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a b s t r a c t

A nanoscale kinetic Monte Carlo (kMC) model is developed to study the deformation
behavior of metallic glasses (MGs). The shear transformation zone (STZ) is adopted as
our fundamental deformation unit and each nanoscale volume element (�1 nm voxel) in
the MG is considered as a potential STZ that may undergo inelastic rearrangements
sampled from a randomized catalog that varies from element to element, with stress-
dependent activation energies. The inelastic transformation sampled out of spatially ran-
domized catalogs (a key characteristic of glass) is then treated as an Eshelby’s inclusion
and the induced elastic field is solved in the Fourier space using the spectral method.
The distinct features of our model, compared to previous work, are the introduction of ran-
domized event catalogs for different nanoscale volume elements, repeated operations
within the same element, and a ‘‘generation-dependent’’ softening term to reflect the inter-
nal structural change after each deformation. Simulations of uniaxial tension show the
important effect of softening on the formation of shear bands, with a size-independent
thickness of 18 nm. Statistical analysis of the accumulated strain at the �1 nm voxel level
is carried out and sample size effect on the extreme value statistics is discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the localized deformation and poor ductility, metallic glasses (MGs) have exhibited many promising properties
such as high yield strength, low friction coefficient and high resistance to corrosion, oxidation and wear (Trexler and Thadh-
ani, 2010), and simulations at different levels have been performed to gain fundamental understanding of the mechanisms
underlying these unique properties (Su and Anand, 2006; Vaidyanathan et al., 2001; Bulatov and Argon, 1994; Shimizu et al.,
2006; Yang et al., 2006). Atomistic simulations such as molecular dynamics (MD) have offered a great view of the detailed
configurations and energetics at the atomistic level (Takeuchi and Edagawa, 2011). However, issues such as shear banding
which has a typical thickness of 10–100 nm (Shimizu et al., 2006, 2007; Shan et al., 2008; Sethi et al., 1978; Donovan and
Stobbs, 1981; Pekarskaya et al., 2001; Li et al., 2002; Jiang and Atzmon, 2003) and formation time of 10�5–10�3 s (Neuhauser,
1978; Hufnagel et al., 2002), are still not suitable for most MD simulations, and mesoscale models are needed to fill this gap.

By treating the plastic flow as a stochastic sequence of local inelastic transformations, or more commonly shear transfor-
mation zones (STZs) (Argon, 1979), Bulatov and Argon (1994) developed a model to simulate the elasto-plastic behavior in
amorphous media. After assigning M¼ 6 possible STZ transformations to each element (this event menu or catalog is
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identical for all elements), the system was evolved according to kinetic Monte Carlo (kMC) algorithm (Bulatov and Argon,
1994). Although the event catalog is identical everywhere – or spatially homogeneous – thermal fluctuations can still ran-
domize the system as time goes on, and load-shedding elastic interactions between volume elements bias the transforma-
tion activation energies fQ ðmÞg; m ¼ 1 . . .M at each element to produce correlated deformation. Bulatov and Argon showed
that shear bands can form, despite identical transformation catalogs and no internal softening in the model.

Homer and Schuh (2009) replaced the Green’s function in Bulatov–Argon with finite element analysis (FEA) to solve the
stress field, which allows modeling of more complex geometries and loading conditions. Also, the event catalog of each vol-
ume element contains infinite possibilities – but again identical everywhere – and they let thermal fluctuations and elastic
interactions to break the symmetry. They have recently applied their model successfully to three-dimensional (3D) simula-
tions as well (Homer and Schuh, 2010).

In this paper, we add two physical effects previously ignored. First, we will introduce ‘‘heterogeneously randomized’’
event catalogs, where each voxel (volume element) is ‘‘born different’’ (see Fig. 1). This follows from the disordered nature
of the glass atomic structure. For instance, Srolovitz, Vitek and Egami used atomistic simulations to compute the distribution
of atomic-level residual stress in a metallic glass, and found it to have a wide distribution (Srolovitz et al., 1983), with some
volumes under significant compression and some under significant tension. For reasons like the above, while one voxel may
be predisposed to a certain set of inelastic transformations, another voxel may be predisposed to a quite different set of
transformations. Unlike typical representative volume element (RVE) approach in continuum mechanics modeling whose
spatial coarse-graining volume is much larger than an atom, the voxels used in STZ kMC simulations have physical dimen-
sion of �1 nm to match the actual size of each STZ event (Argon, 1979), and so atomic-scale fluctuations or ‘‘predispositions’’
should survive at the mesoscopic voxel level. As a side remark, the fact that we assign a fixed length �1 nm on our voxel
dimension means our modeling results may manifest a size dependence, i.e., dependence on the simulated physical sample
size (Shan et al., 2008), in contrast to most contiunuum models based on ‘‘scale-free’’ consitutive laws and RVEs.

In a previous model (Baret et al., 2002) based on interface pinning/depinning, by allowing the local interfaces to slip in a
random fashion, the plasticity of amorphous solids was described. However, the disordered nature of an amorphous solid
was reflected solely in the long-range elastic interactions. In contrast, the heterogeneous STZ catalog introduced in our mod-
el captures such a disordered nature in both the long-range elastic interactions and the potential energy landscape that de-
fines the transformation pathways.

The second physical effect is strain-induced softening which has been observed experimentally (Xi et al., 2005; Bei et al.,
2006; Nagendra et al., 2000). As illustrated in Fig. 1, once a generation-0 (untransformed) voxel has undergone a certain
shear transformation, it posseses a new internal structure, which we call generation-1. A new catalog of transformation
opportunities should be presented to this generation-1 voxel, different from those for generation-0, even though the two
generations sit at the same location (Lagrangian reference frame). Generally speaking, from the works of Spaepen and others
(Spaepen, 1977; Su and Anand, 2006), we believe that the activation barriers fQ ðmÞg tend to be lowered for generation-1 as
compared to generation-0, under identical external conditions (namely stress and temperature), due to internal structural
changes (Shimizu et al., 2006) termed ‘‘free-volume creation’’ by Spaepen. This shear softening, closely related to the forma-
tion of shear band, is also believed to be responsible for many other critical issues such as local heating (Lewandowski and
Greer, 2006), nano-void formation (Li et al., 2002), and nanocrystallization (Chen et al., 1994). The instability nature of soft-
ening helps to develop some ‘‘extreme sites’’ which undergo intense plastic deformation and cavitation that finally lead to
fracture (Shimizu et al., 2006; Shimizu et al., 2007). Thus it is crucial to understand the role played by the generation-depen-
dent softening in deformation of MGs, especially at current stage when lots of attempts have been made trying to improve
mechanical properties such as ductility and toughness (Ritchie, 2011). In addition, the experimentally confirmed short (med-
ium)-range ordering (Hirata et al., 2011) and bonding anisotropy during creep (Suzuki et al., 1987) suggest that softening at
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Fig. 1. Illustration of the heterogeneously randomized STZ model (to be contrasted with Fig. 1(b) of Bulatov and Argon (1994)). Q ðmÞ is the activation free
energy for a voxel to transform in the mth mode.
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mesoscale could involve some structural changes of atomic clusters, and this leads us to a directional softening scheme,
which will be detailed in the following. Finally, the metastable nature of MGs will inevitably raise the question of structural
relaxation, serving as a competition with softening, which will also be included in our model based on a recent experimental
study (Dubach et al., 2007).

From the point of view of physics-based simulations, there are three physical effects we would like to explore and under-
stand regarding the propensity to form shear bands: (a) heterogeneous catalogs, (b) generation-dependent softening, and (c)
thermally activated transformations and load-shedding interactions. Very crudely, we would expect (a) to retard shear band
formation, while (b) and (c) to favor shear band formation. This is because shear band is defined as a very collective flow defect
with long aspect ratio, where the many voxels within the same shear band are dominated by inelastic shear strains of approx-
imately the same character. While the elastic interaction kernel in (c) promotes such strong correlations, having (a) should
delay it somehow, since the transformation strains in each voxel cannot be perfectly aligned even if they want to (in contrast
to Fig. 1(b) of Bulatov and Argon (1994), where they can). Feature (c) is common among all STZ kMC models (Bulatov and
Argon, 1994; Homer and Schuh, 2009) – it focuses on change of the external environment, namely the stress, on the future
transformations of a voxel; while (a) and (b) focus on the influence of the internal state of this voxel on its own future trans-
formations. Information regarding (a) and (b) in principle can be provided by detailed atomistic calculations of the topology
of energy-basin network in phase space (Hara and Li, 2010; Li et al., 2011), and handed off to the STZ kMC model in a mul-
tiscale scheme. However, even an empirical parametric study at the STZ dynamics level, respecting all mechanical symmetry
and causality requirements, may reveal interesting physics (see some applications of mesoscopic models of MGs in a recent
review paper (Rodney et al., 2011)). This is the approach we will take in this paper.
2. Methodology

Here we present an empirical mesoscale numerical model that incorporates (a) heterogeneous catalogs and (b) genera-
tion-dependent softening (‘‘rejuvenation’’ of glass (Wolynes, 2009)) and counteracting structural recovery process (‘‘aging’’
of glass (Wolynes, 2009)). The STZ theory (Argon, 1979) is employed to describe the fundamental deformation in BMGs and
the resultant elastic field is solved in Fourier space in light of the faster convergence than in real space. Due to different state
configurations (stress distribution, local softening, etc.), the response to external field may be classified as pure elasticity,
thermal plasticity, or athermal plasticity, and kMC algorithm is used to simulate the dynamics.
2.1. Deformation mechanism

2.1.1. Shear transformation zone
A widely accepted picture of deformation in MG is based on the concept of shear transformation zone (STZ), first proposed

by Argon (1979) and supported by MD simulations (Falk and Langer, 1998). A STZ is essentially a cluster of local atoms of
volume V moving in a collective manner to accommodate shear (Schuh and Lund, 2003; Schuh et al., 2007), with
V ¼ 1 � 102 atomic volumes (Argon, 1979; Johnson and Samwer, 2005; Mayr, 2006; Pan et al., 2008). One can use the real
time t to index the condition of this cluster, for example, VðtÞ to describe possible dilatancy. However, it is often conceptually
advantageous also to use an integer index g (‘‘generation’’) to label the condition of this cluster, with g ¼ 0 denoting the ini-
tial configuration of this cluster of atoms at t ¼ 0, when the macroscopic deformation begins. A generation change (g : 0! 1,
or 1! 2) is deemed to have taken place when there is an ‘‘essential’’ change in the cluster’s atomic geometry, after the ‘‘triv-
ial’’ thermal vibrations and elastic displacements are filtered out. This can be more precisely defined by the following do-
main-decomposition scheme. We regard the entire material as consisting of the cluster atoms of interest, whose positions
are denoted by a long vector xcluster, and the rest of the atoms, who positions are denoted by an even longer vector
xenviron. The potential energy landscape is a function of both xcluster and xenviron:
U ¼ Uðxcluster;xenvironÞ ð1Þ
However, we take Eshelby’s stance that when ‘‘interesting’’ things happen within the cluster, the environment responds, but
only in a thermo-elastic manner, i.e. the plasticity or inelasticity is localized within the cluster, whereas the surrounding
medium behaves elastically (Eshelby, 1957). That is to say, we can perform quadratic expansion on xenviron:
U ¼ uðxclusterÞ þ ðx
environ � XðxclusterÞÞT KðxclusterÞðxenviron � XðxclusterÞÞ

2
þ � � � ð2Þ
where XðxclusterÞ is the equilibrium position vector of the environment atoms as they are being ‘‘dragged’’ by the cluster
atoms, and KðxclusterÞ is their instantaneous stiffness. KðxclusterÞ is a positive definite matrix - if this is not the case, one can
simply enlarge the definition of the cluster, until K is positive definite, i.e., the energy landscape that xenviron sees is always
convex to allow expansion Eq. (2). The quality of the approximate energy landscape Eq. (2) of course depends on the defi-
nition of the ‘‘cluster’’ atoms. If the cluster volume is much greater than the activation volume (Hara and Li, 2010; Zhu and Li,
2010; Li, 2007), we expect the approximation quality to get better and better. Even though dimðxenvironÞ � dimðxclusterÞ, its
role in Uðxcluster;xenvironÞ is to serve as a ‘‘trivial’’ thermo-elastic surrounding medium, and so these degrees of freedom can
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be integrated out in the partition function in statistical thermodynamics. One can therefore define a constrained free energy
for the cluster as:
f ðxclusterÞ � �kBT ln
Z

dxenvirone�U=kBT þ const ¼ uðxclusterÞ þ kBT
X

j

ln
�h

kBT

ffiffiffiffiffi
Kj

m

r
; ð3Þ
where Kj is the jth eigenvalue of KðxclusterÞ matrix that is always positive, �h is the Planck constant, kB is the Boltzmann
constant, T is the temperature, and m is the geometric-mean atomic mass of the environment atoms. In Eshelby’s original
formulation, he in fact also took the medium stiffness to be a cluster-independent constant (Eshelby, 1957)
KðxclusterÞ ¼ K ð4Þ
resulting in an elasticity expression for the quadratic term. The purpose of Eq. (2)–(4) is to demonstrate that for discussing
certain events, the full energy landscape Uðxcluster;xenvironÞ can be well-approximated by a much smaller dimensional free-en-
ergy landscape f ðxclusterÞ.

Armed with this ‘‘smaller’’ free-energy landscape f ðxclusterÞ, we can perform stability analysis on xcluster. A contiguously
convex region of f ðxclusterÞ is called a ‘‘basin’’ for this STZ, which must contain a single local minimum. If xclusterðtÞmoves with-
in the confines of a single basin, this is defined as thermo-elastic motion, and the cluster geometry is considered to be of the
same generation. However, weakened by the local stress r and hit by a thermal fluctuation ‘‘rogue wave’’ of colliding pho-
nons, the cluster geometry may occasionally switch basin. In order to switch basin, it must pass through non-convex region
of f ðxclusterÞ, even if temporarily. A generation change is defined to happen when the cluster geometry changes from one basin
to another, after passing through non-convex region of f ðxclusterÞ (so-called activated states) where one or more eigenvalues
of the 2nd-derivative matrix are negative. The definitions above are quite similar to the concept of inherent structures (Stil-
linger and Weber, 1982) and hopping between inherent structures (Li et al., 2011), but applied to a local cluster instead of an
entire atomic system, via schemes of domain decomposition and the Eshelby approximation Eqs. (2)–(4). This serves as the
basis for the STZ theory.

Now, imagine a large domain of MG under an average stress �r, in which this cluster is embedded. The generation
g ! g þ 1 change of this cluster (see Fig. 1 illustration) is called a transformation, using the language of Eshelby transforma-
tion (Eshelby, 1957). In reference to the generation-g cluster, the transformed cluster has transformation strain eg!gþ1. (A
computational procedure can be devised to define this strain tensor in terms of atomic geometries (Shimizu et al., 2007; Hara
and Li, 2010)). Here, both the generation-g and the g þ 1 cluster geometries are in locally stable equilibrium states. Generally
speaking, Trðeg!gþ1Þ– 0. However, the word ‘‘shear’’ in ‘‘shear transformation zone’’ theory means that many people believe
eg!gþ1 is shear-dominant, and as an approximation, we will also take
Trðeg!gþ1Þ ¼ 0 ð5Þ
in this paper to simplify the modeling, although it is clear that when cavitation happens, approximation Eq. (5) will not hold.
Also, eg!gþ1 should depend on �r, but since
eg!gþ1ð�rÞ ¼ eg!gþ1ð�r ¼ 0Þ þ Oð�rÞ; ð6Þ
the Oð�rÞ term’s impact on energy difference occurs on the second order in �r, and is frequently ignored. So in this paper we
will also take the approximation that
eg!gþ1ð�rÞ ¼ eg!gþ1ð�r ¼ 0Þ; ð7Þ
although this approximation will start to break down when ‘‘ideal strength’’ of glass is approached (Tian et al., 2012).
A saddle-point configuration in the free-energy landscape f ðxclusterÞ must connect these two locally stable equilibrium

states (generation-g and g þ 1). From now on we will use superscript ⁄ to denote saddle-point properties. Using genera-
tion-g cluster as the reference state, we can also define volume of the saddle-point cluster geometry V�g!gþ1 and the strain
tensor e�g!gþ1, when the cluster is at this in-between state. It is well appreciated that even when approximation Eq. (5) is
exact as in crystal physics (Fig.1 of Li et al. (2003)), there could be dilatation involved at the saddle point:
V�g!gþ1 ¼ Vg det jIþ e�g!gþ1j – Vg ð8Þ
where Vg is the volume of the generation-g cluster.
In Eshelby (1957), Eshelby presented a famous result that in the case of an ellipsoidal inclusion, the actual transformation

strain tensor distribution is (i) constant inside the inclusion, and (ii) proportional to the so-called stress-free transformation
strain (SFTS) �g!gþ1:
eg!gþ1 ¼ S�g!gþ1 ð9Þ
where the S is a rank-four tensor, often known as Eshelby tensor, and is constant for the ellipsoidal inclusion. In the present
work we will pretend that our STZ is ellipsoidal, to take advantage of the constancy and the proportionality, even though
ellipsoidal inclusions are obviously not space-filling. Under this assumption, the proportionality also ensures that the trans-
formation strain eg!gþ1 defined here is equivalent to SFTS �g!gþ1 in characterizing the inelastic nature of a generation change.
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However, because e always describes the actual transformation strain, we will use its accumulated value to describe the cur-
rent strain field of the system and use � to describe the transformation modes for a generation change.

The notation system eg!gþ1, �g!gþ1; e�g!gþ1;V
�
g!gþ1 is unambiguous but cumbersome. From now on we will adopt a short-

hand:
eg � eg!gþ1; �g � �g!gþ1; eg� � e�g!gþ1; Vg� � V�g!gþ1 ð10Þ
and sometime may even omit the g index:
e � eg ; � � �g ; e� � eg�; V� � Vg� ð11Þ
if the context is clear.
To determine the activation energy barrier that characterizes the STZ transformation, one needs to define the saddle-

point configuration, namely e�g . In the absence of external stress, the activation energy barrier is then equal to the Helmholtz
free energy difference between initial and saddle-point configurations DF�, which can be considered as the total energy
stored in the system if the system is flexed into the saddle-point in a quasi-equilibrium manner (Argon, 1996). If the inclu-
sion happens to be spherical (as in the case of Homer–Schuh model (Homer and Schuh, 2009)), an analytical solution for DF�
exists and is detailed in Appendix A. For the purpose of an empirical parametric study, however, the exact form of DF� is of
little significance compared to the incorporated physical effects. We take DF� ¼ 5 eV (the typical value for DF� is 1 � 5 eV, or
20 � 120 kB Tg with Tg being the glass transition temperature (Schuh et al., 2007)) with certain fluctuation due to the ele-
vation, tilt, and roughness in the energy landscape.

The actual activation barriers fQ ðmÞg in Fig. 1, when the applied stress is much smaller than ŝ, are linearized as Argon
(1996)
Q ðmÞ ¼ DF� �
1
2

Vrij�
ðmÞ
ij ð12Þ
where the second term represents the tilt of the basin of STZ in the presence of local stress rij and is essentially the work
done during transformation. �ðmÞij is the SFTS tensor for the corresponding transformation mode. The factor 1

2 is due to the
assumption that at saddle point half of inelastic rearrangement is achieved. The transformation paths are then fully charac-
terized by energy barriers defined in Eq. (12) for a ‘‘state-to-state’’ dynamics.

2.1.2. Event catalogs: STZ modes
The SFTS tensor �ðmÞ, which characterize M different transformation modes for a generation change, are the input to a

kMC STZ dynamics model. This is similar to the phase-field method in simulating phase transitions in alloys (Wang and
Li, 2010) where the SFTS is calculated according to lattice correspondence determined by experimental characterization
of orientation relationship and crystallographic theory of lattice rearrangement. In crystals, due to translational invariance,
the number of variants and hence the number of transformation strain modes is determined by the group-subgroup relation-
ship between the parent and product phase and, thus, is limited. For MG, the SFTS tensor, as mentioned previously, can be
calculated through MD simulations (Shimizu et al., 2007; Hara and Li, 2010). In fact, this computational procedure can also
be applied to crystals as well. The inherent atomic structure of systems in question, whether crystalline or amorphous, can
only be rendered through the possible catalog for transformations, or STZ modes, shown as the M different ‘‘variants’’ in
Fig. 1 for each generation.

In Bulatov–Argon model (Bulatov and Argon, 1994) an identical set with finite modes (M¼ 6) is assigned to each element
and is constant throughout the time evolution. This implies an event catalog which is spatially homogeneous and generation-
independent. This is also the case for Homer–Schuh model (Homer and Schuh, 2009), even though their event catalog is re-
placed with one containing infinite modes. The spatially homogeneous and generation-independent catalogs for STZ trans-
formations suggest that the simulated systems in both models are more like ‘‘crystals’’ rather than amorphous.

Following the work of Srolovitz et al. (1983) who showed a wide distribution of atomic-level residual stress, we introduce
here ‘‘heterogeneously randomized’’ event catalogs such that each element is predisposed to its own unique set of STZ trans-
formations, suggesting different ‘‘personalities’’ among the same generation. This is illustrated in Fig. 1 where for each gen-
eration (0;1; . . .) elements at different locations (A;B; . . .) is ‘‘destined’’ to different transformation paths. The reason that
there is only M finite modes rather than infinite as in Homer–Schuh is based on the consideration that the characteristic
isotropy of long-range ordering (LRO) in MG is not necessarily to be preserved at STZ length scale. In fact, recent observation
of diffraction patterns from local atomic clusters and their assemblies provides direct evidence on the local atomic order in
BMGs (Hirata et al., 2011), implying that, on scale of an STZ size, it is unrealistic to expect a fully isotropic structure. The local
atomic order will place certain constraints on allowed inelastic transformations, suggesting a finite event catalog.

In addition, it is necessary for event catalogs to be evolved during the generation evolution. In Fig. 1, for instance, the
transformation modes for element A are always updated during the generation change A0 ! A1 ! A2. This idea can be under-
stood more clearly by first making an assumption that there exists a ‘‘coarse-grained’’ free energy f ð�Þ which preserves all
the basins in f ðxclusterÞ. The generation changes can then be schematically shown as in Fig. 2(a) where the solid circles are the
basins corresponding to the transformations in the event catalog and different colors represent different generations. The
distribution of event catalogs is evolved as generation goes on, but statistically it follows an isotropic manner in the strain
space as shown in Fig. 2(b). In this way the isotropy of LRO in MG is preserved in a statistical manner.
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It should be pointed out that in general,M needs not to be the same for every generation. However, for the purpose of our
study, even a constant M is ready to provide the expected physical effects, and for simplicity we assume M is constant
through the generation change. Then the physical meaning ofM is restricted to the spatial heterogeneity of event catalogs.
Considering the limit case ofM!1, the catalog essentially becomes spatially homogeneous again. Thus we are expecting
that the delaying of shear band formation due to heterogeneous catalogs will be erased as M becomes sufficiently large.

As regards the modeling aspect, we employ a numerical method to create those event catalogs to exhibit the ‘‘heteroge-
neous’’ and ‘‘randomized’’ features. More specifically, the SFTS tensors, which constitute an event catalog, are generated
through certain statistical approach such that the distribution of resulted tensors is indistinguishable from that viewed in
a rotated frame. Catalogs for each element at any generation are all obtained through this procedure, implying isotropy is
preserved in both spatial and generation sense. In 2-dimension (2D) it is found that Gaussian distribution would satisfy
our requirement (see the detail of the proof in Appendix B), and in fact atomistic simulations have shown a Gaussian-like
distribution of plastic strains during the thermally activated plastic events in a flowing glass (Rodney and Schuh, 2009).

2.1.3. Generation-dependent softening
Shear localization is essentially the result of some inherent softening process which makes the deformed material more

vulnerable to further plastic deformation, and eventually leads to a catastrophic failure. Experiments showed that previously
initiated shear bands remain active after short interruption without new shear bands nucleated during a compressive test.
Reversed shear deformation was also observed along the same slip bands where the previous deformation occurred (Pam-
pillo, 1975). All these observations suggest that BMGs, unlike crystalline metals which are always accompanied with a strain
hardening, are inherently softened during plastic deformation. In addition, it was found that the deformed region in BMGs
was more preferentially etched, and this etching sensitivity would disappear if the glass is heat-treated for certain time
(Pampillo, 1975). The formation of nanocrystals within or around shear bands has also been reported in many experiments
(Chen et al., 1994; Kim et al., 2002). Those may imply that the softening is fundamentally related to the atomic structure of
MG rather than just adiabatic heating which can also give rise to shear localization in some crystalline materials (Rogers,
1979).

Actually there are some previous works considering the important effect of the softening on the development of shear
band. By taking free volume as the order parameter, Spaepen proposed a softening mechanism in which an increase of
the average free volume within some band will lower the viscosity and thus soften the local material (Spaepen, 1977). This
softening mechanism was later examined by Steif et al. (1982) in a one-dimensional numerical analysis with the introduc-
tion of an initial perturbation in the average free volume. Argon did similar analysis by introducing a perturbation in strain
rate (Argon, 1979). In a recent pinning/depinning model (Vandembroucq and Roux, 2011), the softening/aging in MGs was
considered by explicitly shifting the local yield stress threshold after local transformation and the local plastic strain was
assumed to obey the same symmetry as the external loading.

Here we propose a generation-dependent softening of which the basic physics can be illustrated as in Fig. 3. The idea is that
for certain generation change g ! g þ 1, the Helmholtz free energy change in Eq. (12) can be modified as
DF�g!gþ1 ¼ DF� expð�ggÞ; ð13Þ
where DF�, as discussed before, is taken as a constant serving as a prefactor, and gg is a scalar field to represent the amount of
local softening at generation g. Apparently g0 ¼ 0 applies to every element, assuming the initial system is homogeneously
relaxed during processing. As the generation change goes on, gg will generally increase due to local softening either through
the accumulation of ‘‘free volume’’ (Spaepen, 1977) or local heating. Correspondingly the biased activation energy barrier for
STZ mode �ðmÞij should be
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initial one, indicating some permanent softening. For the transformation of next generation change 1! 2, the energy barrier DF�1!2 corresponding to the
saddle point A�1!2 is lowered due to softening.
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Q ðmÞ ¼ DF� expð�ggÞ �
1
2

Vgrij�
ðmÞ
ij : ð14Þ
In addition we do not expect local softening will change the local stability of current configuration. That is to say, when the
stress bias is zero, the activation energy barrier is still a finite positive value, indicating that the system, although softened, is
still in a local minimum so long as there is no applied stress. This suggests that we must put an upper bound gmax on the
value of gg . The exact value of gmax is related to the maximum free energy change due to the actual softening mechanism.
In our simulations, for a parametric study, we set
DF�g
DF�
¼ 0:8; gmax ¼ � ln 0:8: ð15Þ
Apart from local softening, a partial recovery process is also incorporated based on the work of Dubach et al. (2007). Their
fitting of experiment data showed that there is a constant energy barrier Q act to activate a diffusional relaxation process. The
corresponding characteristic relaxation time can then be defined as
s ¼ 1
m0 expð�Q act=kBTÞ

ð16Þ
where m0 is the atomic vibration frequency on the order of Debye frequency. A lower temperature gives a much larger relax-
ation time, indicating that the recovery process will be much slower, and vice versa. Then we can separate the softening into
two parts:
gg ¼ gp
g þ gt exp � telap

s

� �
ð17Þ
where gp
g represents the permanent softening that cannot be recovered and gt is the temporary softening that could be recov-

ered through the above diffusional relaxation, and telap is the time elapsed since the last transformation at the same location.
For an initially well relaxed MG sample, there must be telapðxÞ � s.

To physically account for the softening, the values of gp
g and gt need to be formulated based on the amount of transfor-

mation that one element has experienced. Define the Von Mises strain invariant of each SFTS tensor as
�Mises ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

23 þ �2
31 þ �2

12 þ
ð�22 � �33Þ2 þ ð�33 � �11Þ2 þ ð�11 � �22Þ2

6

s
; ð18Þ
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the following linear relations are then formulated to quantitatively describe the softening and partial recovery process:
Fig. 4.
the bon
gp
gþ1 ¼ gp

g þ jpð�MisesÞ2; ð19Þ

gt ¼ jtð�MisesÞ2: ð20Þ
Note that gp has the generation-dependent accumulative effect due to its permanent nature. On the contrary the effect of gt

is limited to only one generation period, meaning that after each transformation, gt is recalculated through the new SFTS
tensor � and telap is counted from the start again. The two constants jp and jt , for the current parametric study, serve only
as numerical coefficients. Taking the value of characteristic STZ shear c� ¼ 0:1 and ð�MisesÞ2 ¼ 2 � ðc�=2Þ2, the proportional
coefficient relating the softening and strain is estimated to be�40, which should be considered as the total contribution from
permanent and temporary softening. Obviously additional assumptions or models are needed to partition between jp and jt .
This could either be obtained form atomistic studies on the softening in MGs, or through fitting the simulation results to
experimental data such as yield stress. Here, however, an arbitrary ratio jt=jp ¼ 3 is assigned for an empirical parametric
study. In fact, this ratio could also depend on temperature, since at sufficiently high temperature the significantly increased
atomic mobility should relax out all structurally induced softening.

Another important feature that needs to be addressed is the direction-dependence of the local softening. Tests of mechan-
ical creep have confirmed a deformation induced structural anisotropy and a so-called bond-exchange mechanism was pro-
posed to explain this observation (Suzuki et al., 1987). Combining bond-exchange mechanism (Suzuki et al., 1987) with STZ
concept, a directional softening scheme may be schematically illustrated as in Fig. 4. It should be pointed out that different
atomic configurations are very likely to give rise to different directionalities of softening, and the main purpose of Fig. 4 is to
suggest that the STZ transformation, like dislocation slip in crystals, could have some ‘‘preferred’’ directions, especially when
the short/medium-range ordering (Hirata et al., 2011) is considered. This can also be seen from Fig. 3 where at generation-1
the energy barrier for the next generation change, e.g. A1 ! A0 or A1 ! A2, is obviously different depending on the direction of
the transformation. In fact Fig. 3 already assumes the second transformation is described by the same reaction coordinate,
implying the ‘‘direction’’ can only be either the same or the opposite. In the actual energy landscape the reaction coordinate
for the next STZ transformation could be more complicated. To capture the directional feature of softening, the scalar order
parameter gg is obviously not sufficient. Thus we introduce another generation-dependent order parameter, nðmÞ, a direction
factor defined as
nðmÞg ¼ eg�1 � �ðmÞg

keg�1k � k�ðmÞg k
; m ¼ 1;2; . . . ;M ð21Þ
where the strain is in the following vector representation
e ¼ ðe11; e22; e33;
ffiffiffi
2
p

e23;
ffiffiffi
2
p

e13;
ffiffiffi
2
p

e12ÞT : ð22Þ
n then represents the direction of one STZ mode with respect to previous actual transformation. The maximum n ¼ 1 means
it continues to transform along the previous direction, and the complete opposite for the minimum n ¼ �1. A directional
softening requires that there is a distribution of g with respect to n, or we can write the total softening as a function of
n 2 ½�1;þ1�:
ggðnÞ ¼ PðnÞgg ð23Þ
where gg is calculated by current state variables according to Eq. (17) and Eq.(19), and PðnÞ is a certain distribution. Falk and
Langer developed a STZ theory based on an assumption that STZ is a two-state entity which can only transform either for-
ward or backward (Falk and Langer, 1998), suggesting an extreme directional feature. However there is no experimental evi-
dence for such two-state assumption (Takeuchi and Edagawa, 2011). The exact form of PðnÞ could be very complex, and since
we are only interested in the average behavior, four simple distributions are proposed in Fig. 5 for a parametric study.
Although n represents the relative direction between the accumulated transformation strain and the potential transition
path, one may still argue that, for a specific scheme as in Fig. 5, the softening could be biased in a particular direction. How-
τ

τ
more softened less softened

The bond-exchange mechanism (Suzuki et al., 1987) is used to schematically illustrate the directional softening. At the transformed (softened) state,
ding conditions is expected to be different along different directions.
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ever, because of the heterogeneous catalogs for STZs, this correlation of directionality will quickly be disturbed and elimi-
nated within several generations due to the long-range elastic interaction. In fact, there is always a ‘‘back stress’’ from
the matrix, driving the inclusion to transform back, and its competition with softening directionality is very likely to produce
a statistically isotropic softening, rendering the directionality as a secondary effect. This will be further discussed later.

2.2. Transformation elasticity

The actual strain and stress field after a transformation are obtained by solving the following equations:
Fig. 5.
isotrop
Fel½H;�ðxÞ� �min
uðxÞ

Fel½uðxÞjH;�ðxÞ� ð24Þ

Fel½uðxÞjH;�ðxÞ� �
1
2

Z
d3xcijpqðxÞðeijðxÞ � �ijðxÞÞðepqðxÞ � �pqðxÞÞ ð25Þ
where uðxÞ � x0 � x is the difference between the new position x0 and the old position x, and is related to the actual trans-
formation strain
eijðxÞ �
ui;j þ uj;i

2
: ð26Þ
H is the new supercell matrix (three supercell edge vectors being the row vectors of the matrix) which is related to the ori-
ginal supercell H0 by H ¼ H0ðIþ �eÞ, with �e the overall average strain of the supercell. Because of periodic boundary condition,
there must be
uðxþ h0Þ � uðxÞ ¼ h0�� ð27Þ
where h0 is one of the H0 edge vectors. So
Z h0

0
dx0 � duðxþ x0Þ

dx0
¼ h0��!

Z
d3x

du
dx
¼ det jH0j��: ð28Þ
Note that, because of Eq. (26), feijðxÞg need to satisfy compatibility constraints
eii;jj þ ejj;ii ¼ 2eij;ij; 8i – j ð29Þ
which means the feijðxÞg fields are not independent fields in the variational functional (the fuiðxÞg fields are). On the other
hand, there is no compatibility constraint on the stress-free strain fields f�ijðxÞg, which are ‘‘given’’ in the elastic constant
minimization problem.

The functional to be minimized in Eq. (25) represents a quadratic expansion approximation of the Helmholtz free
energy (Li, 2000) around the freely transformed block. Unlike the more general nonlinear formulation and minimization,
the merit of the quadratic expansion is that Eq. (25) is quadratic in uðxÞ, whose minimization (in principle at least)
entertains a close-formed solution in the form of a matrix inverse, after real-space discretization of uðxÞ and representation
−1 −0.5 0 0.5 1
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ofr2-like operators. We have the stress equilibrium equation in structurally inhomogeneous and elastically inhomogeneous
material:
ðcijpqðxÞðup;qðxÞ � �pqðxÞÞÞ;j ¼ 0; 8i ¼ 1 . . . 3 ð30Þ
In this paper, however, we only consider the elastically homogeneous problem with cijpqðxÞ ¼ cijpq (for cases like MG-matrix
composites (Hofmann et al., 2008) where elastic heterogeneity must be considered, we will adopt the technique proposed in
Wang et al. (2002)). Then the problem is simplified into
cijpqðup;qðxÞ � �pqðxÞÞ;j ¼ 0; 8i ¼ 1 . . . 3 ð31Þ
and the inverse can be done in the Fourier space on a k-by-k basis. We first note that upðxÞ can be decomposed into a sec-
ularly growing component in x, plus a periodic component:
upðxÞ � x�eþ ~upðxÞ ð32Þ
Then stress equilibrium requires that in k-space:
�cijpqkqkj~upðkÞ ¼ icijpq�pqðkÞkj ð33Þ
where
~upðkÞ �
Z

d3x~upðxÞe�ik�x; ~upðxÞ ¼
1

det jH0j
X

k

~upðkÞeik�x; ð34Þ
and similarly �pqðkÞ $ �pqðxÞ. Eq. (33) is also used by Khachaturyan (1983) in deriving a close form of the coherency strain
energy for an arbitrary coherent multi-phase alloy. If we define symmetric matrix Cðk̂Þ (Wang et al., 2002)
Cipðk̂Þ � cijpqk̂qk̂j; k̂ � k
jkj ; ð35Þ
the inverse matrix is also real and symmetric: Xðk̂Þ � C�1ðk̂Þ. Let us also define strain-free stress:
r0
ijðxÞ � cijpq�pqðxÞ; r0

ijðkÞ � cijpq�pqðkÞ; ð36Þ
then
�jkj2Cipðk̂Þ~upðkÞ ¼ ir0
ijðkÞkj ð37Þ
and ~upðkÞ is obtained explicitly as
~upðkÞ ¼
Xpi0 ðk̂Þr0

i0 j0 ðkÞkj0

ijkj2
: ð38Þ
Since ir0
ijðkÞkj represents the divergence of stress, or net force, � Xpiðk̂Þ

jkj2
is just the infinite-space Green’s function relating force

to displacement in this translationally invariant system. This Green’s function is short-ranged in reciprocal space (in fact k-
by-k local), but long-ranged in real space. Thus it is advantageous to solve homogeneous-material problems in reciprocal
space, which is more generally called the spectral method.

The strain field that corresponds to the Eq. (38) displacement field is
~epqðkÞ ¼
ikq~upðkÞ þ ikp~uqðkÞ

2
¼

Xpi0 ðk̂Þr0
i0 j0 ðkÞk̂j0 k̂q þXqi0 ðk̂Þr0

i0j0 ðkÞk̂j0 k̂p

2
; ð39Þ

epqðxÞ ¼ �epq þ ~epqðxÞ;
Z

d3x~epqðxÞ ¼ 0: ð40Þ
For 2D isotropic medium, we have
cijpq ¼ kdijdpq þ lðdipdjq þ diqdjpÞ: ð41Þ
Plug this into the strain-free stress and we will get the specific expression for the strain field, and hence the stress field. More
detail is presented in Appendix C.

2.3. Time evolution

We use a computational supercell of N 	 N voxels under periodic boundary condition. Each element is available for M
different STZ transformation modes with SFTS tensors �ðmÞ. The state configuration at generation-g, labeled as SgðxÞ, is then
completely described as
SgðxÞ  feðxÞ;rðxÞ;gp
gðxÞ;gtðxÞ; telapðxÞg: ð42Þ
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Since the dynamics is biased by thermal fluctuation, load-shedding elastic interactions, and generation-dependent softening,
different elements may eventually stay at different generations.

Simulations on uniaxial tensile tests under strain-controlled condition are performed in this paper. Given the applied
strain rate _�e and strain increment D�e at each simulation step, there is a time interval Dt ¼ D�e= _�e which is the maximum res-
idence time the system can stay at current configuration. During Dt the applied stress may drive the system to three different
responses: athermal plasticity, thermal plasticity, and pure elasticity.

1. If stress field rðxÞ is sufficiently high, the current configuration may not be stable anymore with some biased activa-
tion energy barrier being negative. We transform simultaneously all the elements with a negative energy barrier
along the corresponding path. If one element has two or more such paths, we choose the one with the lowest energy
barrier.

2. If the calculatedM	 N 	 N barriers are all positive, STZ transformations are considered as thermally activated events. The
resulted ‘‘state-to-state’’ dynamics is simulated using kMC algorithm. The rate catalog consisting ofM	 N 	 N transition
states is determined as
kðmÞi ¼ m0 expð�Q ðmÞi =kBTÞ; m ¼ 1;2; . . . ;M; ð43Þ
where i ¼ 1;2; . . . ; N 	 N represents different elements. The residence time is then on average given by Voter (2007)
tres ¼ 1
X
i;m

kðmÞi

,
: ð44Þ
Thermal plasticity has probability 1� expð�Dt=tresÞ to occur in the time interval. To model this, we take a uniformly distrib-
uted random variable g 2 ð0;1�, and check

(a) If g > expð�Dt=tresÞ, thermal plasticity will occur. If that is the case we can use standard kMC algorithm to select one
transition state using a random number f uniformly distributed on ð0;1�. For the convenience of implementation, we
replace the indexing of rate constants with kj; j ¼ 1; . . . ;ntot with ntot ¼M	 N 	 N. Then we can calculate cumulative
sums
qi ¼
Xi

j¼1

kj; i ¼ 1; . . . ; ntot: ð45Þ
Then the selected transition state has the index s satisfying
qs�1 <
f

tres
6 qs: ð46Þ

(b) If g 6 expð�Dt=tresÞ, it is assumed that the thermal plasticity cannot be activated before the next applied strain, and
the system is simply elastically deformed during Dt.

A somewhat detailed issue is with racing and the stress value used in the time-stepping. Since voxel stress ri;j, where i; j
index the 2D position of a voxel, influences the activation energy inside an exponential, the voxel transition rates could
be quite sensitive functions of ri;j. In principle, using both ri;jðtÞ (Forward Euler) and ri;jðt þ DtÞ (Backward Euler) should
be equally valid and accurate (first-order methods) for computing the t ! t þ Dt transition rate, but of course using the
latter for implicit integration will be computationally more expensive, without improving the accuracy of time-stepping.
A time-adjustment procedure could be worked out that effectively uses ðri;jðtÞ þ ri;jðt þ DtÞÞ=2 for second-order time inte-
gration, if one maintains the same transition event regardless of stress value. If the rates of multiple transition events
vary a lot from ri;jðtÞ to ri;jðt þ DtÞ, then racing could happen, and to achieve second-order accuracy, one must do
iterations.
3. Results and discussion

To demonstrate the capability of our model, simulations on uniaxial tensile test are carried out to study the formation of
shear bands. In order to see the effect of softening, we analyze the extreme value statistics during deformation. The local
temperature rise is also estimated as well.

A plate geometry with periodic boundary condition is used, implying a 2D simulation with plane-stress constraint. Each
element is assigned to be 1:7 nm	 1:7 nm, which agrees with typical STZ size (Johnson and Samwer, 2005; Mayr, 2006; Pan
et al., 2008). Material properties are listed in Table 1, adopted from typical MG systems in the literature. The c� in Table 1, the
characteristic shear of STZ (Argon and Shi, 1983; Schuh et al., 2007), is used to scale the numerically generated SFTS
components.



Table 1
List of simulation parameters.

Parameter Value

E 88:6 GPa (Bian et al., 2002)
m 0:371 (Bian et al., 2002)
m0 1	 1013 Hz
DF� 5 eV
Qact 0:37 eV (Dubach et al., 2007)
jp 10
jt 30
c� 0:1 (Argon and Shi, 1983; Schuh et al., 2007)
T 300 K
_�e 1	 10�4 s�1

D�e 1	 10�4
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3.1. Parametric study I: number of STZ modes

Simulation results with the same system size of 217:6 nm	 217:6 nm but different number of STZ modes, M, are
presented in Fig. 6. Note that since there is no decohesion or fracture mechanisms in our model, plastic deformation
continues after the load drop. Let us focus on the stress–strain curves at small strains within the ductility of typical mono-
lithic MGs. It is shown clearly that large M produces a stress drop at the upper yielding point, which corresponds to the
nucleation of shear band indicated by plotting the distribution of the Von Mises strain invariant of transformation strain
as shown in Fig. 7. WhenM is small, the system is more ‘‘frustrated’’ to find a mode that is in alignment with the ‘‘favored’’
mode defined by the elastic interaction and served as a kernel for the shear band. The fewer the possible modes are, i.e., the
smaller theM is, the more the system is ‘‘frustrated’’, resulting in a delay in the formation of a shear band as shown in Fig. 7.
This is consistent with the limit case ofM!1 we discussed in Section 2.1.2. The dash line in Fig. 6 represents the stress–
strain curve obtained from a simulation withM¼ 12 but DF� ¼ 4:5 eV. There is no stress drop, but the flow stress is lowered
to approximately the same level as the case of M¼ 20. The difference, however, is that after about 6% applied strain, the
case M¼ 12 (DF� ¼ 4:5 eV) shows a ‘‘strain-hardening’’, while the case M¼ 20 still displays a steady flow in average.
M is essentially a topological parameter of the energy landscape of MG (Li et al., 2011), and is likely quite system- and

processing-dependent. For the same glass chemistry, a faster cooling history or a stress-induced rejuvenation (Takeuchi and
Edagawa, 2011) would imply a higher energy state for the processed MG and correspondingly a lower stress-free activation
barrier for STZ transformation. This also means thatM in reality is related to other activation parameters and independent
variation ofMwhile keeping all the other activation parameters fixed, like that shown in Fig. 6, is just a theoretical exercise.
In view of this, assuming a constantM for all generations, though convenient, is also likely to introduce errors, since stress-
rejuvenated state could be more connected and has lower barriers (Sciortino et al., 1999; Kushima et al., 2009; Li et al., 2011).
This error will be investigated in later models (Zhao et al., submitted for publication).

The obtained stress–strain curves in Fig. 6 are similar to the study by Utz et al. on stress–strain curves for model MGs
produced by different quenching rates (Utz et al., 2000), where the obtained systems are at different energy states. In the
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Fig. 6. Stress–strain curves with number of STZ modes being 12, 16, and 20. The dash line represents same simulation with 12 modes but a lower stress-free
activation energy barrier for STZ.



Fig. 7. Transformation strain distributions after 2:5% applied strain for simulations with (a) M¼ 12, (b) M¼ 16, (c) M¼ 20, and (d) M¼ 12 (low DF�),
corresponding to different stress–strain curves shown in Fig. 6.
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following simulations we set M¼ 20, which for the given DF� ¼ 5 eV could represent a well annealed MG based on the
comparison with MD simulations, in order to study the formation of shear band in MG.
3.2. Parametric study II: directional softening

Simulations with 4 different PðnÞ are shown in Fig. 8 and the one without softening is presented as dash line for reference.
As we expected, the backward softening PðnÞ ¼ 1�n

2 gives the highest yield point, since the preferential softening direction will
always tend to erase the previous softening effect by promoting an opposite transformation. The isotropic softening PðnÞ ¼ 1
gives no yield strength decrease. Both forward softening schemes result in an overall softening with obvious yield point
drops. These are consistent with the energetics shown in Fig. 3. In the following we use PðnÞ ¼ ð1þnÞ2

4 as our directional
softening scheme to study shear band formation. It should be pointed out that, although the isotropic softening gives no
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Fig. 8. Stress–strain curves with four different PðnÞ in Fig. 5. The dash line is for the simulation without softening.
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yield strength decrease, it can still localize the strain and lead to shear band formation. This actually confirms our expecta-
tion that the directionality of softening is statistically equivalent to an isotropic scheme and is therefore a secondary effect.

3.3. Shear band formation

The typical shear localization at room temperature is observed in our tensile test simulations. Results obtained for a sys-
tem of 512	 512 voxels (i.e. 870:4 nm	 870:4 nm) are shown in Fig. 9 (left column). For comparison, results obtained for an
identical system but without softening are also shown in Fig. 9 (right column). It is clear that localized deformation, i.e. shear
band formation occurs only when softening is considered. Without softening the deformation is homogeneous even though
the deformation appears to be localized at the early stage when the yield (the drop on stress–strain curve) just occurs
(Fig. 10(b)). The ‘‘yield strength’’, i.e. the peak stress and the steady flow stress are both lowered for the case with softening,
which is what we expected from the softening term introduced in our model.

The transformation strain distributions after the system undergoes an average strain of 2:5% are shown for both
simulations in Fig. 10 for both cases. It seems that nucleation of shear bands can still be present in the absence of softening,
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Fig. 9. Deformation behavior in a system of 870:4nm	 870:4nm, with (left column) and without (right column) softening. (a) and (b) Distributions of Von
Mises strain of the transformation strain tensor; (c) and (d) distributions of equivalent Von Mises stress (the unit for colorbar is GPa); (e) and (f) stress–
strain curves.



Fig. 10. Transformation strain distribution right after the nucleations of shear bands in simulations (a) with and (b) without softening incorporated.
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suggesting that the nature of shear band nucleation could essentially be a collective motion of multiple STZs due to load-
shedding elastic interactions between elements. This is similar to the idea behind the yielding criterion proposed by Packard
and Schuh (2007) where the shear path in MGs is controlled by a certain plane along which a critical strength value is ex-
ceeded everywhere, rather than by some local point with an overall maximum shear. Such plane criterion in amorphous al-
loys may only be satisfied by certain stress field configuration rather than forming actual ‘‘lattice planes’’.

On the other hand, the stress field caused by STZ transformations alone, cannot localize the accommodation of further
shear strain. Without softening, the initially formed shear band will spread over the entire system. This corresponds to
the state with an average strain of about 8% in Fig. 9(f), followed with a ‘‘strain-hardening’’. The reason for such shear band
thickening is that, in the absence of softening, there is no internal structural difference between the transformed and
untransformed regions and the only inhomogeneity is due to the local stress field. Thus the merit of generation-dependent
softening is to take into account of the structural heterogeneity introduced in generation changes during deformation. Unlike
the analysis of Steif et al. (1982) and Argon (1979) in which geometric heterogeneity was assumed, our initial ‘‘glass’’ is
structurally homogeneous as in real glasses. This softening-controlled shear band growth may also explain why Homer
et al. cannot observe shear localization for a well relaxed MG (Homer and Schuh, 2009), since there is no softening mecha-
nism in their model.

As a basic characteristics, the thickness of shear bands has been measured extensively by experiments, suggesting a value
of �10 nm (Zhang and Greer, 2006). In our simulations, even in the presence of softening, the shear band will grow in width
as the applied elongation continues because no fracture is considered in the model. Considering the fact that experimental
measurements are usually corresponding to shear bands at fracture (less than �3% elongation), we thus report here the sim-
ulated shear band thickness at the applied strain of both 2.5% and 10% as shown in Fig. 11, where the results for different
computational supercell sizes are presented. While the thickness of the shear bands right after nucleation (2.5% strain) is
independent of supercell size and in average gives a value of 18.5 nm, a size-dependence clearly arises after a period time
of continued elongation (10% strain). The discussion on the system size effect will be detailed in the following section.

3.4. Extreme value statistics

While the mean and variance of a distribution are often used to characterize a statistical distribution, these moments re-
flect population averages that sometime obscure the so-called extreme value (EV) (Fisher and Tippett, 1928; Pickands, 1975;
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Reiss and Thomas, 2007) information, which is concerned with the maximal and minimal values in a statistical sample. The
importance of EV can be appreciated by considering, for instance, the significance of world record in sports, or the impor-
tance of Fortune 100 companies in global business. For the failure of metallic glasses, extreme value at the level of STZ is
expected to be crucial, since cracking of a single STZ (�1.7 nm) that have accumulated enough shear strain could initiate
decohesion events that lead to the final catastrophic failure of the entire piece (Shimizu et al., 2006, 2007).

Fig. 12 shows the probability density distribution of the Von Mises strain of voxels in the material after 10% applied strain.
In both cases (i.e. with and without softening) there is a peak at approximately the same position of around 0.1 Von Mises
strain. The main difference is the much longer tail of distribution when softening is considered. The extreme sites corre-
sponding to this long tail are where the most severe inelastic transformation occurs and could be responsible for many inter-
esting observations such as local heating (Lewandowski and Greer, 2006), cavitation and nanovoid formation (Li et al., 2002),
which lead to fracture. The evolution of extreme Von Mises strain during the deformation is also presented as the inset in
Fig. 12. The softening gives a much more rapid ‘‘runaway’’ behavior of these extreme sites. This may be the reason why most
MGs have a very limited ductility.

To explain the position of the peak probability, we continue to elongate the system to 20% applied strain and compare the
corresponding probability density with the case of 10% applied strain. The result is shown in Fig. 13. It shows that even after
more macroscopic strain is applied, the peak still stays at 0.1 Von Mises strain. This implies the peak is due to the charac-
teristic STZ transformation strain c� rather than external applied strain. Again, the major difference lies in the more extended
long tail.

As an example to show the role played by these extreme sites, we give a simple estimation on the local temperature rise
during the above simulation. For each STZ transformation, the work that is dissipated is given by
Fig. 12.
for the
average
DWðxÞ ¼ VDwðxÞ ¼ VrijðxÞ�ijðxÞ: ð47Þ
where Dw is the energy density dissipated due to plastic deformation. Assuming STZ transformation is instantaneous and
fully adiabatic, the local temperature rise is simply
DTðxÞ ¼ DWðxÞ
mC

¼ DwðxÞ
qC

ð48Þ
where m is the mass, q is the density, and C is the heat capacity. Then the heat conducting equation is
@Tðx; tÞ
@t

¼ k
Cq

� �
r2Tðx; tÞ ð49aÞ

Tðx; t ¼ 0Þ ¼ T0ðxÞ þ DTðxÞ ð49bÞ
where k is the thermal conductivity. For each simulation step with an initial temperature distribution T0ðxÞ, the correspond-
ing initial condition Tðx; t ¼ 0Þ for the above heat conducting equation is given by adding the instantaneous temperature in-
crease Eq. (48) due to local plastic events, i.e. STZ transformations. The voxel-level temperature propagation equation Eq.
(49b) can be solved easily in reciprocal space using Fourier spectral method as in calculating the stress field. We use
q ¼ 6125 kg=m3;C ¼ 420 J=ðkg � KÞ, and the thermal diffusivity a ¼ k

qC ¼ 3	 10�6 m2=s, which are all taken from Lewandow-
ski and Greer (2006). The result is shown in Fig. 14. As is expected, the ‘‘runaway’’ feature is similar to that in the evolution of
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maximum Mises strain in the inset of Fig. 12. The softening effect promotes significantly the local temperature rise. In exper-
iments it is chalenging to make a direct and accurate measurement on the instantaneous temperature rise within the nano-
scale shear bands. Using an infrared camera, Yang et al. measured a temperature rise �1K and estimated that the actual value
could be as high as 650 K (Yang et al., 2005). In a method based on fusible Sn coating, Lewandowski and Greer (2006) was
able to measure a temperature rise of 207 K with better spatial and temporal resolution; and the thin-film solution estimated
that the center of the shear band could reach a temperature as high as over 3000 K, which is in agreement with the current
work. The combination of local intensive shear and temperature rise is then expected to give rise to a more amplified ‘‘auto-
catalytic’’ effect and lead to abrupt failure with limited ductility.
3.5. The system size effect

The system size dependence of the evolution of the maximum Von Mises strain is shown in Fig. 15. At the strain of around
2.5%, larger system size gives rise to a more abrupt ‘‘runaway’’ feature. This size-dependence can be understood if we recall
that in Fig. 11 the corresponding shear band thickness is independent of the supercell size. Therefore, the shear band corre-
sponding to a smaller volume fraction in a larger system has to accommodate more strain to reach the same level of average
applied strain. The reason for the limited thickness of shear band nucleation resides in the fact that the voxel in our model
corresponds to the actual physical length (�1.7 nm) of STZ. This yields a stress field which is independent of the computa-
tional grid, resulting in an absolute critical size of shear band ‘‘embryo’’. Our simulation in fact also confirms this perspective,
for if we inspect the strain distribution as in Fig. 10 at early stage of nucleation, we find frequently a cluster of 7 transformed
voxels spreading along one maximum shear direction into a line and shear bands are nucleated by extending along the other
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maximum shear direction. Such cluster corresponds to a characteristic length �17 nm, which is indeed consistent with our
measurement.

On the other hand, the size-dependent thickness of shear bands after 10% applied strain as shown in Fig. 11 may put the
statistics in Fig. 15 into question, since the increased volume fraction of shear bands may lead to the appearance of more
extreme values. However, inspection on extreme values (long tails in Fig. 13) reveals that the corresponding sites are all lo-
cated in the center of the shear bands, rather than uniformly distributed, confirming no statistical artifact on the size-depen-
dence of maximum Von Mises strain. In fact those extreme sites after even 10% strain are inherited from previous
generations when the shear band is newly nucleated, and eventually form the ‘‘core’’ (hot) region, of which the extent is
again controlled by the stress field.

Once the shear bands spread throughout the system, the following steady flow will inevitably be influenced by the images
of shear bands due to the periodic boundary condition. The smaller supercell size results in a greater overlap between the
stress fields of the shear band and its images, and thus greatly suppresses its continued thickening. This leads to the ap-
peared size-dependent thickness of shear bands after 10% strain as shown in Fig. 11. It is thus expected that as the compu-
tational supercell size increases, a longer stage of autocatalytic propagation, corresponding to a more significant stress drop
after yielding, will be present, because a longer distance is needed to propagate before the shear band hits the boundary and
the image-interaction starts to intervene.
4. Summary and outlook

The potential energy landscape (PEL) of atoms is a high-dimensional surface and very complex (Li et al., 2011). What we
attempt to achieve in this paper is a reduction of the atomistic energy landscape in fxig, where xi’s are atomic positions, to a
strain energy landscape (SEL) in terms of voxel transformation strains �i;j, where i; j index the 2D position of a voxel. Essen-
tially, we developed here some kind of constitutive model for the strain energy landscape, a la Eshelby. Suppose each voxel
contains �102 atoms, we can achieve a factor of � 102 reduction in model dimension, and also direct visualization of voxel-
level transformation strain and stress distribution, that could serve as a bridge to even coarser-level models. The assump-
tions underlying this dimensional reduction scheme is that diffusive motions of atoms is less important than the stress-dri-
ven, more collective displacive shear transformations. Some kind of diffusive recovery may underlie the recovery physics
(‘‘aging’’ Wolynes, 2009) in our model, but they are ‘‘enslaved’’ to the displacive transformations, and are most probable
to happen soon after a displacive transformation. Like in any kind of constitutive modeling, we are beset by the complexity
of the SEL. So we attempt to follow the principle of parsimony, where we only add parameters for which we see there is an
absolute need.

In this current paper, we have developed a heterogeneously randomized STZ model to study strain localization and ex-
treme value statistics during deformation of MGs. The model distinguishes itself from existing ones by including (a) heter-
ogeneously randomized STZ transformation catalogs and (b) generation-dependent softening in kMC algorithm. Since
information regarding (a) and (b), such as the STZ transformation modes, the transformation strain tensors, and the corre-
sponding activation energy barriers, can in principle be obtained by detailed atomistic simulations, the model can be used in
a multiscale scheme to study the effects of atomistic structure of MG on its deformation behavior.

Parametric simulation studies are carried out in two-dimensions using the model and statistical analysis on the proba-
bility density distribution and the extreme value in the Von Mises strain invariant are made. Both the simulation results
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and the statistical analysis suggest a close relationship between the shear band formation and the internal structural infor-
mation considered by new features in our model, and show the key role played by softening in strain localization and shear
band formation. The thermal fluctuation and load-shedding elastic interaction, effects of which have been studied by previ-
ous STZ models, are found insufficient to cause strain localization under uniaxial tensile test considered in the simulations. In
contrast, the generation-dependent softening results in an ‘‘autocatalytic’’ effect that is responsible for strain localization and
is also likely to lead to abrupt fracture with limited ductility in reality. The thickness of the shear bands after nucleation is
determined to be 18 nm, corresponding to the characteristic length of a cluster of 7 ‘‘diagonally aligned’’ transformed STZs. In
addition, local temperature rise within a shear band is estimated and show that the center of shear bands could reach a tem-
perature as high as over 3000 K at the single-voxel level. Since actual physical length is assigned to the STZ, the model, unlike
other STZ models, is not ‘‘scale-free’’ and is able to describe size dependence, as has been demonstrated in the simulations.

In the presented model, the effect of voxel-level residual stress has been ignored, i.e. the starting states of all our voxels are
assumed to be stress-free, which is different from what atomistic simulations indicated (Srolovitz et al., 1981; Egami, 2011).
Imagine there is locked-in residual stress ri;j on a particular voxel, then the voxel-level free energy landscape should be tilted
on average in the voxel strain space (Fig. 2(a)), even when the externally applied stress �r is zero. In other words, when voxel-
level residual stress is considered, our constitutive model should generate ‘‘biased random’’, instead of ‘‘unbiased random’’,
voxel-level SELs. Furthermore, the starting residual stress field must be self-balancing: r � rresidual ¼ 0, so constraints like
riþ1;j
residual � ri�1;j

residual

2Dx
þ ri;jþ1

residual � ri;j�1
residual

2Dy
¼ 0 ð50Þ
must be satisfied. In other words, the tilting of voxel-level SELs on average must be coupled. Due to the complexity of adding
such randomized but self-equilibrating fri;j

residualg, this effect is not considered in the present paper. We should pursue the
effect of residual stress in future papers, as well generalizing the 2D results here to 3D.

Acknowledgements

We acknowledge the financial supports by NSF under Grants CMMI-0728069 (JL and YW), DMR-1008349 (PYZ and YW),
DMR-1008104 and DMR-1120901 (JL), and by AFOSR under Grants FA9550-08-1-0325 (JL) and FA9550-09-1-0014 (YW).

Appendix A. Energetics for a spherical inclusion

Consider a simple case where the transformation at saddle-point can be decomposed into a simple shear part c� and pure
dilatancy part �d:
�� ¼
�d=3 c�=2 0
c�=2 �d=3 0

0 0 �d=3

0B@
1CA: ðA:1Þ
The volume, under the first-order approximation, has the relationship Vg� 
 Vgð1þ �dÞ. We can then first obtain the resulted
total strain energy following Eshelby (1957). For a nearly spherical cluster, Eshelby tensor is, according to Mura (1991):
Sijkl ¼
5m� 1

15ð1� mÞ dijdkl þ
4� 5m

15ð1� mÞ ðdikdjl þ dildjkÞ ðA:2Þ
where m is the Poisson’s ratio and dij is the Kronecker delta. The non-zero components of the constant stress field inside the
inclusion are
r11 ¼ r22 ¼ r33 ¼ �
4lð1þ mÞ
9ð1� mÞ �

d; ðA:3Þ

r12 ¼ r21 ¼ �
lð7� 5mÞ
15ð1� mÞ c�: ðA:4Þ
where l is the shear modulus and Eq. (9) has been used to obtain the actual transformation strain eij. The total strain energy
after transformation �� is then given by Eshelby (1957):
Etot
el ¼ �

1
2
rij�ijVg : ðA:5Þ
This gives rise to the first two terms of activation energy barrier obtained by Argon (1979) and Argon and Shi (1983):
DF� ¼
7� 5m

30ð1� mÞ þ
2ð1þ mÞ
9ð1� mÞb

2 þ 1
2c�
� ŝ
l

� �
lc2
�Vg ðA:6Þ
where b ¼ �d=c� is the ratio of dilatancy at saddle-point, and ŝ is the ideal shear resistance in a regular lattice (Argon, 1979).
The third term comes from the work done against the resistance between interatomic layers up to the saddle-point (the
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sinusoid-like form of shear resistance as a function of displacement is linearized to obtain the current form Argon (1979)).
For more complicated cases, except for some special shapes (Mura, 1991), analytical solutions do not exist and numerical
evaluation of elliptic integrals is usually needed.

Appendix B. Isotropically random strain matrix: 2D

TheM SFTS tensors �ðmÞ for possible transformations in a generation change are numerically generated for our parametric
studies. To physically represent the amorphous structure, we require our numerical approach to generate � such that the
distribution is indistinguishable from that viewed in a rotated frame
~� ¼ RT�R ðB:1Þ
where R is the rotation matrix. In the 2D case under the assumption of Eq. (5) and Eq. (9), we have
� ¼
�1 �3

�3 ��1

� �
: ðB:2Þ
The rotation matrix in Eq. (B.1) for 2D becomes
R ¼
cos h � sin h

sin h cos h

� �
; ðB:3Þ
with RRT ¼ I, connecting dx ¼ Rd~x, and ðdlÞ2 ¼ dxTðIþ 2�Þdx ¼ d~xTðIþ 2~�Þd~x. According to Eq. (B.1) we have
~�1 ¼ cos h sin h½ �
�1 �3

�3 ��1

� �
cos h

sin h

� �
¼ �1 cos 2hþ �3 sin 2h: ðB:4Þ

~�3 ¼ cos h sin h½ �
�1 �3

�3 ��1

� � � sin h

cos h

� �
¼ ��1 sin 2hþ �3 cos 2h: ðB:5Þ
Because
~�1

~�3

� �
¼

cos 2h sin 2h

� sin 2h cos 2h

� �
�1

�3

� �
ðB:6Þ
is a rotation transformation, we get the feeling that �1 and �3 are ‘‘equivalent’’ like x� and y� axis. Since a 2D Gaussian den-
sity cloud is obviously invariant after 2h rotation, the proposal is to sample �1 and �3 from independent standard Gaussian
distribution and then rescale them with the STZ characteristic shear c�=2 (the actual Gaussian width used in simulation, i.e.
0:1=2 ¼ 0:05 is consistent with atomistic simulations (Rodney and Schuh, 2009)). More generally, we could use arbitrary
function f ðJ2ÞdJ2 to sample ð�1; �3Þ, where the J2 invariant
J2 � �detð�Þ ¼ �2
1 þ �2

3 ðB:7Þ
is obviously an invariant under rotation, confirming our view that �1 and �3 are ‘‘equivalent’’ dimensions in strain space.

Appendix C. Elasticity solver: 2D isotropic media

A 2D isotropic medium has
cijpq ¼ kdijdpq þ lðdipdjq þ diqdjpÞ: ðC:1Þ
The relationship between the Lamé parameters k;l and E; m are:
k ¼ Em
1� m2 ¼

2ml
1� m

; l ¼ E
2ð1þ mÞ ; ðC:2Þ
and the relationship between stress-free stress r0 and SFTS � is:
r0
ijðkÞ ¼ ðk�ppðkÞÞdij þ 2l�ijðkÞ; r0

ijðxÞ ¼ ðk�ppðxÞÞdij þ 2l�ijðxÞ: ðC:3Þ
Then Eq. (35) becomes:
Cipðk̂Þ ¼ cijpqk̂jk̂q ¼ kk̂ik̂p þ ldip þ lk̂pk̂i ¼ ldip þ ðkþ lÞk̂ik̂p ðC:4Þ
or
Cðk̂Þ ¼ lIþ ðkþ lÞbK ðC:5Þ
with Kip � k̂ik̂p. The bK matrix is real and symmetric. It is also idempotent: bKn ¼ bK.
The inversion of Cðk̂Þ can be done by matrix series expansion:
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Xðk̂Þ ¼ 1
l
X1
n¼0

� kþ l
l

� �n bKn ¼ 1
l

I� kþ l
l

bK
1þ kþl

l

 !
¼ 1

l
I� kþ l

kþ 2l
bK� �

: ðC:6Þ
Define dimensionless quantity
a � kþ l
kþ 2l

¼ 1þ m
2

; ðC:7Þ
we then have Xðk̂Þ ¼ ðI� abKÞ=l.
So Eq. (38) would become
~upðkÞ ¼
ðdpi0 � ak̂pk̂i0 Þr0

i0 j0 ðkÞk̂j0

lijkj ¼
r0

pj0 ðkÞk̂j0 � ak̂pr0
i0 j0 ðkÞk̂i0 k̂j0

lijkj : ðC:8Þ
Define vector and scalar
fðkÞ � r0ðkÞ � k̂; gðkÞ � k̂ � fðkÞ; ðC:9Þ
which can be pre-computed, we then have
~uðkÞ ¼ fðkÞ � agðkÞk̂
lijkj : ðC:10Þ
The periodic part of the actual strain field is then
~eðkÞ ¼ i~uðkÞkþ ik~uðkÞ
2

¼ fðkÞk̂þ k̂fðkÞ � 2agðkÞbK
2l

; ðC:11Þ
with trðfðkÞk̂Þ ¼ trðk̂fðkÞÞ ¼ k̂ � fðkÞ ¼ gðkÞ; trð~eðkÞÞ ¼ ð1� aÞgðkÞ=l, and
eðxÞ ¼ �eþ ~eðxÞ;
Z

d3x~eðxÞ ¼ 0: ðC:12Þ
With this obtained total strain field, it is straightforward to get the corresponding stress field.
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