ũJt (x0, 0));

compute the sample variance σ2(ũt(x0, 0)).
(viii) Repeat step (ii) K times; compute the averaged sample variance 〈σ2(ũt)〉n.
(ix) n→ n+ 1 and go back to step (i); p is identified when, going from n = p to

n = p+ 1, the averaged sample variance 〈σ2(ũt)〉p+1 decreases drastically to
practically 0.
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Fig. 3 Families of random initial profiles u(x, 0) (J = 4). (a) n = 1, (b) n = 2, (c) n = 3,
(d) n = 4 controlled initial derivatives. To avoid confusion notice that control of n = 1
derivatives means that only u(x0, 0) is identical between the runs, n = 2 means that u(x0, 0)
and ux(x0, 0) are identical, and so on.

Figure 3 shows such families of constructed initial profiles with progressively more
controlled initial derivatives. The basic idea is very simple: even though f could have
complicated functional dependencies on u, ux, uxx, . . . , u

(p)
x if they are all fixed, ut

should have no variance even as u(p+1)
x , u

(p+2)
x , . . . are varied randomly. The “critical

integer order” p is identified when the variance at p controlled derivatives u(x0, 0),
ux(x0, 0), uxx(x0, 0), . . . , u

(p−1)
x (x0, 0) jumps to a finite value; we then have already

thrown out the “baby” (the highest relevant spatial derivative u(p)
x ) with the “bath-

water” (the higher, nonrelevant ones).
It is important to recognize that the time derivative estimation (3.3) does not

occur instantaneously. A short “healing” period should elapse, during which the
higher cumulants of the lifted phase space distribution become functionals of the lower-
order, slow-governing cumulants. This separation of time scales, which fundamentally
underpins the existence of a deterministic coarse equation closing with the lower
cumulants, is discussed in more detail in [2].

As a sanity check, this algorithm is applied to a traditional continuum PDE time-
stepper “black box” first. Figures 4(a) and 4(b) show the results of applying our
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Fig. 4 (a) Identification of the order of the highest (spatial) derivative in the Burgers finite-
difference PDE time-stepper (3.9). (b) Identification of the order of the highest (spatial)
derivative for the KdV finite-difference PDE time-stepper (3.10).

decision scheme to forward Euler finite-difference PDE solvers of the Burgers and
KdV equations, respectively. A spatial mesh of ∆x = 2π/100 is adopted, and we
define

umkx ≡
u(m+1)∆x,kh − u(m−1)∆x,kh

2∆x
,(3.5)

umkxx ≡
u(m+1)∆x,kh + u(m−1)∆x,kh − 2um∆x,kh

∆x2 ,(3.6)

umkxxx ≡
um+1,k
x + um−1,k

x − 2umkx
∆x2 ,(3.7)

umkavg ≡
u(m+1)∆x,kh + um∆x,kh + u(m−1)∆x,kh

3
.(3.8)

We use

(3.9)
um∆x,(k+1)h − um∆x,kh

h
= νumkxx − um∆x,khu

mk
x

to integrate the Burgers equation forward and

(3.10)
um∆x,(k+1)h − um∆x,kh

h
= 6umkavgu

mk
x − umkxxx

to integrate the KdV equation forward. u(x0, kh) is obtained by cubic splines over
{um∆x,kh}, and ut(x0, 0) is evaluated by finite differences, the same as in (3.3). As
can be seen in Figures 4(a) and 4(b), p is identified to be 2 using the Burgers PDE
time-stepper and 3 using the KdV PDE time-stepper: the variances drop by more
than four decades in both cases when going from p to p+1 controlled derivatives. To
see where the remaining “noise” comes from, note that

(3.11) u(x0,∆)− u(x0, 0) = ut(x0, 0)∆ + utt(x0, 0)
∆2

2
+ · · · ,

and clearly utt(x, 0) has higher-than-u(p)
x spatial derivative dependencies, which are,

however, scaled by ∆ compared to the leading term. Thus the sample variances should
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Fig. 5 Identification of the order of the highest (spatial) derivative in the Burgers microscopic sim-
ulator of section 2 with the lifting and restriction operators found in the appendix. Here,
ν = 1, Z = 10000, m = 100, I = 10, ∆ = 0.01.

drop by ∼ ∆2 for n > p, which explains the observed magnitude of the four-decade
decrease.

We then apply the identification scheme to the microscopic simulator of section
2, with the lifting and restriction operators constructed in the appendix. The results
are shown in Figure 5. Under favorable conditions such as ν = 1 and m = 100, it
takes about 10 minutes of computer time on a single 1GHz-CPU personal computer
to obtain reasonably good microscopic noise reduction so that the variance drops by
about two decades going from n = 2 to n = 3. Under unfavorable conditions such as
ν = 0.1 andm = 1, it can take up to 1000 minutes of computer time to obtain the same
two-decade drop. Compared to the deterministic finite-difference PDE time-steppers,
identification of a microscopic simulator is undoubtedly much more computationally
intensive, even though fundamentally there is no difference between the two black
boxes. The problem of microscopic noise reduction is a persistent issue among all
equation-free methods including bifurcation [2], projective/gap-tooth integration [10,
11], and identification, and calls for a unified treatment. Here, one must pay special
attention to the rank (M) of the restriction operator (see the appendix). As can be
seen in Figures 1 and 2, our proposed restriction operator satisfies the constraint of
reversibility and also accurately represents the profile’s long-time evolution. However,
these merits do not guarantee automatically good short-time ũt estimates by finite
differences. Special attention must be paid to the restriction operator M̂: for example,
if the highest harmonic in (3.2) for u(x, 0) is L, then with M = L we can get a
good reversibility test of u(x, 0). Unless we use M = 2L for restricting the Burgers
microscopic dynamics, however, we would not get a good estimate of ut, because the
nonlinear interaction uux in (2.1) creates higher harmonics in ut up to 2L. If M = L
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is still used, it is equivalent to forcing a least-squares projection of a 4L+1 vector to
a 2L+1 subspace, which may work well enough in the long term but is too inaccurate
for short-term finite-difference estimates. Unless this point is taken care of, the ut
estimate using our M̂ is found to not even be superior to a crude bin-count density
estimator with bin-width (2π/n)/8 about x0, as 2π/n is the shortest wavelength in
u(x, 0).

Last, we note that (3.1) represents a wide category of coarse dynamics; those
with higher time-derivatives and mixed derivatives can be converted to a multivariate
version of (3.1), and the identification scheme will still, in principle, work. A notable
exception is the incompressible fluid case, where the sound-speed is infinite and the
pressure plays the role of a global Lagrange multiplier. The incompressible fluid model
is but a mathematical idealization of a certain physical limit. It is nonetheless useful
and important. The fact that it is not directly amenable to our identification is worth
mentioning. In general, the identification scheme presented here will not work for
dynamics with instantaneous remote-action over macroscopic lengthscales such as

(3.12) ut(x, t) =
∫
dξu(ξ, t)K(x− ξ),

for which it is easy to show that ut(x, t) correlates with an infinite number of local
spatial derivatives {u(n)

x (x, t)}.
4. Identifying Conservation Laws. In section 3 we addressed the concern of how

to identify the highest spatial derivative of an unavailable coarse equation of the type
(3.1). It is natural to try to decide other qualitative questions, for example, whether
the coarse dynamics conserves a specific quantity,

(4.1) G ≡
∫
g(u, ux, uxx, . . . , u(p′′)

x )dx,

or not. In the simplest case, we ask whether g ≡ u is conserved. We note that it is
equivalent to asking whether the right-hand side of (3.1) can be written as

(4.2) f(u, ux, uxx, . . . , u(p)
x ) = −∂xj(u, ux, uxx, . . . , u(p−1)

x )

or not. Alternatively, we ask whether there exists j(u, ux, uxx, . . . , u
(p−1)
x ) such that

(4.3)
d

dt

∫ x1

x0

u(x, t)dx = j(x0, t)− j(x1, t)

for arbitrary x0, x1. Whereas earlier we tried to identify features of f(u, ux, uxx, . . . ,
u

(p)
x ) through (3.1), here we can try to identify consequences of j(u, ux, uxx, . . . , u

(p−1)
x )

and its features through (4.3). The process of the baby-bathwater identification can
be carried over; the only difference is that it is going to be a boundary scheme. In one
dimension, the boundary scheme reduces to a two-point scheme as follows:

(i) Take an integer n, starting from 1.
(ii) Pick two random points x0 and x1 in the spatially periodic box.
(iii) Generate 2n random numbers, denoted by u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . ,

u
(n−1)
x (x0, 0) and u(x1, 0), ux(x1, 0), uxx(x1, 0), . . . , u

(n−1)
x (x1, 0) of u(x, 0).

(iv) Generate a conditionally random profile u(x, 0) compatible with the PBC that
is consistent with the above u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . , u

(n−1)
x (x0, 0),

and u(x1, 0), ux(x1, 0), uxx(x1, 0), . . . , u
(n−1)
x (x1, 0) requirements. This can
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always be done by (3.2) with L > n. As we discussed above, we have 2L+ 1
coefficients, even though there are 2n constraints to satisfy, and we still have
some random degrees of freedom left in u(x, 0).

(v) Lift u(x, 0) of (3.2), run it in the microscopic simulator for time ∆, restrict it
back to ũ(x,∆), and estimate:

(4.4) Ũt(0) ≡
∫ x1

x0
ũ(x′,∆)dx′ −

∫ x1

x0
ũ(x′, 0)dx′

∆
.

(vi) Repeat step (v) I times to obtain an ensemble-averaged Ũt(0) to reduce the
microscopic noise.

(vii) Repeat step (iv) J times; collect the Ũt(0) estimates:

(4.5) (Ũ1
t (0), Ũ

2
t (0), . . . , Ũ

J
t (0));

compute the sample variance σ2(Ũt(0)).
(viii) Repeat step (ii) K times; compute the averaged sample variance 〈σ2(Ũt)〉n.
(ix) Go back to step (i); n → n + 1. A conservation law is positively identified

when, going from n = p− 1 to n = p, the averaged sample variance 〈σ2(Ũt)〉p
decreases drastically to practically 0.

Figure 6 plots families of initial profiles thus constructed with progressively more
controlled initial derivatives. Figures 7(a) and 7(b) show the results of applying the
identification scheme to the Burgers finite-difference PDE time-stepper (3.9) and the
KdV finite-difference PDE time-stepper (3.10), respectively. p− 1 is identified to be
1 for (3.9) and 2 for (3.10).

Two comments are in order: first, we probe the consequence of conservation (i.e.,
that boundary fluxes are the only cause of change for the conserved quantity in a
domain); second, we obtain the highest spatial derivative of the conserved quantity u
in the constitutive equation for the flux. It is important to note that if the procedure
progressively returns negative answers (e.g., if the sample variance is nonzero for a
given number n of controlled derivatives), this does not imply that a conservation law
does not exist. It implies only that conservation of the integral of u with a flux that
depends on up to p − 1 spatial derivatives is not present. It is possible that other
functionals of u may be conserved (e.g., energy) and we have not tested for that. So
in one dimension, the baby-bathwater schemes give a definite answer to whether the
integral of u is conserved or not in finite p− 1 steps, as long as p is prescribed first.

5. Discussion. In section 4 we proposed methods to check whether a coarse quan-
tity (such as the integral of g(u, ux, uxx, . . . , u

(p′′)
x )) is conserved without knowledge of

the coarse evolution equation. The obvious question that arises is, how do we know
which g to check? The path that we suggest here, in the equation-free setting, is to
examine the consequences of conservation laws. For example, consider the conser-
vation of (linear) momentum. An equivalent statement, through Noether’s theorem
[22], is the existence of translational invariance. If we numerically establish the latter,
then we can claim the former. Let us then consider initial conditions to the avail-
able integrator which are shifts of an original profile (e.g., u(x− x0), u(x− (x0 + ε)),
u(x − (x0 + 2ε)), etc.). Then if we time evolve the problem, using our microscopic
time-stepper, and the equation is translationally invariant, upon reaching the inte-
gration reporting horizon we can backshift the profile (by the original shift amount).
If all backshifts provide an identical profile, we can conclude translational invariance
and hence linear momentum conservation. An additional note of caution is that the
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Fig. 6 Families of random initial profiles u(x, 0) (J = 4) for conservation law identification. (a)
n = 1, (b) n = 2, (c) n = 3, (d) n = 4 controlled initial derivatives.
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Fig. 7 Testing for the prescence of a conservation law with (a) the Burgers finite-difference PDE
time-stepper (3.9) and with (b) the KdV finite-difference PDE time-stepper (3.10).
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examination of such consequences is relevant when Noether’s theorem applies and
hence when there is an underlying Lagrangian/Hamiltonian structure in the problem
(we discuss separately the issue of Hamiltonian nature below). Notice, however, that
modulo the proviso of the system being Hamiltonian, this methodology can be used
to test for additional dynamical invariants; e.g., the invariance with respect to phase
of the evolution of a field can be related to norm invariance, etc.

Testing for an underlying Hamiltonian structure can proceed in a similar fashion
through its correlation with invariance with respect to time reversal. The crudest way
to examine this is by reversing the sign of the “velocity variables” and of the integrator
time-step (if that option is available). A more refined way to check the same symmetry
is by examining computations of the spectrum (e.g., eigenvalues) of linearization of the
coarse PDE. In particular, a straightforward consequence of the Hamiltonian nature is
that all linearization eigenvalues should come in quartets; namely, if λ is an eigenvalue,
then so are −λ, λ,−λ, where  denotes complex conjugation. It is fortunate that
time-stepper based numerical analysis techniques for the numerical approximation of
the leading spectrum of such a linearization are well developed for the case of large
scale continuum simulations (see, for example, [23, 24, 25, 26, 27, 28]). If an eigenvalue
λ of the linearization is identified, matrix-free eigencomputations with shift can be
used to explore the existence of the −λ eigenvalue (in general, real eigenvalues will
come in pairs and complex conjugate eigenvalues in quartets).

While coarse time reversibility can be tested by exploring the spectrum of the lin-
earization, it raises the interesting question of how to integrate backward in time with
the microscopic code. If the coarse dynamic behavior is slow (i.e., under appropriate
spectral gap conditions for the coarse equation), we can use short bursts of forward
in time microscopic simulation to estimate the time derivative of the coarse variables.
We can then use this (regularized through forward integration) estimate to take a
backward projective integration step. The procedure is then repeated: short forward
integration, coarse time-derivative estimation, and a new backward projective step.
This “see-saw” forward-backward coarse integration procedure can also be used on
stiff systems of ODEs and even dissipative PDEs under the appropriate conditions
to evolve trajectories backwards on a slow manifold. The numerical analysis of these
algorithms in the continuum case is an interesting subject in itself, and we are cur-
rently pursuing it [29]. It is interesting that the technique, in the molecular dynamics
case, can be used to coarsely integrate backward in time on a free energy surface
and thus help molecular simulations escape from free energy minima; we have already
confirmed this in the case of alanine dipeptide folding in water at room temperature
through molecular dynamics simulations [30].

Finally, a more complicated question than checking the existence of one (a specific,
and hence related to a specific invariance, in accordance with the above discussion)
integral of the motion is that of integrability. The latter necessitates infinite integrals
of the motion, normally established by means of identifying Lax pairs and using the
inverse scattering transformation machinery [31]. However, in this case one can also
use consequences of integrability to test for it. For instance, in recent work [32]
it was qualitatively argued (and verified through numerical experiments in different
settings) that a feature particular to integrable Hamiltonian systems is the presence
of double continuous spectrum eigenvalues when linearizing around a (coarse PDE)
solitary wave under PBCs. These as well as other criteria (such as the existence of
point spectrum eigenvalues in the spectral gap [33]) can also be (conversely) used
to potentially rule out the existence of integrable structure. In short, the spectral
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properties of the coarse PDE linearization can be used to test not only the Hamiltonian
(see above) but also potentially the integrable nature of the flow. While these are just
initial thoughts towards attempting to decide vital questions about the nature of the
unavailable closed equation, it is important to note that what is computationally
involved is a time-stepper–based identification of facts about the spectrum of the
linearization of an operator. This “computational technology” is quite mainstream
in the case of large scale continuum simulators and can be straightforwardly adapted
to the case of coarse time-steppers in conjunction with the lifting-restriction steps.
Variance reduction and (maximum likelihood) estimation [34] will clearly be the most
significant additional consideration in making these and similar-spirited approaches
more quantitative and more widely applicable.

Since the original version of this paper appeared, the equation-free approach has
been used to explore a number of applications ranging from micelle formation [35] to
the dispersal of biological organisms [36], and from stellar system core collapse [37]
to coupled oscillator dynamics [38] and homogenization [39].

The “inner” simulators around which such methods have been wrapped ranged
from molecular dynamics, Brownian dynamics, and lattice Boltzmann to kinetic
Monte Carlo, equilibrium Monte Carlo, and agent-based models; the approach has
also been linked to uncertainty quantification [40].

Several groups have pursued numerical analysis issues for such multiscale mod-
eling and computation approaches (e.g., [41, 42, 43, 44, 45]). More along the lines
discussed in this paper, testing for (coarse) self-similarity of the unavailable equation
was discussed in [46].

In modeling complex, multiscale systems many more questions of the type dis-
cussed here arise: Is a given set of coarse variables sufficient to (at least locally) model
a given system in a useful way? Do we need to augment or reduce this set of vari-
ables? Is a system characterized by time-scale separation? Can the system be usefully
(locally) modeled with a coarse ODE (PDE, or SDE)?

It seems clear that the design of computational experiments for the testing of
such hypotheses will become an integral part of scientific computation for complex,
multiscale problems—in the same spirit that on-line error estimation and mesh and
time-step adaptation are an integral part of scientific computation for problems where
the coarse-grained equations are explicitly available.

Appendix. Coarse Density Lifting/Restriction Operators. For a coarse field u,
the lifting operator µ̂ generates a microstate U: U = µ̂u. Similarly, for a microstate
U, the restriction operator M̂ returns a coarse field estimate ũ: ũ = M̂U. Both µ̂
and M̂ can be one-to-one or one-to-many operators, but we demand that M̂µ̂ → Î
asymptotically when the wavelength of u is large enough compared to the microscopic
length scale [7]. For one-dimensional coarse density field u(x) under x ∈ [0, 2π)
PBCs, we use the following µ̂, M̂ operators for the sake of definiteness in numerical
experiments, even though their construction is not unique.

The lifting operator µ̂, u(x)→ {xi}:
(i) Estimate uapprox

max ≈ umax ≡ maxx∈[0,2π) u(x). Pick usafe that is “safely”
greater than umax; for example, usafe = 1.1uapprox

max .
(ii) Define N ′ ≡ 	2πusafeZ
. Create N ′ particles {xi} with each xi independently

drawn from uniform distribution on [0, 2π).
(iii) Go to each particle i; randomly eliminate it with probability 1− 2u(xi)

uapprox
max +usafe

.
Count the total number of surviving particles N ′′.
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(iv) Compute quadrature,

(A.1) Q ≡ Z
∫ 2π

0
u(x)dx;

randomly round to N = �Q� or N = �Q�+ 1 such that 〈N〉 = Q. Randomly
pick N ′′ −N particles out of the N ′′ survivors and eliminate them. We now
have a set of particles {xi}, totally numbered either �Q� or �Q�+ 1.

The restriction operator M̂, {xi} → ũ(x):
(i) Define a microscopic density function,

(A.2) a(x) ≡ 1
Z

N∑
i=1

δ(x− x−i )

(where xi − x−i > 0 but is arbitrarily small), and a corresponding cumulant
function,

(A.3) c(x) ≡
∫ x

0
a(x′)dx′.

Clearly, at the the first, second, and third particle positions xn1 , xn2 , xn3 ,
c(xn1) = 1/Z, c(xn2) = 2/Z, c(xn3) = 3/Z, etc. And we have c(0) = 0,
c(2π) = N/Z.

(ii) Define a residual function r(x),

(A.4) r(x) ≡ c(x)− Nx

2πZ
,

which is the difference between c(x) and the cumulant of a homogenized
particle gas background. The idea is that r(0) = r(2π) = 0, so it is a periodic
function and can be approximated by

(A.5) r(x) ≈ r̃(x) =
M∑
n=1

an(cos(nx)− 1) + bn sin(nx).

In fact, a sound strategy is to least-squares fit r̃(x) (its {an},{bn} coefficients)
to r(x) at x = xni ’s, where {xni} is the sorted list of {xi}. r(x) can be easily
evaluated at xni ’s, noting the last sentence of step (i).

(iii) The coarse density estimate can be obtained by taking the derivative of c̃(x) ≡
Nx/2πZ + r̃(x),

(A.6) ũ(x) =
N

2πZ
+

M∑
n=1

−nan sin(nx) + nbn cos(nx).

It is worth noting that although the constructed M̂ depends on M , it satisfies
the particle number conservation exactly because the finite harmonics all integrate
to zero, and only the background contribution remains. In fact, 〈M̂µ̂〉 also satisfies
exact particle number conservation to the original u(x) under probabilistic average.
Further, one can show 〈M̂µ̂〉 = Î exactly for u(x) in the first M harmonics subspace.
Alternative restriction operators, such as density field estimation based on maximum
entropy principle [18], and velocity and temperature field estimations based on max-
imum likelihood inference [17, 18] also exist.
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