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We develop a multicomponent membrane coarse-grained model in which the effects of spontaneous curvature and
fluidity are included. This model is used to perform computer simulations to study the phase segregation, domain
coarsening, budding and budding off of multicomponent membrane vesicles. Three types of phase diagram are
presented with variation of composition, spontaneous curvature, and line tension (the unlike bond energy). Various
phases have been observed, including, sphere, biconcave, starfish, capsule, budding, and budding off. Our simulations
show that budding off occurs only when the size of a domain is larger than a critical value, and the critical condition is
closely related to the spontaneous curvature and line tension. A continuummodel is used to predict the critical condition
for budding off. Quantitative comparisons are made between the present simulation results and the continuum model
predictions, and good agreements have been achieved.

1. Introduction

Biological membranes, which are composed of lipid molecules
and proteins, play important roles in catalyzing numerous chemi-
cal reactions, mediating the transport of nutrients and wastes, and
participating in signal sensing and transduction.1,2 The structures
of biological membranes are dynamical in nature. For example,
lipid molecules and proteins in the membrane systems are able to
diffuse within membranes layers, and undergo phase aggregation,
dispersion or separation.2-7 In addition, along the endocytic
and biosynthetic-secretory pathways, the formation of vesicle
through membrane budding and fission is a necessary step that
ensures smooth production and transportation of biomolecules.1

Cell or large vesicle may change its shape, volume, or surface
area arising from a change in the properties of membrane itself
and/or in the response to external stimulations. Various shapes of
cells and vesicles have been reported in experiments, such as
biconcave, starfish, budding, and pearling.8-16 Both continuum
and atomistic methods have been used to simulate the behavior of
cell membranes.

Apparently many mechanical and physical properties of lipid
bilayer membranes are independent of the detailed molecular
structures of membrane. Thus, many studies focused on the
thermodynamic and energetic analyses based on continuum
framework. It is believed that cell shapes are largely dictated by
spontaneous curvature, line tension, and composition.12-15,17-20

A biological membrane is often described as a single-layer
continuummembrane, which spans in a three-dimensional space.
The seminal Helfrich theory is such a model based on the single-
layer membrane assumption.21 This model has been widely used
to understand the shaping energetics of cells and vesicles, and
many insightful understandings have been achieved. Budding and
domain shape transformation in mixed films and bilayer mem-
branes was studied using the continuumMonge representation.17

The effect of line tension, spontaneous curvature, and component
concentration was investigated. It was found that at high con-
centration, a transition occurs from circular domains to stripes
while at high line tension, a transition occurs from circular
domains to spherical buds. The stability of multicomponent
membranes with planar topology as a function of membrane
composition, spontaneous curvature of both components, and
line tension was studied using a continuum model in the strong
segregation limit.18 It was found that spontaneous curvature and
line tension promote budding. Recent modeling and simulation
work showed that asymmetric and curved component such as
conical component can cluster together and form budding and
vesiculation.19,20 An energy minimization method was used to
study the polymorphism of vesicles with multidomain patterns.20

The effect of bending rigidity, theGaussian curvaturemoduli, and
the line tension of the domain boundaries on the domain patterns
and shapes was investigated. Various phases were found, and
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these different multidomain patterns and vesicle shapes were
summarized in terms of morphology diagrams.

It is noted that these continuum models have difficulties to
address diffusive behavior, phase segregation, and fission and
fusionof liquidmembrane. Such issues can be naturally addressed
using atomistic models. However, the membranes of cells and
intracellular organelles contain a large number of amphiphilic
lipid molecules. Currently it is impossible to perform full-
scale molecular dynamics simulation of a large area of a lipid
bilayer membrane by considering all the atoms. Conventionally
coarse-grained models are used. So far, several coarse-grained
models were developed to study membrane morphology and
properties.22-46 Many interesting and valuable understandings
have been achieved. For example, the dynamics of phase separa-
tion in multicomponent bilayer fluid vesicles was investi-
gated using dissipative particle dynamics.22 The solvent particles
were explicitly accounted for, and the effects of area-to-
volume constraints were able to be included. Various regimes
such as coalescence of flat patches, budding, vesiculation, and
coalescence of caps were observed. Multipolar interactions bet-
ween particles were included in dissipative particle dynamics
simulations.23 This inclusion enabled extended membrane struc-
tures emerging in a self-organized manner and exhibiting neces-
sary mechanical stability for transport and membrane fluidity.
Coarse-grained molecular dynamics simulations were used to
study the effect of local curvature on aggregation and vesicula-
tion of membrane proteins.24 It was found that once a minimal
local bending is realized, this local curvature can drive the
protein cluster formation and subsequent transformation into
vesicles. In addition, Monte Carlo method was also used
to simulate the bilayer formation and budding dynamics of
multicomponent membranes. Many interesting results such
as budding through three distinct regimes25 and the asymmetry
of bilayer membrane duringmixed amphiphile assembly39 were
obtained.

It should be noted that most of the models explicitly consider
amphiphilic characteristics of the membrane molecules and
explicitly consider the water molecules to stabilize the molecular

structures of the membrane. Thus, it is difficult to use them for
large-scale (spatially and temporally) simulations. As a conse-
quence, themodelingof the fluidic and diffusive behaviormaynot
be possible due to the short simulation time scale. Hence the
kinetic effect and cell morphology may not be realistically
described. To overcome these difficulties, implicit solvent mem-
brane models were proposed.40-46 These implicit solvent models
were able to reproduce many membrane features observed
experimentally, justifying the use of these implicit solvent models.
However, most of these models either consider one-component
membrane structure, or do not include the spontaneous curva-
tures. Thus, it is important to extend these models to consider
multicomponent and spontaneous curvature. Since macroscopic
properties ofmembranes cannot possibly dependon all the details
of the atomic structures and description, even coarser-grained
models are required for simulations with a larger spatial scale and
longer time scale.

Phase diagram for vesicle topologies at different membrane
properties and external loading conditions is able to reveal
important thermodynamic behavior of cell membrane. So far
the phase diagram for multicomponent vesicles has been only
partially explored. For example, the phase diagram at different
line tension and domain size was studied.15 However, the phase
diagram concerning spontaneous curvature, line tension and
composition has not been systematically studied.

Here, a coarse-grained model is proposed to describe multi-
component membranes. In the model, the adoption of direc-
tional degree without considering amphiphilicity of mem-
brane molecules and solvent-free formulation allows us to
perform large spatial- and temporal-scale simulations and
to study fluidic and diffusive behavior of membranes. We
perform coarse-grained molecular dynamics (CGMD) simula-
tions to obtain the phase diagrams of multicomponent fluid
vesicles and to reveal how spontaneous curvature, line tension,
and composition affect the morphologies of vesicle. Various
phases, such as, sphere, biconcave, starfish, capsule, budding,
and budding off, are found with variation of spontaneous
curvature, line tension, and composition. In addition, a simple
energetic model is used to extract the invagination length
and to predict the critical condition for budding off. The
extracted invagination length and the predicted critical condi-
tion for budding off are consistent with our CGMD simulation
results.

2. Model Formulation and Simulation Method

In the present work, we consider a multicomponent fluid
membrane system. The membrane is assumed to consist of
single-layered particle with a diameter of a0, which is also the
membrane thickness. For particle i, 5 degrees of freedom are
considered, that is, (xi,ni), where xi is the position of particle i and
ni is the surface normal vector at particle i subject to the constraint
of ni 3 ni = 1. Between particles i and j, xij = xj - xi, its distance
is rij = |xij| and unit vector xij = xij/rij. The potential can be
written as

Vij ¼ ε
Rcut - rij

Rcut-Rmin

� �8

- 2ε
Rcut - rij

Rcut -Rmin

� �4

Aðni,nj, xijÞ rij < Rcut

0 rijgRcut

8<
:

ð1Þ
where, ε is the bonding energy, Rcut is the cutoff distance of the
interaction, which is taken as 2.5a0, Rmin is a parameter which is
taken as 21/6a0, andA(ni, nj, xij) is a penalty function related to the
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deviation of instantaneous curvature from spontaneous curva-
ture, and is taken as 1 þ γ(B - 1), where B is taken as

B ¼ ni 3nj - ðnj 3 xijÞðni 3 xijÞþ β0ðnj - niÞ 3 xij - β0
2 ð2Þ

Here, γ is an energy penalty factor for the deviation of the
membrane instantaneous curvature from its spontaneous curva-
ture. From geometry analysis, the spontaneous curvature C0 can
be enforced if we choose β0 = rijC0/2.

The mechanical properties of a single-component membrane
based on the above formulation but without the consideration of
spontaneous curvature were studied.36 It was found that the
model was able to meet necessary requirements for mechanical
stability and fluidity. The model was also used to simulate the
shape transitions of vesicles with variation of pressure and
temperature. Variousmorphologies of vesicles that were observed
experimentally were obtained. For the single-component vesicle
with spontaneous curvature, our simulation results show that the
fluidic vesicle may break up into smaller vesicles, depending on
the value of spontaneous curvature, temperature, and energy
penalty factor.

In the present work, we include the spontaneous curvature and
extend this model to describe a multicomponent system. For the
like species interaction, namely a-a and b-b particle interac-
tion, we choose the same ε and Rmin, i.e., εaa = εbb, rmin

aa = rmin
bb ,

but different C0. For the unlike species interaction, namely
a-b particle interaction, we adopt the following mixing rule:47

rmin
ab = (rmin

aa þ rmin
bb )/2 and

εab ¼ ς
ffiffiffiffiffiffiffiffiffiffiffiffi
εaaεbb

p

It is noted that εab is associated with line tension at domain
boundaries. Under this mixing rule, the phase segregation occurs
if ς is smaller than one. Here the spontaneous curvature between
particle a and particle b is taken as (C0

(a) þ C0
(b))/2, whereC0

(a) and
C0
(b) are the spontaneous curvatures for the type-a particle

membrane and the type-b particle membrane, respectively.
The governing equations of motion for particle i can be

written as

mi
::
xi ¼ -

DV
Dxi

ð3Þ

~mi
::
ni ¼ -

DV
Dni

þ DV
Dni 3

ni

� �
ni - ~mið_ni 3 _niÞni ð4Þ

where ~mi is a pseudomass, which is taken asmia0
2. Solution of eq 4

guarantees that ni remains normal to the membrane surface and
the constraint of ni 3 ni = 1 is conformed.

The integrationmethod proposed by Beeman48 is used to solve
eq 3 and eq 4. The position update algorithm is,

xnþ 1 ¼ xn þ vnΔtþ 4xn - xn- 1

6
ðΔtÞ2 ð5aÞ

and that for velocity is

vnþ 1 ¼ vn þ 5xnþ 1 þ 8xn - xn- 1

12
Δt ð5bÞ

The Berendsen method49 was used to maintain an approximately
constant temperature during the simulations.

In the present simulations, the number of particles in a typical
vesicle is 5072 and the initial radius of the vesicle R0 is 20a0.
Particles of different species are randomly distributed in the
vesicle membrane and phase segregation is simulated starting
from this initial condition. The spontaneous curvature of a
membrane containing only type-a particles is taken to be 0, i.e.
C0
(a) = 0, while the spontaneous curvature of a membrane con-

taining only type-b particles is C0
(b). The composition for type-a

particles, xa, is defined as

xa ¼ Na

Na þNb

whereas the composition for type-b particles, xb, is defined as

xb ¼ Nb

Na þNb

whereNa is the total number of type-a particles, andNb is the total
number of type-b particles. Apparently, xa þ xb = 1. The energy
penalty factor is chosen as γ = 1.5. The temperature is taken as
kBT/ε = 0.2, which is above the melting temperature of the
membrane.36 Therefore, the membrane is in liquid state. In the
result presentation, the energy is normalized by ε; and the length
by a0. For the typical case, the CPU time on the 2.2 GHz AMD
Opteron is about 70 h for the vesicle evolving from the initial
homogeneous phase, through phase segregation, domain coar-
sening, budding and finally to budding-off.

3. Results and Discussion

In the present study, we focus on three system parameters:
composition xb, the spontaneous curvature of type-b particles
C0
(b), and the unlike species interaction energy εab. We will show

that these three parameters are of great importance in controlling
the morphology, phase segregation, budding and budding off of
the multicomponent membrane vesicle.
3.1. The εab-xb Phase Diagram. Here we focus on the

εab-xb phase diagram at a fixed spontaneous curvature value of

C
ðbÞ
0 ¼ 1

5a0

Figure 1 shows the εab - xb phase diagram at

C
ðbÞ
0 ¼ 1

5a0

There are three phase zones being observed. Figure 2a shows the
initial randomdistribution of type-b particles in the vesicle (in this
and following figures, type-a particles are in red and type-b
particles are in green). Since the bonding energy between the
unlike particle species is lower than that between the like particle
species, phase segregation occurs as indicated in Figure 2b. At a
small value of xb, there is no budding, that is, only patch
formation is observed. With further increasing xb, the green
domain starts to bud, followed by budding off at higher values
of xb. Examples are given in Figure 2(b), (c) and (d), which
show the three different morphologies corresponding to xb=0.1,
xb =0.25, and xb =0.33, respectively at a fixed value of
εab =0.66. The evolution pathway for the budding off at
xb=0.33 is shown in Figure 3a-d. At the early stage, large green
buds are formed as shown in Figure 3a. These large buds grow in
size by absorbing smaller green patches as shown in Figure 3b.
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Subsequently, these large green buds are able to pinch off as
shown in Figure 3c and Figure 3d.

We have performed CGMD simulations with well-designed
initial configurations to understand the interaction between
different green domains.We find that when two buds are roughly
at the equal size, they tend to repel and move away from each
other to avoid the large curvature between them. For other cases,
such as, one large bud and one small bud, one bud and one patch,
and one patch and another patch, merge is observed. For
example, we designed a vesicle with only two green domains with
the same number of green particles. The number of particles for
the domain is the same as that of bud “1” in Figure 2c. The gap
between the two green domains is about a0 as shown in Figure 4a.
The two domains first form two buds, respectively as shown in
Figure 4b, and then the two buds repel andmove away from each
other as shown in Figure 4c. Hence the buds with roughly the
same size repel each other, and no merge is observed. Our energy

calculations show that the total system energy for Figure 4c is
higher than a larger green domain merged by the two smaller
domains, indicating that Figure 4c is only a metastable state. We
also perform CGMD simulations for other cases. For example,
Figure 5 shows two different green domains but with different
sizes: The size of one of the green domains is the same as bud “1”
in Figure 2c, while the number of particles for the other green
domain is only 1/9 of the first. It can be seen that the two green
domainsmerge as shown in Figure 5b, subsequently a large bud is
formed in Figure 5c. These CGMD simulations suggest that the
fusion of budding domains may not occur spontaneously because
buds with a similar size tend to repel each other to avoid high
curvature build-up between them. Hence it is concluded that the
vesicle with buds as shown in Figure 2c is in a metastable state.
Our simulations also explain the experimental observations of
vesicles with relatively regular budding domains.11

Our simulations strongly suggest that there is a critical size for
budding off. Previous studies showed that a membrane domain
may become unstable beyond a certain size and then undergo
a budding or budding off.15,16 This instability is driven by
the competition between bending energy of the domain and
line energy of the domain boundary. For a vesicle with only
two domains R and β, the bending energy of the vesicle can be
written as15

Ebend ¼
Z
R
dA ½k

ðaÞ

2
ðC1þC2 -C

ðaÞ
0 Þ2� þ

Z
β
dA ½k

ðbÞ

2
ðC1þC2 -C

ðbÞ
0 Þ2�

ð6aÞ
whereC1 andC2 denote the two principal curvatures ofmembrane
surface. k(a) and k(b) are the bending rigidities for domain R and
domain β, respectively. C0

(a) and C0
(b) are spontaneous curvatures

for the two domains. The edge energy of the vesicle is given by15

Eedge ¼ σL ð6bÞ
where σ is the line tension of the domain boundary and L is the
length of the domain boundary. When the sum of the total

Figure 1. Phase diagram for vesicle topologies as a function of
εab and composition xb at C0

(b) = 1/5a0. In total, three phases are
identified. The dots correspond to the simulation cases.

Figure 2. The initial configuration and three different morpho-
logies in Figure 1 at εab = 0.66. Key: (a) the initial configuration,
(b) no bud, (c) bud, and (d) bud off.

Figure 3. Snapshots for the buds and/patches merging and bud-
ding off. Through the merging, some of the buds reach a critical
size, leading to budding off.
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bending energy and edge energy reaches a minimum, the vesicle
will be in a relatively stable state. The budding process leads to a
limiting shape for which the bud is connected by an infinitesimal
neck to the original vesicle. This neck can be characterized by a
general relation for the principle curvatures of the adjacent
membrane segments15

kðaÞMðaÞ þ kðbÞMðbÞ ¼ 1

2
ðkðaÞCðaÞ

0 þ kðbÞCðbÞ
0 þ σÞ ð7Þ

Here, M(a) and M(b) denote the mean curvatures of the two
domains at the point where they form the ideal contact. Since

x � AðbÞ

AðaÞ þAðbÞ �
AðbÞ

4πR0
2

and A(b) = 4πR0
2x and A(a) = 4πR0

2(1 - x), one has

MðbÞ ¼ 1=ðR0

ffiffiffi
x

p Þ

and

MðaÞ ¼ 1=ðR0

ffiffiffiffiffiffiffiffiffiffiffi
1- x

p
Þ

If these expressions are substituted in the eq 7 and k(a) = k(b) = k,
the critical x can be obtained by

1ffiffiffiffiffiffiffiffiffiffiffi
1- x

p þ 1ffiffiffi
x

p
� �

¼ 1

2
R0 C

ðaÞ
0 þC

ðbÞ
0 þ 1

ξ

� �
ð8Þ

where, ξ is the characteristic invagination length

ξ ¼ k

σ

Since the surface area of the bud is the same as the critical domain
area for budding off, the critical radius for the domain can be
expressed as

L0 ¼ 2R0

ffiffiffi
x

p ðxe0:5Þ ð9Þ

For our simulation with multiple domains, it is observed that
buddingoff occurs onlywhen the size of the domains is larger than
a critical value. After one domain buds off from a vesicle, the
critical size for budding off can be roughly estimated using eq 8
and eq 9 if we treat the vesicle membrane as a homogeneous phase
with the same property of the dominant composition. We will
discuss this point in more details in the next section. It should be
noted that εab is related to line tension σ. The smaller εab is, the
larger σ is. From eq 8 and eq 9, it is seen thatwhenσ increases (that
is, εab is decreased), ξ is decreased, causing L

0 to decrease. This is
consistentwith ourCGMDsimulation results.Quantitatively, our
simulations also show that when εab decreases from 0.66 to 0.5,L0

decreases from 10.6a0 to 6.6a0 for cases with

C
ðbÞ
0 ¼ 1

5a0

It is noted that both the present CGMDmodel and previousmore
sophisticated CGMD models22,23,25 are able to predict the phase
separation, budding, and budding off, indicating that the present
CGMD captures the correct membrane mechanical properties.
3.2. TheC0

(b)-xbPhase Diagram.We consider theC0
(b)-xb

phase diagram at a fixed value of εab = 0.5. The C0
(b)-xb phase

diagram is shown in Figure 6. In total, six phase zones (P1-P6)
are observed. At a low xb and a smallC0

(b), the P1 phasewithmany
green buds is observed as shown in Figure 7a. When xb increases,
the P2 phase with several green buds pinching off from the vesicle
is preferred as shown in Figure 7b. When xb becomes majority

Figure 4. Snapshots for the evolution of a vesicle with two green domains initially in equal size at εab=0.66. Both green domains formbuds.
The two buds repel and move away from each other to reduce the high curvature between them, forming metastable state.

Figure 5. Snapshots for the evolutionof a vesiclewith twogreendomains initially indifferent size at εab=0.66.Thedomainsmerge and form
a single bud.
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(that is, xb > 0.5), the P3 phase with one red bud pinching off is
observed as shown inFigure 7c.With further increasingxb, the P4
phase with one red bud is observed as shown in Figure 7d.
However, there is no budding off in this case. With further
increasing xb while maintaining the value of C0

(b), the P5 phase
without budding is observed as shown in Figure 7e. At an even
higher xb and a relatively large value of C0

(b), the P6 phase with a

biconcave shape is observed as shown in Figure 7f. The smaller
inset in Figure 7f shows the side view of the shape. Thus, the
present simulation results show that the change in spontaneous
curvature and composition can lead to complicated budding and
budding off processes, which is consistent with the previous
simulation works.17-20

From Figure 6, it is seen that the spontaneous curvature
strongly influences budding and budding off processes. For ex-
ample, at xb = 0.33, the green domain is able to bud at C0

(b) =
1/15a0, while the green domain budding off occurs at C0

(b) =
1/10a0. In addition, as can be seen from Figure 6, with a decrease
ofC0

(b) (or an increase of 1/C0
(b)), the budding off critical xb for the

green domain is increased. This trend is consistent with the
prediction from eq 8 and eq 9.

Next, we would like to extract the invagination length and the
line tension using eqs 8 and eq 9 and our CGMD simulation
results. According to eq 8 and eq 9, L0 increases when C0

(b) is
decreased. For a given unlike bond energy εab, the invagination
length ξ can be extracted fromeq8.For example, for εab=0.5,we
run cases, which initially only have two domainswithC0

(b) equal to
1/5a0, 1/10a0, and 1/15a0, the observed critical x in our simula-
tions is 0.05, 0.08, and 0.11, respectively; and the extracted
invagination lengths are 2.8a0, 2.8a0, and 2.9a0 respectively.
Hence the invagination length ξ is about 2.8a0. The bending
rigidity k can be extracted by thermal fluctuation and its value is
1.78ε at kBT/ε = 0.2.36 Hence the line tension σ is 0.63ε/a0 or
2.2� 10-11N at εab=0.5,which agreeswell with literature values,
which are in the order of 10-11-10-12.11,16 Figure 8 shows the
comparison of the critical size L0 obtained by using eq 9 and by
our CGMD simulations. The curve represents the prediction of
eq 8 and eq 9 at ξ = 2.8a0 and the dots represent our simulation
results at εab=0.5. It can be seen that the simulation results are in
a reasonable agreement with the continuum model.

It is interesting to note that a green bud inFigure 7b pinches off
while a red bud in Figure 7c pinches off. This implies again that
the composition and spontaneous curvature play an important
role in the budding off processes. Now we use eq 8 and eq 9 to
explain the following four cases: (1)Why is there nobudding off in
Figure 7(a) with xb = 0.33 and

C
ðbÞ
0 ¼ 1

15a0

Figure 6. Phase diagram for vesicle topologies as a function of
spontaneous curvature of the green domain and composition at
εab=0.5. In total, six phases are observed. The dots correspond to
the simulation cases.

Figure 7. Vesicle shapes corresponding to the phase zones shown
inFigure 6.Key: (a) P1 phase, vesicle withmany green buds; (b) P2
phase, vesicle with a green bud off; (c) P3 phase, vesicle with a red
bud off; (d) P4 phase, vesicle with red buds; (e) P5 phase, vesicle
without buds; (f ) P6 phase, vesicle with a biconcave shape.

Figure 8. Variation of critical size with spontaneous curvature.
The curve is obtained by the continuummodel. The dots represent
our simulation results with multiple domains using our CGMD
model.

http://pubs.acs.org/action/showImage?doi=10.1021/la1020143&iName=master.img-006.png&w=213&h=169
http://pubs.acs.org/action/showImage?doi=10.1021/la1020143&iName=master.img-007.jpg&w=239&h=328
http://pubs.acs.org/action/showImage?doi=10.1021/la1020143&iName=master.img-008.png&w=202&h=170


DOI: 10.1021/la1020143 12665Langmuir 2010, 26(15), 12659–12666

Zheng et al. Article

(2) There is a green budding off in Figure 7b with xb = 0.45 and

C
ðbÞ
0 ¼ 1

15a0

(3) There is a red budding off in Figure 7c with xb = 0.54 and

C
ðbÞ
0 ¼ 1

15a0

(4) There is no budding off in Figure 7d with xb = 0.59 and

C
ðbÞ
0 ¼ 1

15a0

Since the only difference among the four cases is the composition
and all other system parameters are the same, the critical size for
budding off for the four cases should be the same. Using eq 8 and
eq 9, and C0

(a) = 0

C
ðbÞ
0 ¼ 1

15a0

and ξ = 2.8a0, it is found that the critical size for budding off is
12.6a0.We find that the size of the largest green bud inFigure 7a is
about 11.8a0. Since the critical size is larger than the largest green
bud size, therefore nobudding off is observed. The diameter of the
pinched off bud as shown in Figure 7b is roughly 13.6a0, which is
larger than the critical sizeL0. Therefore, the green domain is able
to bud off. Since the diameter of the red pinched off bud in
Figure 7c is 20a0, which is also larger than the critical size,
therefore the red domain is also able to bud off. For the red
bud shown in Figure 7d, its size is 12.0a0, which is smaller than the
critical size for budding off. Thus, no budding off occurs. Hence
the continuum model (eq 8 and eq 9) is able to predict these
complex processes observed in our CGMD simulations.
3.3. The C0

(b)-εab Phase Diagram. Figure 9 shows the
C0
(b)-εab phase diagram at xb = 0.5. Three phase zones (no

budding, budding, and budding off) are observed. With increas-
ing εab, the configuration of the vesicle changes from bud off, to
bud, and finally to no bud at relatively low values ofC0

(b). Since an

increase in εabwill cause a decrease in line tension, this will lead to
an increase in critical size of the green domain for budding off
according to eq 8. Therefore, the bud off for the green domain is
only observed at low values of εab and low values of C0

(b). Figure
10(a)-(d) show the four vesicle shapes at the same unlike bond
energy εab = 0.8. At C0

(b) = 1/15a0, the vesicle is in a capsule-like
shape with two green domains at the two ends as shown in
Figure 10a. At C0

(b) = 1/12a0, the vesicle is in a spherical shape
with a red domain and a green domain each occupied half of the
vesicle as shown in Figure 10(b). At εab = 0.8, our simulation
shows that ξ is about 7a0. For the configuration shown in
Figure 10(b), since

Y ¼ 1

2
R0 C

ðaÞ
0 þC

ðbÞ
0 þ 1

ξ

� �

=2.3 at C0
(a) = 0,

C
ðbÞ
0 ¼ 1

12a0

and ξ = 7a0, the equation

1ffiffiffiffiffiffiffiffiffiffiffi
1- x

p þ 1ffiffiffi
x

p ¼ 2:3

has no solution. Therefore, there is no bud off in Figure 10b.
Again, the continuummodel (eq 8 and eq 9) is able topredict these
complex processes observed in our CGMD simulations.

Starfish configurations were observed in previous experi-
ment.13 Here we show that starfish configuration can be obtained
by changing the spontaneous curvature. Figure 10(c) displays a
three-armed starfish which is observed at C0

(b) =1/6a0. With
increasing C0

(b) to 1/5a0, a four-armed starfish appears as shown
in Figure 10d.With further increasingC0

(b), budding off of a green
domain is observed instead the appearance of five or more armed
starfish. Our simulations show that the starfish configurations
occur only in a small regime forC0

(b) in between 1/6a0 and 1/4.5a0

Figure 9. Phase diagram for vesicle topologies as a function of
spontaneous curvature of the green domain and the unlike bond
energy εab at xb=0.5. In total, three phases are observed. The dots
correspond to the simulation cases. The domain enclosed by the
dot line indicates the bound for the formation of the starfish
configurations. Figure 10. Vesicle shapes corresponding to the cases indicated in

Figure 9 at εab=0.8. (a) corresponding to point 1, (b) correspond-
ing to point 2, (c) corresponding to point 3, and (d) corresponding
to point 4.
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at a low value of line tension as indicated by the domain enclosed
by the dot line in Figure 9.
3.4. Discussion. Phase diagrams for vesicle topologies at

different membrane spontaneous curvatures, compositions and
the unlike bond energies have been computed by using the
proposed CGMD model. It is shown that with variation of
the system parameters, rich morphologies and topologies can be
obtained. Overall, these morphologies and topologies are con-
sistentwith the various configurations of cells and vesicles, such as
sphere, biconcave, starfish, capsule, budding, budding off and
pearling, reported in experiments.13

Several comments can be made from the present work: (1) The
present model is coarser than those which explicitly consider the
bilayer structure of cell membranes22,24 and yet many important
morphologies and topologies can be reproduced by the present
model. The present work shows that many mechanical and
physical properties of lipid bilayer membranes are independent
of the detailed double molecular structures of membrane. (2)
Many studies focused on the thermodynamic and energetic
analyses based on continuum theories.17-20 These continuum
theories were able correctly to predict that cell shapes are largely
dictated by spontaneous curvature, line tension, and composition.
However, membrane fluidity and diffusion are necessary for
various biological functions of cells. These continuum models
have difficulties to address diffusive behavior, phase segregation,
and fission and fusion of liquid membranes. The present model
exhibits necessary mechanical stability and membrane fluidity,
providing a suitable tool to describe membrane kinetics in the
context of coarse-grained cell biology. (3) In studying membrane
morphology and dynamics, most of themodels explicitly consider
water molecules to stabilize the molecular structures of the
membrane. The present work shows that a single-layer particle
membrane can be effectively stabilized in a three-dimensional
space by introducing the directional degrees of particles. This
formulation significantly reduces the simulation complexity of
membrane. (4) The complex morphologies and topologies ob-
tained by the CGMD simulations can be reasonably explained by
the simple energetic model elaborated above. The extracted
invagination length and the predicted critical condition using
the energetic model for budding off are consistent with our
CGMD simulation results, indicating that thermodynamic fac-
tors are also in action. (5) Inclusion of spontaneous curvature in
the present model allows us to fully explore its effect on the shape
changes and budding dynamics. Our simulations show that
spontaneous curvature plays an important role in membrane
remodeling, such as endocytosis and vesiculation.

We would like to point out that biological membrane exhibits
extraordinarily complex shapes, and the mechanisms by which
these shapes are formed have not been fully understood. So far
several mechanisms have been proposed for the generation of
membrane curvature, for example, the change of surface-to-
volume ratio, line tension, area-difference between the two leaf-
lets, spontaneous curvature, membrane-associated proteins, and
external forces.

The spontaneous curvature model and its variant allow the
prediction of various cell and vesicle shapes. But the physical
origin of the spontaneous curvature is not totally clear. Lipid
bilayer membrane consisting of a lipid mixture is able to undergo
phase separation into two different phases. This phase separa-
tion leads to the formation of numerous small domains, which
accumulate and fuse into complicated patterns, suggesting the

existence of spontaneous curvature of the domains. An example
is a mixture of phospholipids and cholesterol, which exhibits
a broad coexistence region for two phases.6,11 Here we have
adopted the spontaneousmodel as a simple representation for the
membrane curvature. This model has allowed us to study the
coupling of spontaneous curvature and phase segregation, and
the evolution of shape of vesicles, and reveal many qualitative
features of budding and budding off under the influence sponta-
neous curvatures. However, it is recognized that not all the
features of shape changes can be predicted by spontaneous
curvature models. When spontaneous curvature is absent in
membrane, cell and vesicle shape changes can still be induced.
This highlights that spontaneous curvature mechanism is just one
of themechanisms that control themembrane curvature.The area
difference elasticity model is another one which also predicts
various shapes of cells and vesicles. This area difference arises
from the transbilayer asymmetry and the registry in two
leaflets.39,50,51 The curvature-producing molecule model is an-
other one which can also predict various membrane curvatures.52

Hence it is possible that the interplay among these mechanisms
control the membrane curvature.53

It should be noted that the present implicit solvent model is
unable to control area-to-volume ratio, which has been shown to
be important for cell shape changes. For example, homogeneous
lipid membranes with periodic curvature modulation such as
pearling states in tubular membranes and starfish vesicles have
been observed by varying the surface-to-volume ratio.10,12 How
to control the area-to-volume ratio under the framework of the
implicit solvent model is an important future research work.

4. Conclusions

A CGMD model based upon our recent publication36 was
developed by including the spontaneous curvature, and a multi-
component system was examined in this paper. The phase
segregation, budding and budding off of multicomponent mem-
brane vesicles were reproduced and investigated. The model
adopted directional degree to consider amphiphilic nature of
membrane molecule and solvent-free formulation, allowing us
to perform large-scale simulations. In addition, the model can
also describe the fluidic and diffusive behavior of membranes.
Systematic CGMD simulations were performed to obtain partial
phase diagrams by considering the effects of composition, spon-
taneous curvature, and line tension. Various shapes of vesicles
were observed including, sphere, biconcave, starfish, capsule,
budding, and budding off. We have also used the CGMDmodel
to study the interactions between different buds or patches and
convincingly demonstrated that vesicles with budding domains
can be metastable due to the domain repulsion. Our simulations
also show that there is a critical size for a domain to bud off. The
critical condition is affected by the spontaneous curvature and
line tension. A continuum model was used to predict the condi-
tions for budding off under different conditions. Quantitative
comparisons were attempted between the CGMD simulation
results and the continuum model predictions, and good agree-
ments were achieved.
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