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The deformation and failure phenomena of materials are the results of stress-driven, thermally activated
processes at the atomic scale. Molecular-dynamics �MD� simulations can only span a very limited time range
which hinders one from gaining full view of the deformation physics. Inspired by the Eshelby transformation
formalism, we present here a transformation “strain-boost” method for accelerating atomistic simulations,
which is often more efficient and robust than the bond-boost hyperdynamics method �R. A. Miron and K. A.
Fichthorn, J. Chem. Phys. 119, 6210 �2003�� for exploring collective stress-driven processes such as disloca-
tion nucleation, that have characteristic activation volumes larger than one atomic volume. By introducing an
adaptive algorithm that safely maximizes the boost factor, we directly access the finite-temperature dynamical
process of dislocation nucleation in compressed Cu nanopillar over time scale comparable to laboratory
experiments. Our method provides stress- and temperature-dependent activation enthalpy, activation entropy
and activation volume for surface-dislocation nucleation with no human guidance about crystallography or
deformation physics. Remarkably, the accelerated MD results indicate that harmonic transition-state theory and
the empirical Meyer-Neldel compensation rule give reasonable approximations of the dislocation nucleation
rate.
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I. INTRODUCTION

The mechanical behavior of materials is well known to be
temperature and strain-rate dependent.1 This is fundamen-
tally a reflection of the thermally activated nature of
stress-driven processes, characterized by the stress � and
temperature T-dependent activation-free energy Q�� ,T�:2
R=�MEP exp�−Q�� ,T� /kBT�, where R is the success rate of a
certain process, �MEP is the physical trial frequency along the
minimum energy path �MEP�, and kB is the Boltzmann con-
stant, assuming that transition-state theory �TST� �Ref. 3�
holds. At laboratory strain rates typically in the range of
10−6–101 s−1, the operative Q�� ,T� is of the order 30kBT. In
contrast, the operative Q�� ,T� explored in molecular dynam-
ics �MD� simulations is of the order 5kBT–10kBT, due to the
considerably higher strain rates in the range of 106–1010 s−1.
Thus normal MD simulations may explore a completely dif-
ferent activation regime from the laboratory experiments, ob-
scuring the interpretation of the simulation results.

Hyperdynamics4 is an appealing scheme which potentially
can accelerate atomistic simulations within the TST frame-
work. As illustrated in Fig. 1, the acceleration can be attained
by adding a positive boost potential �V�r� to the original
interatomic potential V�r� around its local minimum A,
within one basin �A, where r denotes the 3N-dimensional
configuration space for N-atoms system and �A is the subset
of all r’s which “flows” to A by steepest descent upon re-
lease. Also, we define the �3N−1�-dimensional dividing sur-
face bounding �A as ��A, which consists of ��A��B� seg-
ments for all neighboring local minima B’s. For
hyperdynamics to work, �V must be zero outside of �A. As
long as this requirement is satisfied, the MD trajectory with
Vb=V+�V is able to evolve with a time increment given by
�tPhys=�tMDe�V/kBT, where �tMD is the time increment of the
MD simulation ��fs� with Vb�r�. The average speed-up fac-

tor is �e�V/kBT�b, where � �b means averaging in the boosted-
potential ensemble.

In the original hyperdynamics formulation, a Hessian-
matrix-based boost potential is constructed, but it involves
heavy computational overhead which limits its application so
far to small-scale problems.5 Miron and Fichthorn developed
a simple geometry-based boost potential based on atomic
nearest-neighbor bond lengths, called bond-boost
hyperdynamics.6 We have implemented this method, but
found it to be unable of providing efficient boost for simu-
lating dislocation nucleation, and also depends too sensi-
tively on which atoms to boost. Here we propose a distinct
strategy of designing the boost potential that allows us to
safely simulate the finite-temperature deformation and fail-
ure in solids7,8 with powerful speed-up, by incorporating the
following ideas: �i� Eshelby inclusion and transformation
picture,9 �ii� least-square atomic-strain measure10 �see also
the Appendix�, and �iii� adaptivity.

II. ADAPTIVE STRAIN-BOOST HYPERDYNAMICS

In geometry-based hyperdynamics such as the
bond-boost6 or strain-boost method, the boost potential
�V�r� depends on local atomic geometry variables �si�r�	
assigned to atom i �or bond i�, under the assumption that the
dividing surface ��A has distinct features in �si�r�	 that is
easy to compute and identify. While changes in atomic pair
distance, for instance, large irreversible change in bond
length can be an indicator of basin hopping, they are not
necessarily the most effective ones for identifying ��A. For
example, change in bond angle cannot be reflected unless
one considers a collection of three bond lengths together.
Also, the boost potential �V�r� vanishes far away from the
basin bottom and works the hardest when deviation from the
equilibrium is still small, but in a self-equilibrating atomic
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lattice there is no energy-conjugate force to the bond length
that is conceptually illuminating. The strain, in contrast, has
been identified by Cauchy to be the energy conjugate vari-
able of stress, which is obviously the primary driving force
behind deformation and fracture. Hydrostatic strain is gener-
ally a good indicator of bond-length change, and the shear
strains are good direct indicators of bond-angle change.

Thus, for primarily stress-driven processes, we accept the
physical picture of the Eshelby transformation mechanics
model,9 in which the activation process is treated as an ellip-
soidal inclusion of a certain size and shape that undergoes a
transformation, as schematically illustrated in Figs. 2�a� and
2�b�. For the transformation strain �i, we use the least-square
measure of atomistic strain defined on each atom i �Ref. 10�
�see also the Appendix�, which minimizes among all possible
local affine connections the error of mapping local atomic
positions from reference to the current one, around atom i. In
defining �i one may use an arbitrary set of nearby atoms,
regarded as the “Eshelby inclusion.” The size of such strain-
measuring �and subsequently strain-boosting� inclusions may
be matched to the experimentally inferred spectrum of acti-
vation volume �,11 and the shape may be targeted to the
particular types of defects of interest. For instance, disloca-
tion nucleation should correspond best to an oblate disk on
certain crystallographic plane with high aspect ratio. How-
ever, to demonstrate the raw power of this method in explor-
ing deformation physics, we purposefully omit all crystallo-
graphic and shape information in this paper, and just use a
sphere with radius rc in defining �i. Mathematical details
about �i and its first-order derivatives with respect to atomic
positions can be found in the Appendix. It suffices to say
here that �i is a more collective �bond-angle aware� local

geometric variable than the bond length, reflecting the con-
dition of at least the nearest-neighbor atomic shell, with eas-
ily tunable additional collectivity.

Following Miron and Fichthorn,6 the atomic-strain collec-
tive variables are then boosted by means of
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FIG. 1. �Color online� Illustration of the hyperdynamics scheme. Left figure shows a potential-energy surface �PES� and its two-
dimensional projection map. To accelerate the transitions from minimum A to adjacent minimum B or B� in hyperdynamics, one builds the
new PES Vb by filling the basin �A with the atomic-geometry-based boost potential. In hyperdynamics theorem, any modification of PES
inside �SA can be permitted as long as �SA lies within �A, where �SA denotes the boundary surface on which the boost potential vanishes.
Right figure illustrates an adaptive algorithm that allows us to optimize the position of �SA by controlling the atomic-geometry-based
threshold qc. The maximum acceleration is achieved when �SA is as close to the dividing surfaces ��A as possible near the relevant saddle
points while not crossing the other saddle points.
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FIG. 2. �Color online� �a� Schematic of the classical Eshelby
model. The ellipsoidal Eshelby inclusion with the size of � under-
goes a transformation strain �ij in the homogeneous stress field �ij.
�b� Corresponding schematic of the transformation strain-boost
method. The activation processes that involve more than one atom
are treated like the Eshelby inclusion and the least-square measure
of atomistic strain represents a transformation strain. The size of
inclusions is chosen to match to the spectrum of activation volume
� by flexibly changing the cutoff length rc in defining the atomistic
strain.
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�V�r� =
F��max

Mises�
Nb



i

Nb

�Vi��i
Mises� . �1�

Here, �i
Mises is the von Mises shear tensor invariant of �i

�see the Appendix�, �Vi is the boost potential in
terms of �i

Mises�r�, Nb is the number of boost atoms and
F��max

Mises�=1− ��max
Mises /qc�2 for �max

Mises	qc and F=0 for
�max

Mises
qc, where �max
Mises=max��i

Mises	 and qc is the boost
strain threshold.

F��max
Mises� is the shutdown function of the boost potential,

therefore qc prescribes the size of the boundary �SA of the
boosted region in Fig. 1. For the requirement �V=0 on ��A,
qc must be small enough to guarantee that �SA dose not touch
��A �i.e., �SA��A\��A�, otherwise the hyperdynamics
scheme breaks down. On the other hand, qc should be large
as possible to gain a maximum efficiency. Here, we give a
simple adaptive algorithm that enables us to quickly search
the optimal value of qc=qc

max, which amounts to isotropic
scaling the size of �SA in Fig. 1 and checking which is the
largest possible size that allows the most boosting �“effi-
ciency”� without having �SA touch ��A �“safety”�. In this
algorithm, MD simulations are carried out with Vb consisting
of the boost potential �V with a variable qc. By applying a
strongly repulsive potential �Vi=��qc−�i

Mises�2, the system is
driven to sample near �SA and likely to escape from basin
�A. It is noted that while this repulsive potential becomes
positive when �max

Mises
qc, the boost potential �V is enforced
to be zero due to the shutdown function. The stiffness �,
which is independent of the qc

max, can be set properly by
monitoring the time variation in �i

Mises. Then, qc
max is com-

puted with the following recipe.
�i� Increase qc from zero with an increment of �q until the

trajectory successfully finds a new basin �B. The transition
from �A to �B can be detected by monitoring the time evo-
lution of �max

Mises. Then, record the qc value when the transition
takes place and employ it as a first guess qc

trial for next
step �ii�.

�ii� Obtain five different trajectories going from �A to �B
by performing the constant qc=qc

trial runs with random initial
conditions. For each trajectory, check the hyperdynamics re-
quirement of �SA��A\��A. To judge this, quench the sys-
tem at any time t when the trajectory r�t� passes through �SA
�i.e., when �max

Mises=qc
trial is satisfied� and confirm whether the

system always falls into the minimum A.
�iii� If �ii� holds for all five trajectories, we accept qc

trial as
statistically valid qc

max. Otherwise, update qc
trial by a small

decrement of �q and repeat step �ii� until the qc
max can be

determined.
We have checked the statistics on how many trajectories

should be taken into account in determining qc
max. Compared

with the qc
max value estimated from the five trajectories case,

we found that the value from the three trajectories case is
overestimated while the same value is obtained from the ten
trajectories case. Thus, we judge that five trajectories are
enough.

The adaptive algorithm above is treated as a precondition-
ing technique that makes the subsequent hyperdynamics
simulations safe. At this stage, the boost potential has been

changed to a function form of �Vi=Vmax�1− ��i
Mises /qc

max�2�,
where Vmax is the magnitude of the total boost potential.6

III. SURFACE-MEDIATED DISLOCATION NUCLEATION
MODEL

To illustrate the validity of the adaptive strain-boost
method, we have studied the dislocation nucleation event in
Cu nanopillar compression.12 The atomistic configuration of
the computational model is presented in Fig. 3�a�. The
system contains 13 824 Cu atoms and the cell sizes are
4.3�4.3�8.2 nm3. The crystallographic directions along
the cell are the x= �100�, y= �010�, and z= �001� directions.
Periodic boundary condition is imposed along z direction and
the others are traction-free surfaces. The Mishin potential13

was employed to describe the Cu-Cu interaction. The
compressive stress � was imposed by applying the uniaxial
constant strain along the �001� axis. The five different
stress states in the range from 1.75 ��0.47�ath� to 2.50
��0.67�ath� GPa are prepared, where �ath=3.75 GPa is an
athermal limit and corresponds to a critical value when a
dislocation spontaneously nucleates without the aid of ther-
mal fluctuation at 0 K.2 This stress preferably induces the
nucleation of the leading Shockley partial dislocation on the

�111	�112̄� slip systems, originated from the atomically
sharp corner12 �Figs. 3�b� and 3�c��.

To compute a local von Mises shear-strain invariant
�i

Mises, the cut-off length rc of �i
Mises was chosen as 4.8 Å.

This involves about 30 neighbor atoms for each atom i,
which is the same order of the activation volume � of the

[001]

[010]

[100]

(a) (b)

(d)

FIG. 3. �Color online� �a� Atomistic configuration of Cu nano-
pillar model used in adaptive strain-boost hyperdynamics simula-
tions. The atoms within outermost layer �surface atoms� are not
represented. The boost potential is assigned to the atoms along four
corners �yellow�. �b� Typical snapshot during the simulation under
T=180 K and �=1.75 GPa condition. Only the surface atoms and
the atoms swept by dislocation are shown using central symmetry
parameter. After repeating the appearance and disappearance of the

Shockley partial dislocation embryo on the �111	�112̄� slip systems
from sharp corner, one embryo attains to its transition state at about
tPhys=70 s, �c� followed by the rapid expansion of the dislocation
loop.
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dislocation nucleation, estimated from the recent mechanistic
and computational modeling.11,14 In this model, one may
think it is natural to directly boost all the corner atoms at the
outermost layer. However, because the least-square atomic
strain �i

Mises does not characterize coordination-deficient at-
oms well, the equivalent atoms to the corner atoms located at
the second layer are boosted, as shown in Fig. 3�a�.

For each stress state, the optimal qc
max was determined

using the adaptive algorithm with the parameters of
�q=0.005 and �=1000.0 eV. Subsequently, we have con-
structed the boost potential with a function form of
�Vi=Vmax�1− ��i

Mises /qc
max�2�. Here, not only qc but also Vmax

affects the achievable boost factor. Generally, larger Vmax
leads to larger boost factor. However, if Vmax is too large, the
statistical averaging �e�V/kBT�b becomes noisy.6 To avoid this
problem, Vmax has been determined by performing short hy-
perdynamics runs ��50 ps� under the given temperature and
stress conditions. For various Vmax, we have checked the
quality of ensemble average �e�V/kBT�b by computing the
slope between the physical time tPhys and simulation time tMD
�i.e., correlation coefficient 
�. Practically, the adequate Vmax
value was defined under the criterion that 
 of more than
80% of samples among all samples is larger than 0.95.

IV. RESULTS AND DISCUSSION

First, we show the computational speed-up achieved by
the adaptive strain-boost hyperdynamics in terms of the av-
eraged boost factor �e�V/kBT�b. In Fig. 4�a�, the boost factor
under the typical stress �=1.94 GPa is plotted over the tem-
perature range where the nucleation event can be observed

within one million simulation steps for all 25 samples. We
find that as the temperature decreases, the boost factor expo-
nentially increases up to 1011. This dramatic acceleration in-
dicates that the boost potential becomes strikingly effective
for dislocation nucleation event and has an ability to track
relevant dynamics extending over experimental time scale
�seconds�. We also presents the boost factor by the adaptive
bond-boost hyperdynamics, in which the boost potential is
assigned to all bonds connected with the atoms boosted in
the strain-boost method. The comparison clearly shows that
the strain-boost method is more efficient than the bond-boost
method and the difference in the maximum achievable boost
factor attains to about 8 orders of magnitude. This difference
attests that the strain-boost method is more suitable for ex-
ploring the thermally activated collective motion of many
atoms, such as dislocation nucleation. Note that in neither
method did we give any crystallographic or deformation
physics input as to what should happen, unlike the free-end
nudged elastic band �FENEB� calculation11 where mechanics
intuition is necessary in designing the initial guess path.

Miron and Fichthorn examined the scaling of the boost
factor with the number of boost bonds Nb. In the bond-boost
method, they found that the boost-factor scale as Nb

−0.9 for the
largest Vmax.

6 Similarly, using the strain-boost method, we
measured the boost-factor dependence on the number of
boost atoms Nb by preparing the longer pillar systems in the
z direction. As a result, we found that the boost factor ap-
proximately scales as Nb

−1.0, which is nearly identical to the
bond-boost method. Thus, the advantages in the strain-boost
method described above would not change even for the
larger Nb system.

Next, we show the Arrhenius plot of the nucleation rate R
at given stress ��=1.75–2.50 GPa� and temperature
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FIG. 4. �Color online� �a� Arrhenius plots of the averaged boost factor for dislocation nucleation from surface under compressive stress
of 1.94 GPa. The data are measured by strain-boost method and bond-boost method, respectively. In these simulations, qc

max=0.095 and
0.315 are employed, respectively. �b� Stress and temperature dependence of the dislocation nucleation rate R�� ,T�. Each R is calculated by
R=1 /�ave, where �ave is the transition time averaged over 25 samples. Arrhenius fitting gives the measurement of activation enthalpy Q0���
of 0.74 eV, 0.54 eV, 0.41 eV, 0.31 eV, and 0.23 eV for 1.75 GPa, 1.94 GPa, 2.12 GPa, 2.30 GPa, 2.50 GPa, respectively. The apparent
prefactor R0��� of 1.41�1019, 6.87�1017, 1.37�1017, 1.81�1016, and 6.62�1015 s−1 are also obtained in the same order.
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�T=100–450 K� in Fig. 4�b�. We also give the nucleation
rates directly computed by a normal MD �i.e., �V=0� for
each stress, although the data are available only for the rela-
tively high temperatures, reflected by the limited time scale
��ns�. In contrast, owing to the large boost factor ��1011�,
our hyperdynamics simulations provide the nucleation rate
over considerably wider temperature range. Consequently,
we have found the important result that the nucleation rate at
each stress beautifully exhibits a pure Arrhenius behavior.
This fact suggests that the harmonic approximation of TST
�HTST �Ref. 15�� would be applicable to describe the dislo-
cation nucleation process over the investigated temperature
range. We also emphasize that the data points for the strain-
boost method lie on the same straight line with those for a
normal MD, demonstrating that our boosted model works
completely accurately without blocking the equivalent paths
for corner nucleation.

We now compare our numerical results with HTST and
give the activation parameters associated with the surface-
mediated dislocation nucleation. Within TST, the rate for a
stress-driven thermally activated process can be expressed
as12

R��,T� = M�MEP���exp�−
Q��,T�

kBT

 , �2�

where M is the number of the equivalent nucleation sites.
HTST states that the temperature dependence of the
activation-free energy Q�� ,T� is simple and can be decom-
posed into,

Q��,T� = Q0��� − TS��� , �3�

where Q0��� is the stress-dependent activation enthalpy that
corresponds to the activation-free energy at T=0 K and S���
is the stress-dependent activation entropy15 related to the
3N−1 vibrational frequencies the saddle point and A. As-
suming Eq. �3� is true, one would have

R��,T� = R0���exp�−
Q0���
kBT


 with

�4�

R0��� = M�MEP���exp�S���
kB


 .

We emphasize that fitting to the hyperdynamics results in
Fig. 4�b� provides us the more accurate evaluation of Q0���
and R0��� than fitting to the MD result only, due to the larger
temperature range accessible. We give the result of Q0��� in
Fig. 5�a� and compare with those computed from FENEB
technique which is another probe for identifying the Q0���
and MEP via T=0 K calculation.16,17 We confirm that our
hyperdynamics Q0��� agree well with the FENEB Q0���
within 0.02 eV, validating HTST.

To our knowledge, calculation of the stress-dependent ac-
tivation entropy S��� has not been reported for dislocation
nucleation or other problems. Here, we have obtained S���
through Eq. �4� by taking M =2Nb and
�MEP���=1.0�1011–3.0�1011 s−1 that have been deter-
mined from the initial energy curvature along the MEP.16

The result is provided in Fig. 5�b�. We find that the activation

entropy increases as the stress decreases in the investigated
stress range and is typically 4kB–14kB. This means the
saddle point is vibrationally more disordered than the basin
minimum A, due to presumably more softer modes on the
dividing surface ��A. Further, the estimation of S��� allows
us to evaluate the activation-free energy Q�� ,T� at various
temperatures. Importantly, our result indicates that, at room
temperature, the entropic contribution to Eq. �3� is
non-negligible and corresponds to about 40% of Q0, as
shown in Fig. 5�a�. Likewise, the activation volume
��� ,T�=−�Q�� ,T� /��, which characterizes the strain-rate
sensitivity in materials plasticity,11 has been derived. For in-
stance, �=5b3 when Q=0.4 eV at room temperature, where
b denotes the Burgers vector in Cu.

It is instructive to compare the computed S��� with the
Meyer-Neldel �MN� compensation rule,18 which has been
empirically discovered for many thermally activated pro-
cesses in nature, including surface diffusion, electrical con-
duction, and grain boundary slip.19,20 The comparison is mo-
tivated by the fact that its statistical validity has been a
matter of debate and the discussions have been mostly based
on experimental measurements.20 According to MN, S���
should be simply expressed as S���=Q0��� /TMN, where the
TMN is a characteristic temperature that is independent of the
driving force �here stress�. The physics behind MN was pos-
tulated to be due to multiple phonon combinatorics inside the
activation volume.21 In Ref. 12, the authors conjectured
without substantial proof that TMN should be close to the
surface disordering temperature, since the local shear resis-

(a)

(b)

1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

Compressive stress (GPa)

A
c
ti
v
a
ti
o
n
e
n
tr
o
p
y
(k
B
)

Hyperdynamics

MNrule

1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

Compressive Stress (GPa)

A
c
ti
v
a
ti
o
n
fr
e
e
e
n
e
rg
y
(e
V
)

T = 0 K

T = 300 K

FENEB

Hyperdynamics

FIG. 5. �Color online� �a� Activation-free energy for dislocation
nucleation from surface as a function of stress at T=0 and 300 K.
For T=0 K case, the comparison with the FENEB results are
shown. �b� Activation entropy as a function of stress. The prediction
using empirical MN compensation rule is also presented. Best fit to
our hyperdynamics results is obtained TMN=625 K.
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tance should decay to zero when the surface becomes disor-
dered �premelted�. The comparison is shown in Fig. 5�b�.
Surprisingly, the classic MN rule gives an excellent predic-
tion of S��� for this stress range with a best fitting parameter
of TMN=625 K. We note that the MN rule is demonstrated in
the form of stress dependence. The fitted TMN corresponds to
nearly half of the bulk melting point Tm��1350 K�,22 which
would be quite reasonable as the guess of surface disordering
temperature, and is close to the value of 700 K taken in Ref.
12. Thus, our accelerated MD results strongly support the
validity of �a� HTST and �b� MN rule for describing dislo-
cation nucleation under a wide range of temperatures and
stresses.

V. OUTLOOK

We have developed an atomic-strain-based, adaptive hy-
perdynamics method inspired by the Eshelby inclusion pic-
ture that is robust and efficient for exploring finite-
temperature deformation and failure processes that critically
involve more than one atom at the activated state. The flex-
ibility in choosing the Eshelby inclusion size and shape for
atomic-strain estimation and subsequent boosting is particu-
larly advantageous when partial experimental information is
available �activation volume spectrum inferred experimen-
tally from strain-rate sensitivity measurements,11 and known
deformation physics, for example, shear by dislocations, not
dilatory cracking�. Effectively, our method can put an “acti-
vation volume filter” and “deformation physics filter” on mi-
croscopic processes to be probed by accelerated MD, to
roughly match the experimentally known spectrum and
screen out irrelevant mechanisms. Preliminary studies indi-
cate our method is also highly effective for automatic explo-
ration of shear transformations in metallic glasses.7
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APPENDIX: LEAST-SQUARE ATOMIC STRAIN
AND ARTIFICIAL FORCES

We would like to define 3�3 deformation gradient matrix
Ji and its irrotational component, the Lagrangian strain ma-
trix

�i � �JiJi
T − I�/2, �A1�

for each atom i, where I is the identity matrix. Since strain is
by definition a relative quantity, one would need two atomic
configurations, the reference �xi

0	 and the current �xi	, to
compute Ji and �i. See Fig. 2: let us define integer Ni to be
the number of atomic neighbors of atom i in the reference
configuration. These neighbors may be chosen by a simple

distance cutoff; or if the deformation physics is known
a priori, more sophisticated rules, such as only the atomic
neighbors on specific top and bottom slip planes.

For each neighbor j of atom i, their current separation
vector is

d ji � x j − xi, �A2�

in Cartesian space, and their old separation was

d ji
0 � x j

0 − xi
0. �A3�

Here we adopt a row-vector convention, e.g., xi, d ji, etc., are
row vectors. Following Ref. 10, we seek a local affine trans-
formation matrix Ji that best maps

�d ji
0 	 → �d ji	, ∀ j � Ni �A4�

in the least-square sense. That is, although �d ji
0 	→ �d ji	 can-

not be achieved exactly by affine transformation, we can still
seek the best Ji that maps the two sets of positions, by mini-
mizing the total error



j�Ni

�d ji
0 Ji − d ji�2 = Tr 


j�Ni

�Ji
Td ji

0T − d ji
T��d ji

0 Ji − d ji� .

�A5�

Performing arbitrary matrix variation �Ji
T in the above, we

get

0 = Tr �Ji
T 


j�Ni

d ji
0T�d ji

0 Ji − d ji� . �A6�

For the above to be true for any asymmetric �Ji
T, there has to

be

0 = 

j�Ni

d ji
0T�d ji

0 Ji − d ji� → Ji = Vi
−1Wi, �A7�

where

Vi � 

j�Ni

d ji
0Td ji

0 , Wi � 

j�Ni

d ji
0Td ji. �A8�

With the optimized Ji, we can then compute the 3�3 La-
grangian strain matrix �i by Eq. �A1�. The observation-frame
independent hydrostatic strain invariant is then

�i
hydro � Tr��i�/3, �A9�

and the local shear invariant is
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�i
Mises � �Tr��i − �i

hydroI�2/2 =��iyz
2 + �ixz

2 + �ixy
2 +

��iyy − �izz�2 + ��ixx − �izz�2 + ��ixx − �iyy�2

6
. �A10�

The above, Eqs. �A1�–�A10�, have already been imple-
mented in the free visualization software ATOMEYE,23 using
standard nearest-neighbor cutoff distances for Ni. It requires
the specification of two atomic configurations, the reference
and the current.

Note that Ni should be large enough such that the 3�3
matrix Vi in Eq. �A8� is nonsingular and can be inverted for
Eq. �A7�. In fully dense, three-dimensional solids, the
nearest-neighbor atomic shell is usually sufficient, but spe-
cial care may need to be taken for atoms near surfaces, which
are coordination deficient. The rank deficiency of Vi may be
checked before the inversion operation Vi

−1 takes place, by
computing the determinant of Vi. If det�Vi�=0, then Ni will
have to be enlarged.

In the strain-boost method one not only needs the value of
�i but also its derivatives with respect to xi and �x j	, in order
to compute the analytical forces due to �Vi. This is not dif-
ficult, since Vi and Vi

−1 depend on �d ji
0 	, not �d ji	. Therefore

Ji in Eq. �A7� is a linear function in �x j	. So �Ji /�x j is

independent of �x j	 and can be precomputed.
��Vi��i

Mises�
�x j

can then be computed analytically by the chain rule.
Furthermore, because �i

Mises��x j	� is translationally and rota-
tionally invariant, it can be shown that the artificial forces
due to the boost potential �Vi��i

Mises� satisfy momentum
conservation

��Vi��i
Mises�

�xi
+ 


j�Ni

��Vi��i
Mises�

�x j
= 0 �A11�

as well as angular-momentum conservation



j�Ni

�x j − xi� �
��Vi��i

Mises�
�x j

= 0. �A12�

Lastly, after implementing ��i	 and analytical forces in a
working code, here is a method to check the correctness of
the coding.

�1� Randomly perturb a reference configuration �xi
0	 by a

finite amount, to �xi	.
�2� Verify that the ��i

Mises	 values are computed correctly,
by comparing with the numerical output from ATOMEYE.23

The �Vi��i
Mises� values can then be computed straightfor-

wardly, where programming mistake is unlikely.
�3� Generate yet another 1�3N random displacement

vector �r���x j	, the norm of which should be small:
��r�=10−7 Å. Here N is the total number of atoms
in the supercell. Compute the ratio between two
small numbers: A�V��x j +�x j /2	�−V��x j −�x j /2	� and
B�−
 j=1,. . .,NF j ·�x j, where F j is computed by the analytical
force subroutine at �x j	. If the force subroutine is correctly
coded, the ratio A /B should be numerically very close to
1: �A /B−1��10−6, by the central difference error estimation.
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