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The universal gravitational force law f ¼ �Gm1m2=r2 enabled
Newton to predict the trajectory of celestial bodies in 1686, pro-
pelling human civilization into the modern age. Atoms and ions
underlie chemistry, biology and materials science. Knowing their
interaction potential U(r1, r2, …, rN), where r1, r2, …, rN are the
positions and types of atoms/ions, would also allow us to predict
their trajectories (fi ¼ � ViU) and collective behavior. In 1871,
Dmitri Mendeleev organized the periodic table. There are 92 nat-
ural elements from Hydrogen to Uranium. If we can have easy
numerical access to U(r1, r2, …, rN) for arbitrary sets of chemical
elements, the so-called universal interatomic potential, it would
greatly expedite the understanding of our natural world through
simulations, and assist the design and synthesis of drug molecules,
new materials for the transition to sustainable energy, etc.

Today such universal potentials exist, although they are
computationally quite expensive and practically accessible for only
a few hundred atoms. This is becausewe need to solve the quantum
mechanical Schr€odinger equation for the thousands of electrons for
given nuclei positions to get U(r1, r2,…, rN). The 1998 Nobel Prize in
Chemistry was awarded to John Pople “for his development of
computational methods in quantum chemistry,” and to Walter
Kohn “for his development of the density-functional theory” (DFT).
Essentially, Pople and collaborators solved the many-body problem
of quantum electrons directly, while Kohn and collaborators
simplified this many-body problem to many effective single-body
problems. Because one is solving many coupled integro-
differential equations on the fly, the memory and computational
complexities of these first-generation (full configuration
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interaction, quantum Monte Carlo, coupled cluster, etc.) and
second-generation (DFT) universal potentials scale as OðN3Þ or
more. Currently neither “Pople's universal potential” nor “Kohn's
universal potential” can be applied routinely to more than a few
hundred atoms without undue loss of accuracy, even with the
amazing computational resources we have, because of the exorbi-
tant complexity scaling. If we run ab initio molecular dynamics
(MD) simulations with these universal potentials, the simulated
time duration is typically limited to 102 ps.

How about the accuracy of universal potentials? 1 kcal/mol, or
43 meV/atom, is termed “chemical accuracy” because this is the
level of measurement error in experimental thermochemistry, i.e.
measuring and inferring the heat of formation/binding energy of
molecules and solids. “Pople's universal potential”, when fully
converged, can beat the chemical accuracy, but is practically only
feasible for at most tens of atoms. “Kohn's universal potential”, or
DFT, broadly gives 2e3 kcal/mol (~100 meV/atom) error due to the
approximate density functional used, but it can deal with hundreds
of atoms. Despite these constraints, both have achieved resounding
success in the last few decades, principally because of their abilities
to treat chemical complexities robustly. That is, we can throw arbi-
trary types of atoms from Hydrogen to Uranium into the simulation
box, and expect reasonable chemical behaviors from the simula-
tions, including chemical reactions that break and form bonds. The
most basic and important requirement on any universal inter-
atomic potential is to reproduce qualitative features of “high-school
chemistry” robustly. That is, when one throws Na metal into liquid
water, one should get H2 gas. When one throws NaCl crystal into
liquid water, one should get hydrated and well-separated Naþ(aq)
and Cl�(aq) ions. When liquid water freezes, the ice should be less
dense than the liquid water, etc..

Interatomic potentials bypassing on-the-fly electronic-structure
calculations, the so-called empirical potentials, are developed to
reduce the aforementioned computational complexity barrier.
These calculation methods observe and approximate the electronic
interactions with off-line fitting. For example, the Lennard-Jones
potential models the van der Waals dispersion interaction with
r�6 type fits. Embedded atom method (EAM) potential has local
electron density as an atomic expression that describes interaction
in metallic systems. Bond-order potentials such as the Tersoff-
Brenner potentials model the tight-binding electronic bandwidth
theory and can describe the chemical bonding effect including the
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change of the number of bonds and bond angles. However, these
empirical potentials typically fail the “general high-school chem-
istry test”. Because of the limited representation power of pre-
conceived fitting forms and limited variety of ab initio or experi-
mental data as fitting targets, previous empirical potentials are
severely constrained by the number of atomic types allowed. Most
empirical potentials used today are still monatomic (like pure Cu,
Si) or binary (like Si-C, Ni-Al) potentials. One can for example
browse the list of all multi-element empirical potentials collected
by National Institute of Standards and Technology [1] in 2022, and
see only ten empirical potentials with more than 4 elements, the
largest set being Br-Cl-Cs-F-I-K-Li-Na-Rb. This is far from enough to
cover high-school chemistry.

With the ascendance of machine learning (ML) approaches
including neural network (NN) models, representation power of
empirical potentials can be greatly enhanced [2e4]. Various high-
dimensional kernels, corresponding to the descriptors of the local
environment of atoms, were proposed. Gaussian approximation
potential (GAP), moment tensor potentials (MTP), linear and
quadratic Spectral Neighbor Analysis Potential (SNAP/qSNAP), etc.,
achieves excellent balance between computational speed and ac-
curacy (see Fig. 1). One techniquewith a large user base in ML is the
architecture of graph neural networks (GNN). It models the com-
plex interactions of elements as the stack of message passing and
has the power to represent the interaction between atoms which
are not directly bonded, i.e., aromatic bonds or metals. With the
rapid growth of deep neural networks (DNN) in recent years, GNN-
based methods quickly surpassed the chemical accuracy of well-
known energy estimation benchmarks, and it is not uncommon
for them to be in the few meV/atom range nowadays (Fig. 1) [2e5]
that is much better than the chemical accuracy. But so far this has
mostly resulted in more accurate interatomic potentials [2e5], and
less in the number of supported chemical elements. It has become
widely accepted to develop tailor-made empirical potentials for
each specific material system being simulated. However, the
benchmarks they choose might be too simple in terms of chemical
complexity and the number of elements supported. A universal
empirical potential broadly applicable to any material in the world
was simply not considered to be an achievable goal before. Two
advances are needed for the breakthrough: the architecture and the
dataset.

In 2019 Takamoto, Izumi and Li published TeaNet (Tensor
Embedded Atom Network) which is a GNN potential satisfying
special Euclidean group Eð3Þ equivariance (translation, rotation,
Fig. 1. Reprinted with permission from [5]. Copyright 2020 American Chemical Society. I
computational cost and accuracy. Note that this measures the performance in the quite lim
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and reflection) implemented by both atom- and bond-centered
tensorial attributes that include scalar, vector (3� 1) and rank-2
tensor (3� 3) quantities with full operations (dyad/contraction).
GNN has rich expressive power and achieves translational equiv-
ariance, but previously was employed to transport scalars and
vectors, not rank-2 tensors, in the context of atomistic simulations.
As classic interatomic potentials were inspired by tight-binding
electronic relaxation framework where the electronic Hamilto-
nian are rotationally equivariant tensors, we wanted to represent
such iterative propagation of rank-2 tensor information by GNN. In
TeaNet, the angular interaction is translated into graph convolution
through the incorporation of Euclidean tensors, vectors and scalars.
Previous empirical potentials, such as three-body angular depen-
dent bond order potential, can be naturally mapped to shallow
graph convolutions. TeaNet uses a much deeper (16 layers) GNN to
simulate an iterative electronic relaxation, i.e. 16 steps, enabled by
the residual network (ResNet) architecture and training with
recurrent GNN weights initialization. This architecture design
provides an effective inductive bias to learn the multi-element
potential energy surface. The training dataset was generated by
DFT single-point energy calculation of chemically and structurally
randomized configurations. We demonstrate that arbitrary struc-
tures and reactions involving the first 18 elements on the periodic
table (H to Ar), including hydrocarbon molecules, metals, amor-
phous SiO2 and water, show surprisingly good performance and
robustness, including chemical reaction pathways involving ele-
ments from H to Ar [6].

In early 2022, the collaborative work of Preferred Networks, Inc.
(PFN) and ENEOS Corporation (ENEOS) extended the TeaNet ar-
chitecture and constructed a large dataset with ~107 DFT configu-
rations, that aims to handle arbitrary combinations of the entire
Periodic Table. They have created the dataset by combining mul-
tiple sampling methods in order to cover the diverse chemical
phase space as much as possible. For example, it contains crystal
lattice structures with arbitrary combinations of elements and
multi-element structures melted at high temperatures. They also
provided a part of the dataset as the benchmark (HME21) and
revealed that the TeaNet architecture performs very well for such a
chemically diverse dataset, with an average error of only 19.6 meV/
atom, which handily beats the chemical accuracy (43 meV/atom or
1 kcal/mol), namely the typical experimental error level involved in
thermochemistry measurements. They released the first empirical
universal interatomic potential covering 45 elements on the peri-
odic table [7]. The series of trained models are named PFP
t shows the relationship of various types of interatomic potentials from the view of
ited task in terms of the number of elements and chemical complexity.
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(PreFerred Potential). The number of elements was expanded to 72
as of the summer of 2022 (see Fig. 2). It was used as the core
technology for the atomistic simulation software named Matlan-
tis™ [8]. The number of elements supported is expected to rise
from 72 as of now, to 94 (Pu), covering rare-earth elements and
actinides, sometime in 2023.

To demonstrate the power of a universal potential (Fig. 3), four
examples with very different application contexts were shown [7].
These examples were purposely chosen from out-of-domain ap-
plications, i.e., all the chemical and structural configurations
encountered were not part of the training dataset (and in fact very
different from the training data), such that the results can faithfully
indicate the extrapolation capability of PFP. The first example
application is lithium diffusion in LiFeSO4F cathode of lithium-ion
batteries. To obtain the path and activation energy of the diffu-
sion, not only the stable structure but also the unstable transition
state should be reproduced. The nudged elastic band (NEB) method
was applied for diffusion paths in three different crystal directions
and the obtained activation energies reproduced the DFT pre-
dictions well, with an error on the order of 10�2 eV or even less. A
series of finite-temperature molecular dynamics simulations on Li
diffusion were carried out and the Arrhenius plot showed similar
activation energy. It indicates the energy surface of the entire phase
space contained within a certain temperature range is smooth and
there is no spuriously stable structure. Accurately predicting tran-
sition paths/states in chemically complex systems is an indispens-
able yet demanding task for practical applications, as kinetics
information is often needed to identify/improve the rate-limiting
steps of the underlying chemical/physical processes. TeaNet/PFP
demonstrates great capability in such an application context in
terms of both accuracy and efficiency (the above-mentioned NEB
calculation can be completed within a few minutes).

The second example is the molecular adsorption in metal-
organic frameworks (MOFs). They consist of metal centers
bridged by organic linkers, thus containing both organic and inor-
ganic parts as well as nanopores/surfaces. Their crystalline struc-
tures are diversified by the inclusion of various chemical groups
and their ionic forms, and thus it was difficult to reproduce them
using classical potentials because the interaction between many
elements, including molecular complexes (ligands) and ions,
should be reproduced in single potential. PFP was applied to a wide
range of MOFs created from the Cambridge Structure Database and
confirmed that both crystalline structure and the H2O binding en-
ergy of MOFs are well reproduced, among different metal cation
Fig. 2. Chemical elements applicable in PFP universal potential as of the summer of 2022. S
are being experimentally supported.
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centers (Cu, Zn, Al, Mg, Co, Ni). For example, the predicted cell
volumes differ by only a few percent (in terms of mean absolute
error) from experimental results and the H2O binding energies only
show a few percent error compared to reported values in the
literature. It should be noted that, for some systems, adding DFT-D3
dispersion correction can improve the accuracy. This is because the
standard DFT method itself can fall short for certain chemically
complex systems; dispersion correction, Hubbard U correction, and
even advanced exchange-correlation functionals are required for
improvements. PFP provides different calculationmodes to account
for these corrections, which would benefit practical applications on
chemically complex systems where certain correction is necessary.

The third example is the chemical order-disorder transition of
Cu-Au alloys. This metallic system is a well-studied catalyst for the
oxidation of CO and alcohols, and it is fully miscible over a wide
composition range, but exhibiting a temperature-dependent
chemical order-disorder transition. To reproduce this kind of alloy
phase diagrams, the universal potential should have enough ac-
curacy to resolve minute free-energy differences. The results show
that the order-disorder transition temperatures of CuAu3, CuAu,
Cu3Au are consistent with the experimental results, in the range of
300e400 K, 800e900 K, and 600e700 K, respectively. Many
practical applications require the understanding of materials phase
behaviors which are dictated by the underlying Gibbs free energy
surface. Free energy evaluation generally involves both enthalpic
and entropic (such as vibrational and configurational) terms that
require a neural network interatomic potential (NNIP) to not only
accurately predict the zero-K potential energy surface, but also the
configurational evolution at finite temperatures. In addition, NNIP-
based atomistic simulations can also provide useful input infor-
mation for higher-level thermodynamic modeling and typical
coarse-grained modeling. In such a context, TeaNet/PFP would
benefit more practical applications with reliable phase behavior
modeling, especially on chemically complex systems.

The fourth example is Fischer-Tropsch catalysis, which is the
synthesis of hydrocarbons from H2 and CO. It is selected as the
typical example of heterogeneous system and catalytic reaction,
which means the potential should reproduce not only the energy
curvature of minimum energy path including transition state, but
also its dependence on the surface environment. The results show
that the mean absolute error of the activation energy is less than
0.1 eV among 20 elementary reactions involving hydrocarbon
molecules on metal surfaces (Ag, Ce, K, Li, Mg, Mn, Na, Pt, Ru, V and
Zn) as compared to the DFT calculations. In addition, the surface
eventy-two elements highlighted as blue are fully supported in version 3.0.0. Tc and Tl



Fig. 3. Schematic illustration of the key technical ingredients to achieve PFP universal interatomic potential. For the dataset side, a large-scale dataset was constructed which does
not limit its target domain and covers the entire phase space as much as possible. For the architecture side, a graph convolution neural network which treats higher-order tensors
was developed. The single trained model can reproduce various material properties including molecule, bulk, and combined system. Figures are taken from reference [7], CCeBY 4.0
(http://creativecommons.org/licenses/by/4.0/).
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promoter element exploration for the critical reaction was carried
out. The result indicates that Vanadium reduces the activation
barrier the most, and later it was confirmed that it is consistent
with the experimental results. This is an example of the use case of
PFP for materials discovery. Accurate yet efficient materials prop-
erties evaluation has been long pursued for materials discovery and
optimization. Integrating together TeaNet/PFP's capability of pre-
dicting chemical reactions, phase behaviors, and kinetics with
proper autonomous search algorithms such as Bayesian Optimiza-
tion would open more opportunities for rational materials design.

The four problems above, each quite complex, would tradi-
tionally require a separate empirical potential and individualized
fitting. But with PFP, all four problems can be simulated with the
same potential, illustrating the strong transferability. The error
versus the DFT is generally significantly lower than the error be-
tween DFT and experiments. More importantly, its computational
cost is much smaller than conventional DFTs, with order-N
complexity scaling. For example, PFP is more than a million times
faster than DFT in a 3000-Pt-atoms calculation, so a calculation that
takes PFP an hour to finish would take more than a century with
DFT. Thus, one can perform DFT-accuracy simulations, but with a
much larger number of atoms, for much longer physical times. The
detailed information of the simulations and the related data are
available in Ref. [7]. More application examples are forthcoming, for
example in heterogeneous catalysis with strong metal-support
interactions [9] or ionic transport under an electric field bias [10].

What makes TeaNet/PFP robust in describing universal inter-
atomic interactions? The fundamental reason for such robustness is
the effectiveness in transforming raw input data (atomic numbers
fZng which are scalars, and positions {rn} which are vectors) into
better representations of the local electronic environments
centered around “atoms” and “bonds” (Fig. 4). These atom-centered
and bond-centered quantities are represented by tensors. Scalars
and vectors are rank-0 and rank-1 tensors, respectively, but there
are other higher-order tensors, for example the electric quadrupole
moment (belonging to say, a pocket of electronic charge, well
defined on a covalent bond center) would need to be represented
by a rank-2 tensor Tij, where subscript indices i; j takes integer
values from 1 to 3 corresponding to the input space coordinate
(xyz). Recall that the definition of a rank-M tensor Ti1i2…iM is not just
this numerical object has M subscript indices, but also that it must
satisfy tensor transformation law upon any observational-frame
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rotation:

~Ti01i02…i0M
¼ Ti1i2…iMRi1i01Ri2i02…RiMi0M (1)

where Rii0 is the frame-rotation matrix, and ~Ti01i02…i0M
is the read-out

of the same physical object in the rotated observation frame. Phys-
ically meaningful quantities must be represented by tensors, since
one can choose to measure a physically meaningful quantity in any
arbitrary observation frame. In (1) we have already used the Ein-
stein index-contraction convention, where repeated indices
(indices not surviving on the left-hand side) are automatically
summed over from 1 to 3. There are also well-defined tensor outer
products and index contraction operations which give tensorial
outcomes. Thus, the generalized dyad operations

Tijkl≡UijVkl (2)

or arbitrary index contractions

vi≡UijkVjk (3)

are automatically guaranteed to give tensor outputs. Just following
the standard tensor inner products and outer products rules
automatically guarantee the so-called Euclidean space equivariance
in the final output, scalar, vector or otherwise. Translational and
permutational invariances are automatically built in by using only
the difference vector rm-rn in Cartesian frame and fZng scalars. So,
the Eð3Þ equivariant network is really just as simple/trivial as
following the Einstein index-contraction rule between all tensorial
quantities in the graph convolutional neural network.

The goal of TeaNet/PFP is to emulate iterative electronic relax-
ation (and possibly other physically motivated phenomena), where
each layer can be thought of as one “timestep” in the relaxation
step. In the construction of the electronic Hamiltonian with local
orbital basis, or the vibrational dynamical matrix, or in dealing with
the phenomena of elastic stress-strain and piezoelectricity, one
must deal with M>1 tensors. Hence when constructing a graph
neural network and passing “information” from atoms to bonds,
and bonds to atoms, across multiple repeated layers, an essential
question is how to best represent the physical state with the
combination of scalar (M ¼ 0), vector (M ¼ 1), matrix (M ¼ 2),M ¼
3, … tensors with a fixed computational resource budget. For

http://creativecommons.org/licenses/by/4.0/


Fig. 4. (a) Example of atomic interactions depending on the geometry. These angle-dependent interactions are not always localized to a particular atom but can transfer among
networks. (b) Schematic illustration of graph convolution operation with higher-order tensors. Each atom contains scalar (M ¼ 0), vector (M ¼ 1), and matrix (M ¼ 2) tensors
(shown in left top). In the graph convolution operation, those tensor values interact with each other, which represent higher-order geometric interactions. In addition, unlike the
angle-based representation, those geometric features expand through the network by multiple graph convolution layers.
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example, given one can afford to allocate 256 “double-precision”
(8-byte) numbers for each atom which defines the “fatness” of the
GNN, should one allocate

166 scalarsþ 30 vectors ð166� 1þ 30� 3Þ (4)

or

115 scalarsþ 20 vectorsþ 6matricesþ 1 T3
�
115� 1þ 20

� 3þ 6� 32 þ 1� 33
�

(5)

to best represent the physical state of the iterative electronic
relaxation? In terms of computational complexity, the cost of
treating matrices or T3 or T4 (e.g., inner and tensor products) are
not exorbitant compared to treating vectors and scalarse just think
what onemight dowith 115 scalars as compared towhat onemight
do with 6 three-by-three matrices (represented by 54 values).
However, the 6 matrices can represent geometric features that 115
unstructured scalars simply cannot carry, as shown by (1)-(3).
Indeed, an “asset allocation scheme” like (5) may be thought of as a
Taylor series approximation of the target quantity in rotational
complexity. Even though the current implementation of TeaNet/
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PFP has a truncation atM ¼ 2, there is really no reasonwhy it has to
be such, and we believe the best allocation would depend on the
physical problem. Currently the “tensorial asset allocation” was
done manually [6], but in the future we can optimize this allocation
automatically as part of the hyperparameter tuning.

Innovative deep learning architecture alone cannot lead to
successful applications; it must be exposed to sufficiently diverse
and large training data to fully develop the desired model capa-
bility. Current deep learning works extremely well for interpolation
tasks but not for extrapolation tasks. Therefore, the training dataset
should cover a much broader region that encompasses the entire
“high-school” (or even PhD-level) chemistry. The construction of
the training dataset for TeaNet/PFP follows an iterative and adap-
tive way. In the following, we first explain why once-for-all model
training rarely works and then highlight the active-learning strat-
egy [15,19] employed in the current TeaNet/PFP training. Tradi-
tional machine learning interatomic potential development often
starts with constructing a ‘comprehensive’ dataset based on
domain knowledge, in a one-shot fashion. Typical examples of such
a dataset include MD17 [11], QM9 [12], and Materials Project [13].
These datasets have beenwidely used to prototype and benchmark
various NNIP architectures, significantly contributing to the
development of chemoinformatics and materials informatics.
However, the construction of these datasets is highly biased toward
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more stable structures that are considered reasonable. Such pre-
defined datasets bring in two issues. First, it requires sufficient (if
not exhaustive) consideration on structures that are possibly
encountered in applications. This can be very challenging even for a
domain-expert and hardly be sufficient; human knowledge of the
atomic structures resulting from the simulation and quantum
chemical calculations are actually quite limited. Second, although
models can achieve high accuracy on test data from the same
predefined dataset, they are likely to perform much worse in
practical applications. This is because the empirically-crafted
dataset generally has ‘blind-spots’ that show up frequently in
atomistic simulations as unexpected configurations. For example,
the Open Catalyst 2020 (OC20) dataset, which focuses on the en-
ergy and structure of small molecules adsorbed on various material
surfaces, mostly contains stable structures that are pre-defined
[14]. The authors found that the pre-trained DimeNetþþ model
on this OC20 dataset can lead to unexpected results in actual mo-
lecular dynamics simulations. While the model successfully per-
formed structure optimization calculations with a molecule
adsorbed on a crystal surface, it resulted in an unnaturally
deformed structure if the calculation was done only for the surface
structure. The structure was further severely broken when the
molecule was placed there later. This broken structure was pre-
dicted to be even more stable than the reasonable molecular
adsorption structure. This example demonstrates a situation in
which an AI agent moves into an unexpected configuration space
during practical applications, and starts nonsensical operations due
to an illusionary low-energy basin. This indicates that even in-
domain simulations can easily reach “unexpected extrapolation
regions” due to the limitations of one-shot hand-crafted training
datasets, which can have catastrophic consequences for the simu-
lation results.

The discrepancy between in-domain benchmarks and real-
world performance should always be checked, as typical struc-
tural optimization and molecular dynamics calculations are itera-
tive calculations that use the results of current inference as the next
input. It is not uncommon for the number of computation loops to
exceed 1 million before obtaining the desired result. In such iter-
ative loops, the input data used for inference in machine learning
models is not explicitly given by a human or other external entity,
but is entirely determined by the model's behavior and the simu-
lator. This is similar to the situation of reinforcement learning or
sequential prediction/control tasks where the input distribution is
non i.i.d. and strongly depends on the previous prediction results.
In such cases, it is quite possible that the performance of the ma-
chine learning model in real-world applications will be signifi-
cantly degraded compared to the in-domain inference accuracy of
the dataset.

The discussions above clearly show that empirically-crafted
datasets are usually not broad enough and can significantly
deviate from what molecular dynamics simulations reach. To
reduce human bias in input data collection, TeaNet/PFP proposes a
framework to generate a training dataset by molecular dynamics
simulation using the NNIP itself (Fig. 5). Specifically, atomic struc-
tures are generated by mixing many different elements at once,
then the system is heated up to a very high temperature by mo-
lecular dynamics simulation, and finally the system is cooled down
to relax the energy to some extent. Quantum chemistry calculations
are performed on the structures obtained during this process,
which are augmented to the training dataset to retrain the model.
The retrained NNIPs can be used to recursively run this process to
automatically expand the distribution of training data and increase
the robustness of NNIP. It is noted that there are preceding studies
which suggest active learning-based sampling, with small numbers
of the chemical types of elements [15,19].
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In this way, the ML model itself, rather than humans, generates
the training data, thereby minimizing the influence of assumed
knowledge on the training dataset. In addition, because the data is
generated by molecular dynamics simulation, the existence of
“unexpected extrapolation regions” described earlier can be effi-
ciently reduced. Specifically, if there is a structure that should not
be stable but is incorrectly inferred to be stable (“illusional low-
energy basins”) due to an insufficient dataset, the corresponding
structures are expected to be generated by the above Boltzmann
sampling process, and a large error will be discovered, and subse-
quently incorporated into the training data to be relearned. In the
game AI analogy in reinforcement learning, we can find similarities
in the process of self-learning by the agent's own trial-and-error.
Note that the MD at high temperature mentioned above is an
example, and the learning of PFP also includes datasets created
with other “self-play” strategies, such as molecular or crystal
structures in which some elements are artificially substituted by
other elements. All of these techniques have been used to be as
diverse as possible for the purpose of universality.

The resulting dataset to train our first universal potential is
extremely diverse, covering 72 elements from Hydrogen to Bis-
muth. A portion of this dataset called high-temperature multi-
element 2021 (HME21) dataset is nowmade available [16].We have
so far used 4� 105 GPU days, or 1,144 GPU years, to generate the
active-learning-driven DFT calculations. The number of atomic
configurations in the entire dataset has reached 22 million [17].
Diverse test simulations have shown this empirical potential has
outstanding performance, with energy error significantly less than
the chemical accuracy (43 meV/atom) for even chemically very
complex systems, including reaction saddle-point energies [7].
Considering the energetic error of DFT itself is often a few kcal/mol
(~100 meV/atom) against experimental thermochemical measure-
ments, this means TeaNet/PFP can represent DFT quite a bit better
than how much DFT itself can represent chemical reality. The
universal potential can however run millions of times faster than
DFT when dealing with several thousand atoms, and the latest
Matlantis™ release allows for more than 10 000 atoms of arbitrary
combinations of 72 elements (soon to be extended to 94) to be
simulated together. TeaNet/PFP also provides analytical interatomic
force for molecular dynamics simulations and gradient driven
annealers by chain-rule differentiation of the DNN, with excellent
energy conservation in MD simulations. The mean - average error
for force prediction is 0.126 meV/Å for these very diverse configu-
rations. In the future, with more accurate ab initio energetics
generated by using better density functionals, quantum Monte
Carlo or coupled-cluster quantum chemical calculations, we expect
the true accuracy of the PFP universal empirical potential to keep
improving.

Given this universal empirical potential can reach much larger
space-time volumes of simulation for chemically complex systems,
what are the new opportunities for materials modeling?While DFT
allows the study of extended defects such as dislocations, grain
boundaries and phase boundaries, the microstructures are typically
too simple (i.e., straight dislocations or boundaries, with occasional
kinks). Going from few hundred atoms in DFT to 104 atoms in
Matlantis™, one can study realistic extended defects (e.g., with
curvatures) and their interactions, such as dislocation-dislocation
junction strength, dislocation-interface interactions [18], realistic
phase transformations with heterogeneous nucleation near
extended defects [2], plastic deformation and damage evolution,
i.e., stress-corrosion cracking in molten salts [3,4], electrochemical
interfaces [20], etc. The much longer time scales of simulation
would enable accurate thermodynamic and kinetic evaluations
beyond the quasi-harmonic phonon theory, for example superionic
diffusion, potential-of-mean-force free-energy difference



Fig. 5. Schematic illustration of dataset collection method in TeaNet/PFP. The left column shows the training method using the existing dataset and the right column shows the
training method by self-play scheme.
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sampling, high-temperature thermal conductivity calculation, etc.,
that would not have been possible with direct DFT calculations, or
at least without the strong limitations associated with the phonon
theory. (Incidentally, we have also shown that TeaNet/PFP provides
highly accurate interatomic Hessian as well as the nonlinear co-
efficients that would allow phonon scattering calculations of
thermal conduction.)

Furthermore, the total energy and forces are just a subset of the
physical tensorial measurables for an atomistic configuration. It
would be no surprise if TeaNet/PFP architecture is extended to
electronic-structure properties such as the electronic charge den-
sity distribution re(r). It may also be applicable to the processing of
physical phenomena on other scales, such as point cloud observa-
tion data. We have developed a user-friendly Application Pro-
gramming Interface for these very diverse applications. Matlantis™
provides web-browser driven python Jupyter Notebook interface
with many use cases, visualization tools and documentation. This
user friendliness will help grow the application ecosystem of Tea-
Net/PFP. In turn, user feedback would drive further improvement of
the empirical universal potential.

In summary, a universal interatomic potential applicable to an
arbitrary set of chemical elements with high computational effi-
ciency, which had not been achieved historically for a long time, has
finally been realized. Its transferability and wide applicability have
been shown in various material examples and phenomena, and
opens the door for exploration into a myriad of materials, chemical
and even biological systems.
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