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Graphene-based sp2-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal
strengths due to their exceedingly small dimensions. We have calculated the phonon spectra of graphene as a
function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon
instability on the strain path, which controls the strength of a defect-free crystal at 0 K. Uniaxial tensile strain
is applied in the x �nearest-neighbor� and y �second nearest-neighbor� directions, related to tensile deformation
of zigzag and armchair nanotubes, respectively. The Young’s modulus E=1050 GPa and Poisson’s ratio �

=0.186 from our small-strain results are in good agreement with previous calculations. We find that in both x
and y uniaxial tensions, phonon instabilities occur near the center of the Brillouin zone, at ��xx=0.194, �xx

=110 GPa, �yy =−0.016� and ��yy =0.266, �yy =121 GPa, �xx=−0.027�, respectively. Both soft phonons are
longitudinal elastic waves in the pulling direction, suggesting that brittle cleavage fracture may be an inherent
behavior of graphene and carbon nanotubes at low temperatures. We also predict that a phonon band gap will
appear in highly stretched graphene, which could be a useful spectroscopic signature for highly stressed carbon
nanotubes.
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I. MOTIVATION

The ideal strength1,2 is the highest achievable strength of a
defect-free crystal at 0 K. Even though a conventional mate-
rial deforms or fractures at macroscopic stresses far below its
ideal strength, the ideal strength is nonetheless a crucial the-
oretical parameter, because it fundamentally characterizes
the nature of chemical bonding in that crystal.3,4 The Peierls-
Nabarro model of dislocation,5,6 for instance, relies on the
Frenkel model of ideal strength, because defects such as
cracks and dislocations work like levers, amplifying the far-
field stress to near ideal strength levels inside the defect core
in order to move.7 It is thus not surprising that the study of
ideal strength can tell us a lot about why some materials
�such as diamond� are intrinsically brittle, while others �such
as copper� are intrinsically ductile.4

The ideal strength becomes even more important with the
progress of nanotechnology. Recent experiments on
nanocrystals,8 nanoporous materials,9 nanopillars,10 and
nanoindentation11 have revealed a host of ultrastrength phe-
nomena, defined by internal stress levels broadly and persis-
tently rising up to a significant fraction of the ideal strength.
Ultrastrength materials typically have geometric features
around or less than LC�102 nm. To put this in perspective,
computers one can buy off the shelf now have chips with
65 nm strained silicon features.12 At such material length
scales, the population dynamics of defects is fundamentally
different from that in the macroscale material, leading to
size-dependent mechanical behavior at L�LC, which, how-
ever, starts to level off at L�LC due to the intrinsic upper
bound, the ideal strength.

Carbon nanotube is an ultimate example of small-size,
ultrastrength material. By bending multiwalled carbon nano-

tubes �MWCNTs� inside an atomic force microscope, Falvo
et al. estimated that 16% tensile strain can be achieved in
local regions of some MWCNTs without breaking them.13 Yu
et al. measured the tensile response of single-walled carbon
nanotube �SWCNT� ropes14 and inferred a mean breaking
strength of 30 GPa, 3% of their mean Young’s modulus of
1002 GPa. Ding et al.15 measured the fracture strengths and
moduli of arc-grown MWCNTs. The outer-shell fracture
strength was estimated to range from 10 to 66 GPa, and the
Young’s modulus from 620 to 1200 GPa. Demczyk et al.
conducted room-temperature pulling and bending tests on
MWCNT of diameter of 12.5 nm and measured an astonish-
ing 150 GPa failure strength, which is 17% of its Young’s
modulus, E=900 GPa.16 The authors noted there is no nar-
rowing of the nanotubes immediately before failure �the de-
formation was elastic and reversible�, and the nanotubes fail
“as essentially defect-free materials.” The 150 GPa strength
value, however, seems to be inconsistent with their reported
5% strain prior to failure. Barber et al.17 measured the tensile
strength of MWCNTs produced by chemical vapor deposi-
tion and fitted the data to the Weibull-Poisson distribution. A
characteristic strength value of 109 GPa was obtained.
Márquez-Lucero et al. reported similar high strengths in car-
bon nanotubes and nanofibers.18 These recent experiments
indicate that ultratensile strength can indeed be achieved in
an important component of nanotechnology.

It is reasonable to speculate that graphene-based carbon
nanotubes, nanofibers, etc., hold record or near-record ideal
tensile strength among all materials. It is well known that the
electronic structure and mechanical properties of carbon
nanotubes are similar to those of flat graphene, aside from
quantum confinement effect.19 For this reason, in this paper
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we perform a careful ab initio study of the ideal tensile
strength of flat graphene as structural motif for carbon nano-
tubes, nanofibers, and other graphene-based materials.20 The
results we obtain for the ideal strain �I and ideal strength �I
are expected to be directly comparable with experimental
measurements for the carbon nanotubes.13–17

II. METHODOLOGY

The ideal strength �I of a crystal is inherently related to
its phonons.21,22 This is because at low temperatures �defined
here as less than half the Debye temperature TD, TD
�1000 K in graphene23�, all atomic motions in the crystal
can be decomposed into phonon modes, which are nearly
independent of each other �normal modes�. Therefore, the
both necessary and sufficient condition for mechanical insta-
bility of a crystal at low temperature is phonon
instability,24,25 i.e., vanishing of the phonon frequency �nk
for some wave vector k and branch index n. A mathematical
understanding of this condition and its relation to the validity
of the Cauchy-Born rule relating stress to strain can be found
in Ref. 26. A phonon mode that lowers the energy of a crystal
�has imaginary frequency� will grow in amplitude, until non-
linearity kicks in and the structure is driven to a new stable
state, often containing strain-relieving defects.25 The incre-
mental atomic displacements of the unstable phonon mode
can be determined from the eigenvectors of the dynamical
matrix. The unstable eigenvector indicates the crystallo-
graphic nature of the initial instability. When free surfaces
are under load, the so-called surface ideal strength27,28 can
also be calculated from surface phonon analysis.29

Density functional perturbation theory �DFPT� is a well-
tested ab initio method for accurate phonon calculations.30

Typical empirical interatomic potentials for semiconductors
give up to 20% error in the calculated phonon frequencies at
zero stress compared to experiments,31 but one could usually
expect �5% error from parameter-free DFPT calculations.30

Furthermore, empirical interatomic potentials are fitted to
mostly zero-stress properties; large-strain atomic environ-
ments leading to nonlinearity and bond breaking are often
under-represented in the fitting process. Therefore, empirical
potential phonon calculations24,29 are useful for surveying the
gross features of ideal strength but are inappropriate for ac-
curate predictions of ideal strength. The DFPT approach, on
the other hand, does not have this problem. One can expect a
similar level of accuracy at zero stress as at large stress.

DFPT calculations of phonon instabilities and ideal
strength have been performed for Al �Ref. 32� and Si.33 Re-
cently, there have been a number of experimental34,35 and
theoretical36,37 studies of phonon dispersion in graphene,
which affirmed the accuracy of the DFPT approach. How-
ever, none have dealt with the ideal strength connection.

We performed our calculations using the plane wave den-
sity functional theory �DFT� program ABINIT,38 within local
density approximation �LDA�. The Troullier-Martins norm-
conserving pseudopotential39 was used for carbon, with a
plane wave kinetic energy cutoff of 1633 eV. The stress-
strain calculations are performed in the four-atom unit cell,
shown in Fig. 1�a�. The supercell height Z=8 Å in the z

direction is much larger than the interlayer spacing of d0
=3.34 Å in graphite40 and carbon nanotubes. Brillouin zone
�BZ� integration for charge density and total energy is per-
formed with a 10�18 Monkhorst-Pack grid. We employ
0.1 eV Fermi-Dirac smearing of the occupation number
around the Fermi level. Convergence studies indicate that the
error in the stresses and energy due to the basis set size,
smearing parameter, and k-point grid density is less than
0.1 GPa and 0.5 meV, respectively. We first optimized the
equilibrium carbon-carbon distance by the Broyden-Fletcher-
Goldfarb-Shanno method and obtained a value of RCC
=1.4148 Å, which is only slightly different �	0.5% � from
the experimental value of 1.419 Å.40

Figure 1�c� shows the reciprocal lattice of graphene sheet
and its first Brillouin zone. For the DFPT phonon calcula-
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FIG. 1. �Color online� �a� Four-atom unit cell for stress-strain
calculations. �b� Two-atom primitive cell for phonon calculations.
�c� Primitive cell of the reciprocal lattice and the first Brillouin
zone.
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tions, we used a two-atom primitive cell �Fig. 1�b�� and a
20�20 k grid to map out all the possible instabilities. The
results at zero stress along 
-M-K-
 are shown in Fig. 2�a�.
Our results are almost identical to those of Dubay and
Kresse36 and Wirtz and Rubio.37 The lowest branch near 
,
�2=�k4, describes free bending wave of the graphene sheet
at zero stress, where � is proportional to the bending modu-
lus of the sheet. Such free bending wave is absent in three-
dimensional crystals. It introduces a finite density of states at
zero frequency, as shown in Fig. 2�b�. According to shell
elasticity, under a finite tensile stress ��0, this bending
wave branch will turn into �2=�k4+��k2 near 
, thus no
longer looking fundamentally different from the other pho-
non branches. So, under a nonzero tensile stress, we would
expect the phonon density of states to approach 0 as the
frequency→0.

We then apply a series of incremental tensile strains on
the supercell and simultaneously relax the other stress com-
ponents to zero �Poisson contraction under uniaxial tension�.
Uniaxial tension was applied in the x direction and y direc-
tion �Fig. 1�, respectively. The x direction is the nearest-
neighbor C-C bonding direction. Pulling in the x direction
corresponds to pulling a zigzag nanotube of chirality �n ,0�,
and the Poisson effect corresponds to elastic shrinking of the
circumferential length of the zigzag nanotube in tension. The
y direction is the second-nearest-neighbor direction. Pulling

in the y direction corresponds to pulling an armchair nano-
tube of chirality �n ,n�, and the Poisson effect then corre-
sponds to elastic shrinking of the armchair nanotube diam-
eter under tension. Since the graphene primitive cell contains
two atoms, there is an additional internal relative displace-
ment beyond the affine displacements, and the Hellmann-
Feynman forces need to be relaxed to zero at every strain.

Here, we want to make a distinction between the calcu-
lated supercell stress and equivalent stress. The equilibrium
interlayer spacing d0=3.34 Å of graphite and carbon nano-
tubes in nature is established through van der Waals interac-
tions, which have minimal effect on the in-plane covalent
carbon-carbon interactions. However, LDA is known to have
artifacts treating the weak van der Waals interactions. There-
fore, in our calculations, we have artificially set the supercell
height to Z=8 Å. The supercell stress computed from ABINIT

is derived from linear response theory in the same vein as
DFPT41 and is by default averaged over the entire supercell
volume. To make connections with experiments16 and other
calculations,42–44 however, we need to rescale the supercell
stress by Z /d0 to obtain the equivalent stress. The idea is that
graphene should be nominally considered a continuum plate
of constant thickness d0 �with no Poisson’s contraction in the
z direction� in the context of continuum mechanics. Thus, a
SWCNT is by convention regarded as a hollow pipe rather
than a full cylinder. This convention is significant when dis-
cussing the bending and buckling behavior of SWCNT,45 as
well as the mechanics of MWCNT.16

Previous plane wave DFT calculation by Ogata and
Shibutani46 indicated that peak stress of 107.4 GPa may be
achieved in �10,0� zigzag SWCNT at a critical strain of
0.208, and peak stress of 114.6 GPa may be achieved in �8,8�
armchair SWCNT at a critical strain of 0.295 if the nanotube
could maintain its lattice structure on the strain paths. Be-
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FIG. 3. �Color online� The curves connected to the origin are the
equivalent tensile stress �d0=3.34 Å� versus uniaxial strain in the x
and y directions, respectively. The lines with initially negative
slopes �scale labels to the right� are the finite-deformation Poisson’s
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FIG. 2. �Color online� DFPT calculated �a� phonon dispersion
and �b� density of states of graphene sheet at zero stress. Note that
the free bending wave �2=�k4 near 
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density of states at zero frequency in �b�.
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cause only a single unit cell was employed in the nanotube
axis direction, the calculation was not able to detect any k
�0 phonon instability. Mielke et al.47 and Khare et al.48

performed semiempirical quantum mechanical calculations
�PM3� with larger numbers of atoms. They predicted failure
stress of 124 GPa at a critical strain of 0.20 for �10,0� zigzag
SWCNT and failure stress of 135 GPa at a critical strain of
0.30 for �5,5� armchair SWCNT, respectively. Such calcula-
tions can potentially capture k�0 phonon instability. How-
ever, the results were not analyzed this way.

III. RESULTS AND DISCUSSIONS

Figure 3 shows the DFT calculated stress-strain curve and
finite-deformation Poisson’s ratio of graphene. Here, strain is
defined as ��L /L0−1, and stress � is the Cauchy stress,49

assuming that the nominal plate thickness d0=3.34 Å is in-
dependent of �. The finite-deformation Poisson’s ratio is de-
fined as ��−��lateral� /��pulling�, where ��lateral� is the in-
plane shrinkage perpendicular to the pulling axis. At small
strains, graphene has isotropic in-plane elastic response, with
Young’s modulus E=1050 GPa and Poisson’s ratio �
=0.186 assessed from our DFT-LDA results. These are in
good agreement with previous DFT calculations.50 At large
strains, the lattice symmetry is broken, and the x-strain elas-
tic response becomes distinct from the y-strain elastic re-
sponse.

The function ���� has a noticeable downward trend at
large strain, indicating gradual saturation of the amount of
Poisson contraction. The maximum Cauchy stress for
uniaxial tension in x �relevant for zigzag nanotubes� is
110 GPa, at �xx=0.194, �yy =−0.016. Thus, we should expect
no more than 1.6% shrinkage in the zigzag nanotube diam-
eter when pulled to failure at low temperatures, in agreement
with experimental observations.16 The predicted peak
strength is in reasonable agreement with the earlier DFT es-
timate of 107.4 GPa at critical strain of 0.208 for a zigzag
nanotube.46

Compared to being pulled in the x direction, graphene is
somewhat stronger in the y direction �relevant for armchair
nanotubes�, with maximum Cauchy stress of 121 GPa, at
�yy =0.266, �xx=−0.027. Thus, we predict the armchair nano-
tubes to be 10% stronger than the zigzag nanotubes and can
withstand 37% larger strain, with maximum diameter con-
traction of 2.7% �elastic� before failure at low temperatures.
This peak strength is consistent with the earlier DFT estimate
of 114.6 GPa at critical strain of 0.295 for an armchair
nanotube.46

While Fig. 3 provides a rough indication of the low-
temperature strength of graphene-based nanostructures, they
do not theoretically guarantee that the peak stresses can be
attained, because finite-k phonon instabilities could inter-
vene on the strain path and disrupt the homogeneous lattice
structure before the peak stress is ever achieved �the insta-
bility is not soft elastic wave in nature24�. For instance, Clat-
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FIG. 4. �Color online� �a� Phonon dispersion and �b� density of states of graphene at �xx=0.18. There is no soft mode yet. �c� Phonon
dispersion at �xx=0.194, �xx=110 GPa. �d� Blow-up of the unstable branch along k=q�b1+b2�=kex. �e� Scan of the entire Brillouin zone at
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unstable eigenvector corresponding to the soft mode at �xx=0.194.
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terbuck et al. showed that in face-centered-cubic aluminum,
under �110�, �100�, �111� uniaxial tension, as well as relaxed
�112̄� 	111
 shear, the onset of finite-k phonon instabilities
all occur before the peak stress. It is, therefore, imperative
for us to check the stability of all phonons on the strain path
using the DFPT phonon calculations. We take the “carpet
bombing” approach, that is to say, we check all k points in
the irreducible BZ on a two-dimensional grid.

The results for uniaxial tension in x are shown in Fig. 4.
At �xx=0.18, there is no indication of phonon instability �Fig.
4�a��, that is, all of the phonon frequencies shown are posi-
tive, but significant phonon softening �lowering of the fre-
quencies� has occurred compared to Fig. 2, except for the
bending wave branch which stiffens in tension. Also, as
shown in Fig. 4�b� a narrow phonon band gap appears
around 900 cm−1, which might be a useful signature to spec-
troscopically determine highly stressed carbon nanotubes.

Figure 4�c� indicates that phonon instability does occur at
�xx=0.194, �xx=110 GPa, along the k=q�b1+b2�=kex direc-
tion. Blow-up view �Fig. 4�d�� indicates that the instability is
of long-wave nature, near 
. The initial slope of the disper-
sion curve is imaginary. When this happens, the material is
unstable with respect to incremental tensile strain and is thus
elastically unstable. To make sure this long wave at �xx
=0.194 is the first instance of phonon instability on the strain
path, Fig. 4�e� shows the entire Brillouin zone instead of just
the selected cuts. All phonon frequencies on the two-
dimensional grid are positive, except for the two grid points
near the zone center. Thus, the first instability is elastic in

nature, which means that the peak stress and strain can be
attained at 0 K, �I,xx=110 GPa, �I,xx=0.194.

For such situation, a general theory exists about how a
linear instability of long waves can lead to dynamic nucle-
ation of defect singularities such as dislocations or
cracks.24,25 In simple crystals, if w is more perpendicular to
k, then the unstable wave is transversal, i.e., it is a soft shear
wave. It is very likely then that a dislocation loop or a twin
embryo would be nucleated. If, however, w is more parallel
to k, then the unstable wave is longitudinal, and a microc-
rack is likely to result.

The eigenvector of the dynamical matrix �Fig. 4�f�� indi-
cates that this soft phonon mode at �I,xx=0.194 is a longitu-
dinal wave, with polarization displacement w parallel to
k �ex, and thus should lead to the nucleation of microcrack
when �I,xx=110 GPa is attained at T=0 K. This is in agree-
ment with the analysis of Dumitrica et al.43 that at low tem-
peratures, the failure mode of zigzag nanotubes is brittle
cleavage fracture. Only when the temperature is high enough
�T�TD /2�500 K� can zigzag nanotubes deform plastically
at laboratory strain rates via the nucleation and migration of
Stone-Wales 5/7 defects.43,45 At such elevated temperatures,
the ideal strength �athermal strength� is no longer a good
indicator of the prevalent deformation mechanism; one must
also look at thermally activated processes and their activa-
tion volumes,7,28,51 which is beyond the scope of this paper.

The DFPT phonon calculations for uniaxial tension in y
�armchair nanotubes� are shown in Fig. 5. The results are
similar to uniaxial tension in x, except that the phonon band
gap is now much wider. This gap centered around 1200 cm−1
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would be a good diagnostic signature of highly stressed car-
bon nanotubes. We predict longitudinal elastic wave instabil-
ity for armchair nanotubes, with w �k �ey, at �I,yy =0.266 and
�I,yy =121 GPa, which usually suggests brittle cleavage frac-
ture behavior.25 Analysis of the relationship between w and
atomic geometry �Fig. 5�f��, however, reveals a small differ-
ence. While w was parallel to the highest-load nearest-
neighbor bonds in Fig. 4�f�, it now has an �30° angle to the
highest-load bonds in Fig. 5�f�. This means that in a longitu-
dinal displacement field like u�x�=weik·x, while the highest-
load bonds in Fig. 4�f� sustain stretching but not rotation, the
highest-load bonds will sustain both bond stretching and
bond rotation in Fig. 5�f�. Because the Stone-Wales transfor-
mation involves bond rotation,45 it is not absolutely clear
whether the linear instability of Fig. 5�f� will lead to bond
cleavage first or localized Stone-Wales transformation first.
Such complication arises because graphene has a two-atom
primitive cell and the response to macroscopic strain is non-
affine.

Dumitrica et al. predicted localized Stone-Wales transfor-
mation and plastic deformation for armchair nanotubes at
low temperatures43 �T=1, 300, and 600 K� in a stress
ramp-up experiment. We note that experimentally, there is no
evidence yet of low-temperature plastic deformation of car-
bon nanotubes of any chirality. Demczyk et al. found no
plastic narrowing of the nanotubes immediately before

failure.16 On the other hand, it is possible to fracture quickly
�with respect to human time scale� after the 5/7 defects have
been nucleated52 or perhaps after the aggregation of several
5 /7 defects.53 Thus, experiments to date provide no concrete
evidence either for or against initial Stone-Wales transforma-
tion at low temperature and laboratory strain rates. It is rea-
sonable, however, to interpret our DFPT results as suggesting
that both the zigzag and armchair nanotubes are intrinsically
capable of brittle cleavage fracture at T=0 K due to the lon-
gitudinal elastic wave nature of the first soft phonons when
subjected to tension.
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