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Approaching coupled-cluster accuracy 
for molecular electronic structures with 
multi-task learning
 

Hao Tang    1, Brian Xiao2, Wenhao He3, Pero Subasic4, Avetik R. Harutyunyan    4, 
Yao Wang    5, Fang Liu    5, Haowei Xu    6   & Ju Li    1,6 

Machine learning plays an important role in quantum chemistry, providing 
fast-to-evaluate predictive models for various properties of molecules; 
however, most existing machine learning models for molecular electronic 
properties use density functional theory (DFT) databases as ground truth 
in training, and their prediction accuracy cannot surpass that of DFT. In 
this work we developed a unified machine learning method for electronic 
structures of organic molecules using the gold-standard CCSD(T) 
calculations as training data. Tested on hydrocarbon molecules, our model 
outperforms DFT with several widely used hybrid and double-hybrid 
functionals in terms of both computational cost and prediction accuracy 
of various quantum chemical properties. We apply the model to aromatic 
compounds and semiconducting polymers, evaluating both ground- and 
excited-state properties. The results demonstrate the model's accuracy 
and generalization capability to complex systems that cannot be calculated 
using CCSD(T)-level methods due to scaling.

Computational methods for molecular and condensed matter systems 
play essential roles in physics, chemistry and materials science, which 
can reveal underlying mechanisms of diverse physical phenomena 
and accelerate materials design1. Among various types of computa-
tional methods, quantum chemistry calculations of electronic struc-
tures are usually the bottleneck, limiting the computational speed 
and scalability2. In recent years, machine learning methods have been 
successfully applied to accelerate molecular dynamics simulations 
and improve their accuracy in many application scenarios3. Particu-
larly, machine-learned inter-atomic potentials can predict energy and 
force of molecular systems with much lower computational costs than 
quantum chemistry methods4–7. Indeed, recent advances in universal 
machine-learned potentials enable large-scale molecular dynamics 
simulation with the complexity of realistic physical systems8–11. In addi-
tion to machine-learned inter-atomic potentials, rapid advances also 

appear in another promising direction, namely, the machine learning 
density functional, which focuses on further improving the energy 
prediction towards chemical accuracy (1 kcal mol–1)12,13.

Aside from energy and force, other electronic properties that 
explicitly involve the electron degrees of freedom are also essential 
in molecular simulations14. In the past few years, machine learning 
methods have also been extended to electronic structure of molecules, 
predicting various electronic properties such as electric multipole 
moments15–17, electron population18, excited-state properties19,20, and 
the electronic band structure of condensed matter21,22. Most of these 
methods take the density functional theory (DFT) results as the training 
data, and use neural networks to fit the single-configurational repre-
sentation (either the Kohn–Sham Hamiltonian or molecular orbitals) of 
the DFT calculations15,19,21,23. Along with the rapid advances of machine 
learning techniques, the neural network predictions match the DFT 
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computational costs of CCSD(T) methods are formidably high for large 
systems. The essence of our machine learning method is to obtain the 
non-local exchange-correlation effects from a neural network, whose 
computational cost scales only linearly with system size.

To obtain the machine learning correction term, we build a neural 
network model to predict Vθ. The workflow consists of the input, con-
volutional and output layers. The input layer takes atomic configura-
tions as input, encoding them into the node features xI,in for atom 
information, and edge features fIJ,in for bond information (I, J are indices 
of atoms). The E3NN framework is employed for the convolutional layer 
(Fig. 1b; see Methods for details) due to its good performance in pre-
dicting molecular properties4. The convolutional layer outputs xI,out 
and fIJ,out, which encode E3-equivariant features of atoms and bonds, 
as well as their atomic environment. The equivariant machine learning 
correction Hamiltonian Vθ is then constructed using xI,out and fIJ,out in 
the output layer. The effective electronic structure of a molecule is 
obtained by solving the eigenvalue equations of the total Hamiltonian 
Heff = F′ + Vθ, giving ϵi, the ith energy level, and ci, the corresponding 
molecular orbital represented on atomic orbital basis set.

Multiple learning tasks
Our scheme aims to predict multiple observable molecular properties 
(more than just energy). To achieve reduced computational costs, we 
do not include information about the entire electronic Hilbert space 
as learning targets. MEHnet is instead trained on a series of molecular 
properties to capture their shared underlying representation, that 
is, the effective single-body Hamiltonian Heff. The corresponding 
single-body energy levels and molecular orbitals are used to evalu-
ate a series of ground-state properties Og according to the rules of 
quantum mechanics:

OMEHnet
g = fOg ({ϵi}, {ci}), Og = E, ⃗p ,Q,CI,BIJ, (1)

where Og goes through the ground-state energy (E), the electric dipole 
( ⃗p) and quadrupole (Q) moments, the Mulliken atomic charge28 of each 
atom CI, and Mayer bond order29 of each pair of atoms BIJ. We also 
evaluate the energy gap (first excitation energy, Eg) and static electric 
polarizability α:

EMEHnet
g = fEg ({ϵi}, {ci},G),

αMEHnet = fα({ϵi}, {ci},T).
(2)

In principle, the ground-state electronic structure does not contain 
the information on the energy gap and electric polarizability. We there-
fore use the model-output correction terms G (energy gap correction) 
and T (dielectric screening matrix) to account for the information on 
excited states and the linear response, respectively. We provide more 
details on the function forms of fOg, fEg and fα in the Methods. Note 
that these properties are all derived from the underlying electronic 
structure, so they are internally related. Multi-task learning methods 
can therefore utilize these relations to mutually enhance the model’s 
generalization capability.

The goal of our multi-task learning is to predict the properties 
listed above with coupled-cluster accuracy. Hence, the total loss func-
tion LTotal for each molecule is constructed as follows:

LTotal = lV + ∑
O∈Og∪{Eg ,α}

lO,

lO = wO ×MSEloss(OMEHnet,Olabel),

lV = wV
N2
basis

∑
Iμ, Jν

|Vθ
Iμ, Jν|

2.

(3)

Here, for each property O, lO is the the mean-square error loss between 
OMEHnet and Olabel, the MEHnet predictions (equations (1) and (2)) and 

results increasingly well, approaching chemical accuracy8,16. However, 
as a mean-field-level theory, DFT calculations themselves induce a 
systematic error that is usually several times larger than the chemical 
accuracy24, limiting the overall accuracy of the machine learning model 
trained on DFT datasets.

By comparison, the correlated wavefunction method CCSD(T) 
is considered the gold-standard in quantum chemistry25. It provides 
high-accuracy predictions on various molecular properties. Unfor-
tunately, the computational cost of CCSD(T) calculations scales 
unfavorably with system size. It can therefore only handle small mol-
ecules with up to hundreds of electrons. This urges the combination 
of CCSD(T) with machine learning methods, which, together, can 
potentially have both high accuracy and low computational cost. How-
ever, the above-mentioned machine learning methods that directly 
fit the single-configurational representation of the DFT calcula-
tions cannot be directly applied to the CCSD(T) training data. This is 
because CCSD(T) does not provide either Kohn–Sham Hamiltonians or 
single-body electronic wavefunctions due to the many-body quantum 
entanglement nature of its representation.

In this work we develop a unified multi-task machine learning 
method for molecular electronic structures. Instead of focusing solely 
on energy, our method also provides accurate predictions for vari-
ous electronic properties. By contrast to machine learning models 
trained on DFT datasets, our method learns from CCSD(T)-accuracy 
training data. The method incorporates the E3-equivariant neural 
network (E3NN)4,26, in which vectors and tensors are involved in the 
message-passing step. For brevity we refer to our method as multi-task 
electronic Hamiltonian network (MEHnet). Using hydrocarbon organic 
molecules as a testbed, our method predicts molecular energy within 
chemical accuracy as compared with both CCSD(T) calculations and 
experiments. It also predicts various properties such as electric dipole 
and quadrupole moments, atomic charge, bond order, energy gap 
and electric polarizability with better accuracy than B3LYP, one of the 
most widely used hybrid DFT functionals27. Our trained model shows 
robust generalization capability from small molecules in the training 
dataset (molecular weight < 100 unified atomic mass unit) to larger 
molecules such as naphthalene and even semiconducting polymers 
(molecular weight up to several thousands). Systematically predict-
ing multiple electronic properties using a single model with local DFT 
computational speed, the method provides a high-performance tool 
for computational chemistry and a promising framework for machine 
learning electronic structure calculations.

Results
Computational workflow
In this section we briefly describe the theoretical background 
and model architecture of the MEHnet method (see Methods for 
details). We basically use a neural network to simulate the non-local 
exchange-correlation interactions of a many-body system. A 
physics-informed approach is then used to predict multiple proper-
ties from the output of a single neural network.

Given an input atomic configuration, our goal is to acquire an 
effective single-body Hamiltonian matrix that is then used to predict 
quantum chemical properties from physics principles (Fig. 1a). First, 
a fast-to-evaluate single-configurational method such as DFT or Har-
tree–Fock is used to obtain a mean-field effective Hamiltonian, F′. Note 
that F′ is easy and fast to compute, but its accuracy is relatively low. We 
will use F′ as the starting point of our machine learning model, and the 
total effective Hamiltonian of the system Heff = F′ + Vθ is obtained by 
adding the machine learning correction term Vθ. In the current formal-
ism, F′ is obtained from a local DFT calculation, and it contains only a 
local-exchange-correlation contribution, and the correction term Vθ 
would account for the non-local exchange-correlation effects. Gener-
ally, the non-local exchange-correlation effects can be captured in 
CCSD(T) calculations. However, as mentioned before, the 
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coupled-cluster labels in the training dataset, respectively. Meanwhile, 
lV is a regularization that penalizes large correction matrix Vθ, whereas 
Nbasis is the total number of basis functions in the molecule. The weights 
wV and wO are hyperparameters whose values are listed in the Meth-
ods. The weights are chosen to balance the training tasks so that the 
training errors of all tasks decrease to satisfactory levels. Minimizing 
LTotal requires the back-propagation through the diagonalization of 
Heff (that is, calculating ∂ϵi/∂Heff and ∂ci/∂Heff), which is numerically 
unstable with direct numerical differentiation. To overcome this issue, 
we derive customized back-propagation schemes for each property 
using perturbation theory in quantum mechanics (see Methods for 
details), giving

∇θϵi = (ci)†(∇θVθ)ci

∇θci = ∑
p≠i

(cp)†(∇θVθ)ci

ϵi−ϵp
cp.

(4)

When evaluating the gradients of properties in equations (1) and (2) 
using the chain rule, terms that analytically cancel each other are 
removed in the numerical evaluation, making the scheme numeri-
cally stable.

Atomic configurations of molecules in our training dataset are 
generated by the workflow shown in Fig. 1c. Our dataset covers vari-
ous classes of hydrocarbons (saturated, unsaturated, alicyclic and 
aromatic) and molecular structures (linear, branched and cyclic), con-
taining both stable and metastable conformers with diverse types of 
carbon–carbon bonds (single, double, triple and conjugated π-bonds; 
see Supplementary Section 1). Coupled-cluster calculations are imple-
mented for various hydrocarbon molecules. The MEHnet model is 

trained on small-molecules training dataset (training domain; Fig. 1c). 
The model is then tested on both small molecules in the training domain 
but outside the training dataset (in-domain validation) and larger 
molecules outside the training domain (out-of-domain validation).

Benchmark of model performance
We then benchmark the performance of the MEHnet model and display 
potential applications of the model in systems of practical importance. 
The following discussions focus on close-shell hydrocarbon molecules 
(except for the QM9 version of MEHnet that we will describe later).

The model’s generalization capability from small to large mole-
cules is essential for its usefulness on complex systems for which 
coupled-cluster calculations cannot be implemented on current com-
putational platforms due to their formidable computational costs.  
To test the generalization capability and data efficiency of our model, 
we train the model with a varying training dataset size, Ntrain, which 
ranges from 10 to 7,440 atomic configurations of hydrocarbon mole-
cules. The testing root-mean-square error (RMSE, absolute error in 
atomic units) of different trained properties exhibits a decreasing trend 
when the training dataset size increases (Fig. 2a), indicating effective 
model generalization. Notably, the energy error has the fastest drops 
with a slope of –0.38 (meaning that the testing error ∝ N-0.38

train ). In com-
parison, some of the recently developed advanced machine learning 
potentials (that directly learn energies and their derivatives, such as 
the potentials in refs. 4,8) exhibit lower slopes of about –0.25. This 
implies a potential advantage of the multi-task method: as a multi-task 
method learns different molecular properties through a shared repre-
sentation (the electronic structure), the domain information learned 
from one property can help the model’s generalization on predicting 
other properties30, providing improved data efficiency.
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Fig. 1 | Schematic of the MEHnet electronic structure workflow.  
a, Computation graph of the MEHnet method that predicts multiple quantum 
chemical properties from atomic configurations inputs. The computational 
graph consists of an input layer (green blocks), convolutional layer (blue block) 
and output layer (orange blocks). b, Model architecture of the E3-equivariant 
NN with two layers of graph convolution. The output contains both node feature 
xI,out and edge feature fIJ,out. c, Training and testing dataset generation. Each dot 

represents molecules with the same chemical formula, and is plotted to show 
the number of electrons and atoms. The blue and orange colors correspond to 
molecules in the training and generalization domains, respectively. The model 
is trained with small molecules, and is subsequently tested with large molecules. 
The dot size reflects the number of conformers and/or vibrational configurations 
with the same chemical formula in the dataset (from 1 to 500, in log scale).
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We then benchmark the computational costs and prediction accu-
racy of our model trained on 7,440 atomic configurations with 70 differ-
ent molecules, which will be used in the rest of this paper. The MEHnet 
method exhibits smaller computational cost and slower scaling with 
system size, as compared with the hybrid functional, double-hybrid 
functional31 and the CCSD(T) method (Fig. 2b). Compared to the hybrid 
functional, our method avoids the expensive calculation of the exact 
exchange, thus substantially reducing computational cost27. Using 
the gold-standard CCSD(T) calculation as a reference, the prediction 
accuracy of the MEHnet method on various molecular properties 
is compared with that of several popular functionals and existing 
machine learning methods (Fig. 2c and Table 1). The comparison is 
implemented on both the in-domain (ID) and out-of-domain (OOD) 
testing dataset of hydrocarbon molecules. Note that although the 
B3LYP hybrid functional is widely used, it is known to exhibit certain 
failure modes in hydrocarbon molecules32, we therefore include several 
other high-performance hybrid and double-hybrid functionals32,33 with 
DFT-D3 correction34 in the comparison (Supplementary Section 2).

The MEHnet predictions consistently exhibit smaller RMSEs 
than the hybrid (B3LYP and B3PW9135), double-hybrid (DSD-PBEP8631 
and PWPB9536) and DM2112 functionals on most molecular properties 
(Table 1, with the exception of the electric dipole moment on the OOD 

dataset, for which DSD-PBEP86 gives the smallest RMSE). Remarkably, 
the RMSE of the combination energy predicted by MEHnet is about 
0.1 kcal mol–1 (~4 meV) per atom in both the ID and OOD datasets. Our 
method exhibits a similar combination energy RMSE to the AIQM1 
machine learning potential, which features energy predictions within 
chemical accuracy. These results confirm that MEHnet’s predictions on 
reaction energies can approach quantum chemical accuracy (assuming 
that on average 1 mole of molecules in reactants contain ~10 moles of 
atoms). Note that the B3LYP functional (with the def2-SVP basis set) 
exhibits large RMSEs for Mulliken charge mainly because of the basis set 
error37. Although using a large basis set for the B3LYP Mulliken charge 
gives a much smaller error, the MEHnet model still gives better overall 
accuracy (Supplementary Fig. 3).

Aside from the ground-state properties, MEHnet also provides the 
excited-state property Eg and linear response property α with better 
overall accuracy than other methods (Table 1). For intensive quantities 
(E per atom, C, B and Eg), the errors are on a similar level for molecules 
with different sizes; for extensive quantities (p, Q, α), there is a trend 
of increasing error with increasing system size, because the absolute 
values of these quantities themselves increase with system size. Fur-
thermore, the MEHnet model gives similar prediction accuracy among 
different classes of hydrocarbons such as alkanes, alkenes, alkynes and 

a

b

c

10

1

0.1

0.02

0

0.2

0
0.2

0

0.1

10

10

10

10–3

10–3

101 102

Q E
C B

Eg
α per atom

p

103 104

10–2

10–1

100

10–2

10–1

100

20 30 40 50 60 70

Number of electrons

Dataset size

C
os

t (
no

de
 h

ou
r)

Te
st

in
g 

er
ro

r (
a.

u.
)

1

0.1

0

0

CH 4
C 2

H 2
C 2

H 4
C 2

H 6
C 3

H 4
C 3

H 6
C 3

H 8
C 4

H 6
C 4

H 8

C 4
H 10

C 5
H 8

C 5
H 10

C 5
H 12

C 6
H 6

C 6
H 8

C 6
H 12

C 6
H 14

C 7
H 8

C 7
H 10

C 8
H 8

C 7
H 14

C 8
H 14

C 10
H 10

α 
(a

.u
.)

E g 
(e

V)
B

C
 (e

)
Q

 (e
a 02 )

p 
(D

eb
ye

)
E 

(k
ca

l m
ol

–1
)

MEHnet (this work)Hybrid

~N2

DM21Double hybrid AIQM1

~N1

~N4

~N2

~N2

MEHnet (this work)
Hybrid
Double hybrid
CCSD(T)

Fig. 2 | Benchmark of the model performance on the testing dataset.  
a, Testing RMSE of different quantities as a function of training dataset size.  
b, Computational costs of different methods plotted against the number of 
electrons. The computational cost is measured as the calculation time (node 
hour) on a single Intel Xeon Platinum 8260 CPU node with 48 cores with sufficient 
memory for all calculations. The scaling deviates from the theoretical asymptotic 
scaling N7 for CCSD(T), because the parallelization efficiency is higher for larger 
molecules. In principle, the N7 scaling for CCSD(T) would appear in the large N 

limit. c, Prediction RMSE of the energy (E per atom, reference to separate atoms), 
electric dipole moment ( p⃗), electric quadrupole moment (Q), Mulliken atomic 
charge (C), Mayer bond order (B), energy gap (first excitation energy, Eg) and 
static electric polarizability (α, a.u. means atomic unit) with respect to the 
coupled-cluster results. The MEHnet method is compared with the B3LYP hybrid 
functional, DSD-PBEP86 double-hybrid functional31, DM21 machine learning 
functional12 and AIQM1 machine learning potential11.
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arenes (Supplementary Fig. 1), suggesting consistent generalizability 
in the hydrocarbon chemical space.

Aromatic molecules
Hydrocarbon molecules have a vast structural space, including various 
types of local atomic environments. To further examine the model’s 
generalization capability in more complex structures, we apply MEHnet 
to a series of aromatic hydrocarbon molecules synthesized in experi-
ments38. The gas phase standard enthalpy of formation Hf is an essential 
thermochemical property of molecules that can be accurately meas-
ured in experiments. In this regard, we use the MEHnet model to predict 
Hf of various aromatic molecules in a comprehensive experimental 
review paper (ref. 38). The MEHnet predictions on Hf are well consistent 
with experiments on all molecules, and their difference is only around 
~0.1–0.2 kcal mol–1 per atom (Fig. 3a). Note that the MEHnet prediction 
error is on the same order of magnitude as the experimental error 
bar (though numerically larger), indicating high prediction accuracy.

In addition to thermochemical properties, MEHnet can also pre-
dict spectral properties (Fig. 3b and Supplementary Fig. 4). Infra-
red spectra, especially, reflect essential information on molecular 
vibrational modes and their interaction with light. In a past work on 
machine learning electronic structure16, the predicted peak intensity is 
usually inconsistent with the experiment. In comparison, the MEHnet 
predictions on both the peak positions and intensity agree well with 
experimental results in several common hydrocarbon molecules, and 
it also provides both the fundamental bands and combination bands 
known as benzene fingers in the infrared spectrum. The good consist-
ency of peak intensity is attributed to accurate predictions on the 

transition dipole moments that determine the intensity of light–matter 
interaction. See Supplementary Section 3 for details on calculating 
the infrared spectrum, as well as the calculated infrared spectra for 
several other molecules.

Large-scale semiconducting polymers
Aside from small molecules, we also apply MEHnet to semiconducting 
polymers comprising hundreds of atoms, which are difficult to calcu-
late by rigorous correlated methods such as CCSD(T). The essential 
electronic properties of semiconducting polymers originate from 
the conjugated π-bonds with delocalized molecular orbitals. As the 
delocalized molecular orbitals extend through the whole molecule 
(Fig. 4a), the polymers’ electronic properties also involve long-range 
correlation, making it challenging for machine learning methods. It is 
therefore important to examine whether MEHnet can capture semi-
conducting polymers’ electronic properties involving delocalized 
molecular orbitals.

Three kinds of semiconducting polymers: trans-polyacetylene 
(t-PA), cyclic polyacetylene (c-PA) and polyphenylene (PPP) are studied 
using MEHnet. The model correctly captures the delocalized π-bond 
feature of frontier orbitals, that is, the highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 
(Fig. 4a). Various important electronic properties of semiconducting 
polymers depend on the chain length, including the energy gap Eg and 
polarizability α. We calculate such chain-length dependence (up to 
more than 400 atoms) using the MEHnet model (Fig. 4b,c). One can 
see that Eg is larger for shorter oligomers and converges to a smaller 
value for long chains. This is in analogy to the size effect on the energy 

Table 1 | Benchmark of MEHnet model’s RMSE in predicting different quantum chemical properties on the ID testing dataset 
and OOD testing dataset with respect to the coupled-cluster calculations

RMSE (ID/OOD) Hybrid Double Hybrid ML

Unit B3LYP B3PW91 DSD-PBEP86 PWPB95 DM21 AIQM1 MEHnet (ours)

Energy (per atom) kcal mol–1 2.20/2.41 2.03/2.73 0.94/1.20 1.64/1.98 0.22/0.11 0.13/0.06 0.11/0.10

Dipole Debye 0.06/0.06 0.06/0.04 0.03/0.03 0.07/0.05 0.04/0.04 – 0.03/0.04

Quadrupole ea20 0.12/0.21 0.32/0.51 0.11/0.18 0.10/0.14 – – 0.03/0.12

Atomic charge e 0.19/0.20 0.16/0.16 0.04/0.05 0.05/0.05 0.05/0.04 – 0.04/0.03

Bond order – 0.05/0.03 0.06/0.04 0.04/0.02 0.06/0.03 0.06/0.03 – 0.02/0.02

Bandgap eV 0.59/0.63 0.65/0.54 3.71/3.26 2.19/1.98 1.71/1.47 – 0.26/0.31

Polarizability a.u. 2.22/4.32 2.53/4.72 4.74/8.05 – – – 1.85/3.91

The numbers in the table are ID/OOD RMSE. Other DFT and machine learning methods are compared. We leave some of the spaces blank when the method does not directly output the 
quantity for fair comparison.
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ref. 38 (right axis) are compared for 11 molecules (see Supplementary Table 2 for 
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red line (left axis). b, Infrared spectrum of benzene. The experimental data is 
from the NIST Chemistry WebBook54. Vibration modes corresponding to the 
peaks are labeled following the convention in ref. 55.
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gap of quantum dots and quantum wells. The converged energy gap 
for long t-PA and PPP polymers calculated by MEHnet are in reasonable 
agreement with the experimental values (relative errors within 10%)39,40, 
which are shown as squares in Fig. 4b. The longitudinal static electric 
polarizability αxx (per monomer) is positively related to the polymer 
chain length. This is because in longer chains, more delocalized elec-
tron distributions can have larger displacements under an external 
electric field. The predicted αxx for t-PA oligomers and PPP polymers are 
in perfect agreement with previous correlated calculations using the 
high-accuracy MP2 method41,42 (Fig. 4c). The chain-length-dependent 
Eg and α of c-PA, to the best of our knowledge, have not been reported. 
We provide their values as a prediction to be examined by future work.

QM9 version of MEHnet
Although the results in this paper mainly focus on hydrocarbons, 
our method is readily applicable to systems with different elements.  
To examine the generality of our method to the chemical space beyond 
hydrocarbons, we trained an MEHnet model on 10,000 molecules ran-
domly sampled from the QM9 dataset43—a common quantum chemistry 
database including molecules comprising H, C, N, O and F atoms. The 
model is then tested on 4,000 other molecules randomly sampled from 
the QM9 dataset (see Table 2 and Supplementary Fig. 5). The prediction 
accuracy on the QM9 testing dataset is even better than that in the case 
of hydrocarbons (Table 1), suggesting that our method can be applied 
to more general cases with various types of elements (refer to Supple-
mentary Section 4 for details on the benchmark of the QM9 version).

Discussion
The current MEHnet scheme has several limitations: it is not readily 
applicable to periodic crystals, open shell molecules or molecules 
with strong multi-reference character.

In principle, our approach can also be generalized to extended 
systems, where the periodic boundary condition (PBC) is applied. The 
band structure and Bloch wavefunction can then be obtained by solving 
the eigenvalue problem for each wave vector ⃗k  after a Fourier trans-
formation from the real space to the reciprocal space. Although the 
CCSD(T) method for training data generation does not directly support 
PBC, one can use CCSD(T) calculations for finite atom clusters (that is, 
a truncated and possibly passivated supercell) to train the model and 
subsequently use the model to predict the properties of extended 
systems. Alternatively, the training data of extended systems can be 
generated by high-accuracy methods other than CCSD(T), such as 
double-hybrid DFT, which allows for PBC. Aside from CCSD(T), our 
scheme can also use other high-level quantum chemistry methods to 
generate the training labels of molecule properties. Quantum chem-
istry methods can be selected according to the desired accuracy and 
the character of systems under consideration.

Note that the results of CCSD(T) calculations may not be consist-
ently accurate for all molecules. Some of the polyaromatic hydro-
carbons are more multi-reference in nature (although it is rare for 
the molecules studied in this paper; see Supplementary Section 5), 
so that the CCSD(T) calculations themselves exhibit larger errors 
for these molecules than for other molecules. As all of our training 
and testing data take CCSD(T) as the ground truth, our model cannot 
capture the strong multi-reference effects that are not captured by 
CCSD(T). One possible way to adapt the workflow to systems with 
strong multi-reference nature is by using the multi-reference con-
figuration interaction method44 to generate the training dataset. It 
is also possible to include one-particle reduced density matrix as an 
output descriptor of the MEHnet model to better describe electronic 
structure with strong multi-reference nature, as demonstrated in 
refs. 16. The one-particle reduced density matrix contains complete 
information on ground-state single-body properties for both single- 
and multi-reference systems. Adapting the MEHnet method to more 
comprehensive datasets can produce a general-purpose electronic 
structure predictor, which is left for future work.

Methods
Graph encoding of atomic configuration
The input layer takes atomic configurations as input, including the 
information on atomic numbers (Z1, Z2, … ,Zn) and atomic coordinates 
( ⃗r 1, ⃗r 2,… , ⃗r n) of an n-atom system. A molecular graph is constructed, in 
which atoms are mapped to graph nodes, whereas bonds between 
atoms (neighboring atoms within a cut-off radius rcut = 2 Å) are mapped 
to graph edges. The atomic numbers ZI of input elements are  
encoded as node features xI,in by one-hot embedding. The atomic 
coordinates are encoded as edge features fIJ,in ≡ [ fc(rIJ),Ylm( ⃗e IJ)], where 
fc(r) ≡

1
2
[cos(π r

rcut
) + 1]  is a smooth cut-off function reflecting the  
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Fig. 4 | MEHnet predictions for the electronic properties of semiconducting 
polymers. a, Atomic structure and HOMO and LUMO wavefunctions of t-PA, 
polyphenylene PPP and c-PA. The wavefunctions are visualized by isosurfaces at 
the level of ±0.01 Å−2/3 (positive isosurface colored blue and negative isosurface 
colored yellow). b,c, Energy gap (b) and static electric polarizability (c) of t-PA 
(blue lines), PPP (green lines) and c-PA (orange lines) with different polymer chain 
length. Longitudinal polarizability αxx, horizontal polarizability αyy and vertical 
polarizability αzz are shown as solid, dashed and dotted lines, respectively. 
Squares (blue for t-PA and green for PPP) represent literature values for polymers 
in experiments39,40 and correlated calculations41, whereas blue dots represent 
literature values for t-PA oligomers from the MP2 correlated calculations42.
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bond length rIJ ≡ | ⃗r I − ⃗r J|, and Ylm( ⃗e IJ) is the spherical harmonic functions 

acting on the unit vector ⃗e IJ ≡
r⃗ I−r⃗ J

|r⃗ I−r⃗ J |
 representing the bond orientation26. 

We include Ylm tensors up to l = 2. The electron wavefunction is repre-
sented using an atomic orbital basis set {||ϕI,μ⟩} (ref. 45), where I is the 
index of atom and μ is the index of atomic orbital basis function.

BP86 single-body effective Hamiltonian
A quantum chemistry calculation46 (the orbital integrator block in 
Fig. 1a) is then used to evaluate the single-body effective Hamiltonian 
FIμ,Jν and overlap matrix SIμ,Jν ≡ 〈ϕI,μ∣ϕJ,ν〉 in the non-orthogonal atomic 
orbital representation, where Iμ is the row index and Jν is the column 
index. The S and F matrices are evaluated by the ORCA quantum chem-
istry program package46 (v.5.0.4) with the quick-to-evaluate BP86 
local density functional47 and the medium-sized cc-pVDZ basis set45. 
As the hydrocarbon molecules we study are all close-shell molecules, 
we use spin-restricted DFT calculations to obtain F. We also assume 
the neural network correction term Vθ is spin-independent as well. 
Namely, the spin-up and -down molecular orbitals and energy levels 
are the same, and all molecular orbitals are either doubly occupied 
or vacant.

The total BP86 energy EBP86 equals the molecular orbital energy 
2∑ne/2

i=1 ϵi (where ϵi is the ith molecular orbital energy level and ne is the 
number of electrons) plus a many-body energy EMB:

EBP86 = 2
ne/2
∑
i=1

ϵi + EMB (5)

EMB originates from the double-counting of the electron–electron 
interaction in the band structure energy and can be obtained from the 
output of the ORCA BP86 DFT calculation. The Lowdin-symmetrized 
Kohn–Sham Hamiltonian48 is then obtained as

F′ ≡ S−1/2FS−1/2 + EMB
ne

I, (6)

where the last term is an identity shift to account for the many-body 
energy term. In this case, the direct summation of molecular orbital 
energies given by F′ equals:

2
ne/2
∑
i=1

eigi(F′) = 2
ne/2
∑
i=1

eigi (S−1/2FS−1/2 +
EMB

ne
I)

= 2
ne/2
∑
i=1

[eigi(S−1/2FS
−1/2) + EMB

ne
]

= 2
ne/2
∑
i=1

ϵi + EMB,

(7)

where eigi is a function that returns the ith lowest eigenvalue of a matrix, 
and we use the fact that the energy level ϵi is the eigenvalue of the 
Lowdin-symmetrized Hamiltonian eigi(S−1/2FS−1/2) (ref. 48). After this 
transformation, the Kohn–Sham effective Hamiltonian F′ already 
includes the many-body energy EMB, and the total electronic energy is 
just the summation of molecular orbital energies. Adding the EMB term 
does not change the eigenfunction and relative energy levels, and thus 
all other properties are unchanged.

Architecture of the convolutional layer
In the convolutional layer, the input feature first goes through a  
Nspecies × Nspecies linear transformation (the first self-interaction block, 
Nspecies is the number of different elements in the system) and an 
activation layer (the first non-linearity block). All activation layers 
in MEHnet are tanh functions applied to scalar features. The input 
features then go through the first-step convolution, where the 
fully connected tensor product (the first tensor product block) of 
node feature xJ and the spherical Harmonic components of all con-
nected edge features fIJ are mapped to an irreducible representa-
tion ‘8 × 0e + 8 × 1o + 8 × 2e’ (denoted as Irreps1), meaning there are 
eight even scalars, eight odd vectors and eight even rank-2 tensors. 
Weights in the fully connected tensor product are from a multilayer 
perceptron (the first multilayer perceptron (MLP) block), taking fc(rIJ) 
as input. All MLP blocks in Fig. 1b have a 1 × 16 × 16 × 16 × Nw structure 
and tanh activation function, where Nw is the number of weights in the 
tensor product. Then, in the concatenation block, tensor products 
from different edges fIJ connected to the node I are summed to a new 
node feature on I. The new node features then go through a linear 
transformation (self-interaction block) that maps to Irreps1. In all 
of the self-interaction layers, linear combinations are only applied 
to features with the same tensor order. The new node features are 
added to the original node features, before undergoing the linear 
transformation to complete the first-step of the convolution process.  
The second-step convolution has the same architecture. The only dif-
ference is that the second tensor product block takes input node fea-
tures of Irreps1 and output features of ‘8 × 0e + 8 × 0o + 8 × 1e + 8 × 1o + 
8 × 2e + 8 × 2o’ (denoted as Irreps2). The output of the self-interaction 
blocks is also Irreps2. After another activation function, the node 
features are output as xI,out. Another tensor product is applied to the 
node features of the two endpoints of each edge to attain the output 
bond feature fIJ,out; this output also has a dimension of Irreps2, with 
weight parameters from the MLP taking fc(rIJ) as input.

Finally, the output features are used to construct the correction 
matrix Vθ. The neural network correction matrix is as follows:

Vθ
Iμ, Jν = {

[Vnode(xI,out)]μ,ν if I = J

1
2
[Vedge (fIJ,out)]μ,ν +

1
2
[Vedge (fJI,out)]ν,μ if I ≠ J

(8)

where Vnode(xI,out) is a NI × NI symmetric matrix rearranged from node 
features xI,out, whereas Vedge(fIJ,out) is a NI × NJ matrix obtained from edge 
features fIJ,out. Here NI and NJ are the numbers of basis functions of the 
atom I, J. Note that the output matrices Vθ are Hermitian and equivariant 
under rotation according to the transformation rule of the basis set 
{||ϕI,μ⟩}. Vnode(xI,out) first applies a linear layer from the input dimension 
of Irreps2 to the output dimension Irreps(I)⊗2, where:

Irreps(I ) = {
(2 × 0e + 1 × 1o) if I is H

(3 × 0e + 2 × 1o + 1 × 2e) if I is C
(9)

The output dimension corresponds to the irreducible representation 
of the block diagonal terms of the Hamiltonian of the cc-pVDZ basis 
set. The output is then arranged into the NI × NI matrix form, VI,out, 
according to the Wigner–Eckart theorem22, and symmetrized to obtain 
Vnode(xI,out) =

λV
2
(VI,out + VT

I,out); λV is a constant hyperparameter and is set 
to 0.2 for our model. Similarly, the off-diagonal term Vedge(fIJ,out) in equa-
tion (8) applies a linear layer from the input dimension of Irreps2 to the 
output the dimension Irreps(I, J), which equals the direct product of 
Irreps(I) and Irreps(J). The outputs are then arranged into the NI × NJ 
matrix and multiplied by λV, giving Vedge(fIJ,out).

Furthermore, the energy gap correction term G is obtained from 
a 8 × 32 × 3 MLP that takes the even scalars of xI,out as input and outputs 
a three-component scalar array, gI;0,1,2, with tanh activation. The first 
component is for attention pooling:

Table 2 | RMSE of the QM9 version of MEHnet model on the 
testing dataset of 4,000 randomly sampled configurations 
in the QM9 dataset

Property E per atom p Q C B Eg α

Unit kcal mol–1 Debye a.u. e – eV a.u.

RMSE 0.07 0.03 0.04 0.03 0.04 0.25 1.19

The dash indicates that the bond order B has no unit.
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GK = ∑
I

egI,0
∑JegJ,0

gI,K, K = 1, 2, (10)

giving the two-component bandgap correction term G. The polarizabil-
ity correction term, the screening matrix T is obtained from the edge 
features fIJ,out going through a Irreps2 to 32 × 0e + 1 × 2e linear layer, an 
tanh activation layer, and a 32 × 0e + 1 × 2e to 1 × 0e + 1 × 2e linear layer. 
The 1 × 0e + 1 × 2e array is then multiplied by a factor λT (set to 0.01 in 
our case) and rearranged into the six independent components of the 
symmetric matrix, T.

Evaluating molecular properties
Using Heff, the electronic structure is evaluated by Schordinger 
equation Heffci = ϵic

i, and the molecular orbitals are |ψi⟩ = ∑I,μ ̃ciI,μ ||ϕI,μ⟩, 
̃ci = S−1/2ci. The ground-state properties in equation (1) are evaluated 

from the electronic structure from physics principles, that is, refs. 
28,29:

EMEHnet = ENN + 2
ne/2
∑
i=1

ϵi

⃗pMEHnet = −2e
ne/2
∑
i=1

∑
Iμ, Jν

( ̃ciI,μ)
∗
̃ciJ,ν⟨ϕI,μ| ̂⃗r |ϕJ,ν⟩

QMEHnet = −2e
ne/2
∑
i=1

∑
Iμ, Jν

( ̃ciI,μ)
∗
̃ciJ,ν⟨ϕI,μ| ̂⃗r ̂⃗r |ϕJ,ν⟩

CMEHnet
I = e [ZI − 2

ne/2
∑
i=1

∑
Jμν
( ̃ciI,μ)

∗
̃ciJ,νSIμ, Jν]

BMEHnet
IJ = 4

ne/2
∑
i, j=1

∑
KLμνλσ

( ̃ciK,λ)
∗
̃ciI,μSKλ, Jν( ̃c j

L,σ)
∗
̃c j
J,νSLσ,Iμ

(11)

where ENN is the Coulomb repulsion energy between nuclei, and e and 
̂⃗r  are the electron charge and position operator, respectively.

Besides, using the ground-state electronic structure, Eg can be 
roughly estimated as ϵne/2+1 − ϵne/2, the HOMO–LUMO gap. However, in 
principle, the ground-state electronic structure (ϵn, cn) does not contain 
the information on excited states (once a electron is excited, ϵn and cn 
undergo relaxation and become different). We therefore use MEHnet 
to output two correction terms G1 and G2; Eg is then evaluated as a linear 
transformation of the HOMO–LUMO gap using G1 and G2 as the 
coefficients:

EMEHnet
g = (1 + G1) (ϵne/2+1 − ϵne/2) + G2 (12)

Evaluation of the static electric polarizability is done in two steps. 
First, we evaluate the single-particle polarizability α0 using perturba-
tion theory:

α0 = 2e2
Nbasis

∑
a=ne/2+1

ne/2
∑
i=1

⃗r ai ⃗r ia
ϵa − ϵi

(13)

where Nbasis is the number of basis functions of the molecule, and 
⃗r ai ≡ ∑Iμ, Jν( ̃ca

I,μ)
∗ ̃c i

J,ν⟨ϕI,μ| ̂⃗r |ϕJ,ν⟩. However, the single-particle approxima-
tion used in equation (13) does not consider the electric screening 
effect from electron–electron interaction. We use MEHnet to output 
a screening matrix T and evaluate the corrected polarizability α as 
follow:

αMEHnet = (I + α0T)
−1α0. (14)

We evaluate the gas phase standard enthalpy of formation of 
molecules in Fig. 3 using atomic configurations relaxed by the BP86 
functional with cc-pVDZ basis set. The total energy at the relaxed 
atomic configuration is then calculated by the MEHnet. The zero-point 

energy (ZPE) and thermal vibration, rotation, and translation energy at  
T = 298.15 K are also calculated by the BP86 functional with cc-pVDZ 
basis set implemented in ORCA. The ZPE is corrected by the optimal 
scaling factor of 1.0393 according to Ref. 49. Summing all energy terms 
give the inner energy U, and the enthalpy is evaluated as H ≃ U + kBT (kB 
is the Boltzmann constant), where we use the ideal gas law. To obtain 
the standard enthalpy of formation, we subtract the reference state 
enthalpy of graphite and hydrogen gas at standard condition. The refer-
ence enthalpy for each carbon and hydrogen atom are determined as 
–38.04639 a.u. and –0.57550 a.u., respectively, using CCSD(T) calcula-
tion with cc-pVTZ basis set combined with measured standard enthalpy 
of formation of atomic carbon, atomic hydrogen, and benzene. Atomic 
configurations of semiconducting polymers in Fig. 4 are relaxed using 
the PreFerred Potential v.5.0.0 (ref. 6,7).

Perturbation theory-based back-propagation
In MEHnet training, gradient of the loss function to the model param-
eters needs to be calculated. Gradient back-propagation schemes are 
well-developed for all computation steps, with the exception of solv-
ing the Schrodinger equation. The gradients are numerically unstable 
when there are near-degenerate energy levels, which is usually the case 
in molecules. Here we first use quantum perturbation theory to obtain 
the first-order change of energy levels and molecular orbitals:

δϵi = (ci)†δHeffci

δci = ∑
p≠i

(cp)†δHeffci

ϵi−ϵp
cp

(15)

We then have the gradients to model parameters as equation (4). Using 
these equations, we derive the gradients of each molecule properties 
in equation (11), as follows:

∇θ fE = 2
ne/2
∑
i=1

∇Vii

∇θ fp⃗ = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa
⟨ψi| ̂⃗r |ψa⟩

∇θ fQ = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa
⟨ψi| ̂⃗r ̂⃗r |ψa⟩

∇θ fCI = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai( ̃ci)

†
(IIS) ̃ca

ϵi−ϵa

∇θ fBIJ = 4
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa

× ( ̃ci)
†
(SIJPSII + SIIPSIJ) ̃ca

(16)

where ∇Vai ≡ (ca)†(∇θVθ)ci , the Nbasis × Nbasis matrix IJ is identity in the 
block diagonal part of atom J and zero elsewhere. Meanwhile, we define 
P ≡ 2∑ne/2

i=1 ̃ci( ̃ci)
†
. The essential method to avoid numerical instability 

is to remove terms that can be proved to cancel each other out. Taking 
∇θ fp⃗ as an example: in equation (4), the summation over p goes through 
all states except i. But as the summed formula in equation (16) is 
antisymmetric to i and a, the terms for which a ranges from 1 to ne/2 
cancel each other out. Only terms for which a ranges from ne/2 + 1 to 
Nbasis have a non-zero contribution to the final gradient. Therefore, i is 
always occupied, and a is always unoccupied in the summation. As 
close-shell molecules have a finite bandgap, ϵi and ϵa are not close to 
each other in any term of the summation, so evaluating equation (16) 
is numerically stable.

Similarly, the gradients of Eg and α are as follow:

∇θ fEg = (1 + G1) [∇Vne/2+1,ne/2+1 − ∇Vne/2,ne/2]

+ (ϵne/2+1 − ϵne/2)∇θG1 + ∇θG2
(17)
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To calculate the gradient of α, we first evaluate the gradient of α0, and 
then derive ∇θ fα using the chain rule:

∇θα0 = 2e2
Nbasis
∑

a=ne/2+1

ne/2
∑
i=1

Re {r⃗ ai r⃗ ia(∇Vii−∇Vaa)
(ϵa−ϵi)

2

− 2 ∑
p≠a,i

r⃗ ai

(ϵa−ϵi)
[ r⃗ ip∇Vpa

(ϵp−ϵa)
+ r⃗ pa∇Vai

(ϵp−ϵi)
]}

∇θ fα = (I + α0T)
−1(∇θα0)(I − Tα)

− α0(∇θT)(I + α0T)
−1α

(18)

The above equations give gradients of all terms in the loss function 
expressed by gradients to the direct outputs of the MEHnet, ∇θVθ, 
∇θG and ∇θT.

Dataset generation
First, 85 small hydrocarbon molecule structures are collected from 
the PubChem database50. The training domain (out-of-domain testing 
dataset) includes 20 (3) different chemical formula correspond to the 
horizontal axis labels of the first 20 (last 3) columns in Fig. 2c. Each 
chemical formula includes up to five different molecules (conformers) 
taken from the PubChem database. The total number of molecules 
(conformers) in the training domain and out-of-domain testing dataset 
is 70 and 15, respectively. The full list of molecules and the number of 
atomic configurations for each molecule are listed in Supplementary 
Table 1. Refer to Supplementary Section 1 for a discussion on the prin-
ciples of selecting these molecules, and their diversity.

Molecular dynamics simulation with TeaNet interatomic 
potential6,7 is then performed for each molecule structure to sam-
ple an ensemble of atomic configurations. The molecular dynamics 
simulation uses PreFerred Potential v.4.0.0 (ref. 10) at a temperature 
of 2,000 K, which enables large bond distortion but does not break the 
bonds. The initial velocity is set as a Maxwell Boltzmann distribution 
with the same temperature. Langevin NVT dynamics is used with the 
friction factor of 0.001 fs−1 and timestep of 2 fs. The TeaNet potential 
run for 100,000 steps for each chemical formula, and one atomic 
configuration is sampled every 200 timesteps in the molecular dynam-
ics trajectory; 500 configurations (including the initial equilibrium 
configuration) are sampled for each chemical formula in the training 
domain; three-quarters of the 10,000 configurations are sampled to 
form the training dataset, and the remaining one-quarter forms the 
in-domain testing dataset. The out-of-domain testing dataset contains 
500 configurations. Note that as we aim to include structures out of 
equilibrium positions, geometric relaxation is not needed before 
CCSD(T) calculation (otherwise all structures will relax back to the 
equilibrium positions).

A CCSD(T) calculation with the cc-pVTZ basis set is then imple-
mented in ORCA46 for each selected configuration, giving the training 
labels of total energy, electric dipole and quadrupole moment, Mul-
liken atomic charge, and Mayer bond order. An EOM-CCSD calculation51 
with the cc-pVDZ basis set is then implemented to obtain the first 
excitation energy (energy gap). Finally, we conduct a polarizability 
calculation with the CCSD and cc-pVDZ basis set. The overlap matrix 
S and starting-point effective Hamiltonian F is obtained from a BP86 
DFT calculations with the cc-pVDZ basis set.

Model training
The weight parameters in the loss function is listed as follow: wV = 0.1, 
wE = 1, wp⃗ = 0.2, wQ = 0.01, wC = 0.01, wB = 0.02, wEg = 0.2, wα = 3 × 10−5. 
All quantities are in atomic unit. The model training is implemented 
by full gradient descend (FGD) with Adam optimizer. For the finally 
deployed model (7,440 training data points), it is first trained on 1,240 
data points sampled from the whole training dataset for 5,000 FGD 
steps with initial learning rate of 0.01. The learning rate is decayed by 

a constant factor γ1 = 10−1/10 per 500 steps. The model is then trained on 
the whole dataset with 7,440 data points for 6,000 FGD steps with a 
learning rate of 0.001. For other models trained on smaller dataset in 
Fig. 2a in the main text, the model is trained for 3,000 FGD steps with 
initial learning rate of 0.01 decayed by γ2 = 10−1/6 per 500 steps. As the 
model trained on 640 data points do not converge in the 3,000-step 
training, we implement a 10,000-step training, with an initial learning 
rate of 0.01 that decays by γ1 every 500 steps in the first 5,000 steps 
and keeps constant at the last 5,000 steps.

Data availability
Raw computational data files and the training and testing datasets 
are available with this manuscript through FigShare at https://doi.
org/10.6084/m9.figshare.25762212 (ref. 52). Source Data are provided 
with this paper.

Code availability
The source code to generate the training dataset, train the MEHnet 
model, and apply the trained MEHnet model to hydrocarbon mol-
ecules has been deposited into a publicly available GitHub repository 
at https://github.com/htang113/Multi-task-electronic (ref. 53), and 
is also available in the Supplementary Software. The repository con-
tains two branches: the branch v.1.6 is for all results of hydrocarbon 
molecules in this paper, and the branch v.2.0 is for the benchmark on 
the QM9 dataset.
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Supplementary Section 1. DETAILS ON DATASET

The molecules are selected based on the principle of structural diversity, covering various

different classes of hydrocarbons. Details about the structural diversity of our collected

hydrocarbons are summarized in Supplementary Figure 1. Hydrocarbon molecules can be

classified into 4 classes [Supplementary Figure 1a]: saturated hydrocarbon (alkane), unsat-

urated hydrocarbon (alkene and alkyne), alicyclic hydrocarbon, and aromatic hydrocarbon.

On the other hand, the molecule structure can be categorized into 3 classes [Supplemen-

tary Figure 1(b)]: linear structure, branched structure, and cyclic structure. Our training

dataset covers a number of molecules in each class. We further examine the testing errors

of our model in different classes of molecules in the dataset, which are shown as numbers

in Supplementary Figure 1(c). We can see for each quantity (labelled on y-axis), the errors

are generally close among all classes of molecules (labelled on x-axis). For each quantity,

we also calculated how the error for each class of molecules deviates from the average value

among all classes, which are marked with the color. One can see that the deviation is no

more than 60%, showing that our trained model has consistently good prediction accuracy

for various classes of hydrocarbons. This further validates that the molecules we selected for

training provides sufficient and balanced training data so that the model learns the electronic

structure of different classes of hydrocarbons.
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Supplementary Table 1. Composition of the hydrocarbon dataset. The table contains a list of 

molecule names and number of atomic configurations (labeled in the superscript) for each 

molecule.

Chemical formula Molecule 1 Molecule 2 Molecule 3 Molecule 4 Molecule 5

CH4 Methane500 – – – –

C2H2 Acetylene500 – – – –

C2H4 Ethylene500 – – – –

C2H6 Ethane500 – – – –

C3H4 Propyne300 Allene100 Cyclopropene100 – –

C3H6 Propylene250 Cyclopropane250 – – –

C3H8 Propane500 – – – –

C4H6 1,2-Butadiene100 1,3-Butadiene100 1-Butyne100 2-Butyne100 1-Methylcyclopropene100

C4H8 Isobutylene100 Cyclobutane100 1-Butene100 2-Butene100 Methylcyclopropane100

C4H10 Butane250 Isobutane250 – – –

C5H8 Isoprene100 Cyclopentene100 1-Pentyne100 Methylene-

cyclobutane100

1,3-Pentadiene100

C5H10 Cyclopentane100 1-Pentene100 2-Methyl-1-

Butene100

2-Methyl-2-

Butene100

3-Methyl-1-Butene100

C5H12 Neopentane200 Isopentane200 Pentane100 – –

C6H6 Benzene100 1,5-Hexadiyne100 2,4-Hexadiyne100 Divinylacetylene100 3,4-Dimethylene-

cyclobut-1-ene100

C6H8 1,3-

Cyclohexadiene100

1,4-Cyclohexadiene100 Hexa-1,3,5-triene100 Methyl-

cyclopentadiene100

Divinylethylene100

C6H12 Methyl-

cyclopentane100

Cyclohexane100 1-Hexene100 cis-4-Methyl-2-

pentene100

2-Methyl-1-Pentene100

C6H14 2,2-

Dimethylbutane100

2,3-Dimethylbutane100 3-Methylpentane100 2-Methylpentane100 Hexane100

C7H8 Toluene100 2,5-Norbornadiene100 Quadricyclane100 1,6-Heptadiyne100 Cycloheptatriene100

C7H10 Norbornene100 1,3-

Cycloheptadiene100

1-Methyl-1,3-

cyclohexadiene100

2-Methyl-1,3-

cyclohexadiene100

3-

Methylenecyclohexene100

C7H14 Methyl-

cyclohexane50

Cycloheptane50 1-Heptene50 (E)-4,4-Dimethyl-2-

pentene50

trans-3-Heptene50

C8H8 Styrene100 Benzocyclobutene100 Cubane100 Semibullvalene100 Cyclooctatetraene100

C8H14 Bimethallyl25 Diisocrotyl50 1,7-Octadiene25 CYCLOOCTENE25 (4E)-2,3-dimethylhexa-

1,4-diene25

C10H10 1,3-Divinylbenzene20 Naphthalene20 1,4-Divinylbenzene20 Divinylbenzene20 4-Phenyl-1-butyne20

2



Supplementary Figure 1. Composition of the dataset in different (a) hydrocarbon molecule 

classes (alkane, alkene, alkyne, cyclic, and aromatic) and (b) structural classes (linear, branched, 

and alicyclic). Percentage of the number of molecules in the dataset is shown in the plot. (c) 

RMSE of the MEHnet model predictions on different c lasses o f molecules i n t he t esting dataset. 

The red numbers denote absolute values of the RMSE, and the color reflects the ratio of the RMSE 

on a specific class of molecule to the average RMSE on all molecules in the testing dataset.

Supplementary Section 2. DETAILS ON BENCHMARKS

For comparison, B3LYP and B3PW91 hybrid DFT calculations are implemented with 

def2-SVP basis set in ORCA. DSD-PBEP86 and PWPB95 double-hybrid DFT calculations 

are implemented with the def2-TZVP basis set in ORCA. The DM21 machine learning DFT 

calculations are implemented with the def2-TZVP basis set in PySCF program package [1]. 

The AIQM1 calculations are implemented in the MLatom platform [2]. For DM21 and 

AIQM1, the isolated-atom energies of carbon and hydrogen are re-calibrated according to 

the least-mean-square criterion to give optimal combination energies in our dataset. Besides
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Supplementary Figure 2. The distribution of model prediction accuracy on the testing dataset 

compared to the B3LYP DFT calculations using the CCSD(T) results as the ground truth. (a-g) 

Cumulative distribution of prediction errors for the (a) energy, (b) electric dipole moment, (c) 

electric quadrupole moment, (d) Mulliken atomic charge, (e) Mayer bond order, (f) energy gap 

(1st excitation energy), and (g) static electric polarizability (a.u. means atomic unit). The blue 

and orange solid lines represent MEHnet and B3LYP results on the in-domain testing dataset, 

and the purple and red dashed lines represent MEHnet and B3LYP results on the out-of-domain 

testing dataset, respectively. We denote the model errors at 50%, 80%, and 95% percentile from 

the bottom to the top by hollow circles.

the RMSE shown in Fig. 2 in the main text, the error distribution of our MEHnet model 

and the B3LYP calculations is also shown in Supplementary Figure 2. When calculating 

the RMSE in Fig. 2c and Table I in the main text, for some of the DFT functionals and 

other ML methods in comparison, we average part of the data points (rather than all) to 

save computational costs. Specifically, we use all data points in our dataset for B3LYP and 

AIQM1; 100 data points per chemical formula for B3PW91, DSD-PBEP86, and PWPB95; 

and 50 data points per chemical formula for DM21.

Note that the Mulliken charges are sensitive to basis set and the B3LYP RMSE shown in 

Fig. 2c mainly comes from the basis set error. Therefore, we further calculate the Mulliken 

atomic charge using the B3LYP/def2-TZVP, a larger basis set that usually gives fairly
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Supplementary Figure 3. Calculated Mulliken atomic charge using the B3LYP/def2-TZVP 

compared with other methods. The green transparent bars are the RMSE of the B3LYP/def2-SVP 

results shown in the main text Fig. 2c, and the green solid bars are that of the large basis set 

B3LYP/def2-TZVP results. All other bars have the same meaning as Fig. 2c.

Supplementary Figure 4. Calculated IR spectra of (a) methane, (b) ethane, and (c) ethylene using 

the MEHnet model. The blue lines are our model predictions and the green lines are exper-imental 

results from the NIST Chemistry WebBook [3]. Peaks in the IR spectra are assigned to vibrational 

modes {νi}, where νi means the mode with the ith-lowest vibrational frequency.

converged results for comparison. The calculated RMSE is shown in Supplementary Figure 

3. The results confirm t hat t he l arge RMSE o f B 3LYP i n t he main t ext F ig. 2 c mainly 

comes from the basis set error. Although the B3LYP/def2-TZVP calculations give much 

smaller RMSEs than the smaller basis B3LYP/def-SVP calculations in Fig. 2c, our model 

still exhibits a better overall accuracy even if compared with the B3LYP/def2-TZVP results. 

Aromatic molecules in the main text Fig. 3 include all molecules with serial numbers 

dividable by 4 and enthalpy of formation provided in Ref. [4]. Details of these aromatic 

molecules are listed in Table Supplementary Table 2. We also provided the calculated
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Supplementary Table 2. List of serial numbers (Sr. No., defined in Ref. [4]) and ther-

mochemical properties of aromatic molecules in the main text Fig. 3. The name of each molecule 

is 1: trans-10b,10c-dimethyl-10b,10c-dihydropyrene; 2: anthracene; 3: benzo[c]phenanthrene; 4: 

5-ring phenacene, picene; 5: Pyrene; 6: Coronene; 7: 1,4:2,5-[2.2.2.2]cyclophane; 8: 9,9’-bianthryl; 

9: p-terphenyls; 10: acenaphthene; 11: Aceplaidylene. U and G are the inner energy and Gibbs

free energy reference to separated atoms; HMEHnet
f and HExp.

f are the enthalpy of formation by the

MEHnet predictions and experiments in Ref. [4], respectively; and T1 is the result of T1-diagnostic

of coupled cluster calculations.

Mol.

index

Sr. No. U (Hartree) G (Hartree) HMEHnet
f

(kJ/mol)

HExp.
f

(kJ/mol)

T1

1 12 -5.9022 -5.5028 362.9 338.8 0.0097

2 20 -4.4302 -4.151 208.5 229.1 0.0102

3 24 -5.617 -5.2615 301.9 291.2 0.01

4 28 -6.8246 -6.3928 340.5 317.3 0.01

5 32 -4.9635 -4.6556 210.6 225.7 0.01

6 36 -7.2236 -6.7812 290.4 302.0 0.0102

7 40 -8.773 -8.1545 458.8 409.5 0.0088

8 44 -8.6805 -8.1234 484.4 454.3 0.0102

9 48 -5.776 -5.4015 289.2 272.9 0.0098

10 64 -3.9225 -3.6712 139.3 156 0.0098

11 68 -4.9042 -4.5976 366.1 362 0.0109

inner energies U and Gibbs free energies G of these molecules as additional thermochemical

quantities as predictions of our model.
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Supplementary Section 3. INFRARED SPECTRUM

In order to evaluate the infrared spectrum, we first implement a B3LYP hybrid DFT

calculation with def2-TZVP basis set to obtain the vibrational modes and frequency of a

benzene molecule. Then, we generate atomic configurations displaced from the equilibrium

configuration along each vibrational mode by a displacement of -0.1, -0.05, 0.05, and 0.1 Å.

Our MEHnet model is used to evaluate the electric dipole moment at each configuration, and

the dipole-moment derivative with respect to each normal coordinate is evaluated by linear

regression. The infrared band intensity of fundamental bands are then evaluated following

the method in Ref. [5].

As the two combination bands at 1800 - 2000 cm−1 are mainly contributed by ν10+ν17 and

ν5 + ν17 [6], we generate atomic configurations displaced from the equilibrium configuration

by displacement vectors of 0.1(e⃗i+ e⃗j), 0.1(e⃗i− e⃗j), 0.1(−e⃗i+ e⃗j), and 0.1(−e⃗i− e⃗j) Å, where

(e⃗i, e⃗j) are the pair of vibrational modes contributing to each combination band. The second-

order dipole-moment derivatives with respect to each pair of normal coordinates ∂2p⃗
∂Qi∂Qj

are

then obtained by finite difference method. The leading-order anharmonic constants are

also evaluated by finite difference method. These parameters are then used to calculate

intensity of the combination bands by Fermi’s golden rule. Using the calculated infrared

spectrum peak positions and intensity, we add Gaussian broadening to each peak and fit

their bandwidth to the experimental spectrum.

The same calculation procedure is applied to three other common molecules, methane,

ethane, and ethylene, as shown in Supplementary Figure 4. In ethylene, the combination

bind at around 2000 cm−1 is mainly contributed by ν2+ν3. Similar to the results of benzene,

the MEHnet model predicts both the peak positions and peak intensity well consistent with

experimental results.

Supplementary Section 4. QM9 VERSION OF MEHNET

About 10% of molecules (14,000 molecules) are randomly selected from the QM9 dataset

and separated into the 10,000 molecules training set and 4,000 molecules testing set. In

order to reduce computational costs, we implement CCSD(T) calculations following the idea

described in Ref. [7]. Ground-state properties q (energy, dipole, quadrupole, charge, bond
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Supplementary Figure 5. Benchmark of the QM9 version of MEHnet on 4,000 molecules 

randomly sampled from the QM9 dataset for (a) energy, (b) electric dipole moment, (c) electric 

quadrupole moment, (d) Mulliken population, (e) Mayer bond order, (f) optical gap, and (g) static 

electric polarizability. The horizontal axis and vertical axis represent the coupled-cluster labels 

and MEHnet model predictions, respectively.

order) are evaluated by CCSD(T)/cc-pVDZ, DLPNO-CCSD(T)/cc-pVDZ, and DLPNO-

CCSD(T)/cc-pVTZ, respectively. The training label is then evaluated as:

qlabel = q
CCSD(T)
cc−pVDZ − q

DLPNO−CCSD(T)
cc−pVDZ + q

DLPNO−CCSD(T)
cc−pVTZ (S1)

The Optical gap and polarizability are evaluated in the same way as the hydrocarbon dataset

as described in the main text Methods D. The weight parameters in the training loss function

are: wV = 0.01, wp⃗ = 0.1, and other weight parameters are the same as the hydrocarbon

version of MEHnet. The dataset is evenly divided into 25 minibatches with 400 data points

in each of them, and 150,000 gradient descend steps are implemented on the minibatches

alternatively (6,000 steps for each minibatch). The prediction accuracy of the QM9 version

of MEHnet is shown in Supplementary Figure 5. We can see that the predictions on the

testing dataset are generally consistent with the coupled-cluster labels, confirming that the

MEHnet model successfully learns the molecular electronic structures in the QM9 dataset.
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Supplementary Figure 6. Histogram of T1 diagnostic results of our coupled-cluster dataset. Most 

of the data points have T1 values below 0.02, indicating that the dataset does not have strong 

multireference character.

Supplementary Section 5. ABOUT MULTI-REFERENCE ISSUE

In order to study the multireference issue, we implemented T1 diagnostic to both our 

CCSD(T) dataset and aromatic molecules in Fig. 3a to get more insight into their multiref-

erence character [8]. The evaluated T1 values are shown in Supplementary Figure 6 and 

Table Supplementary Table 2. In most cases, the T1 values are below 0.02, suggesting that 

the studied system does not exhibit strong multireference character.

As our work aims to generalize from small to large molecules, including 1-rdm as the 

output descriptor also involves certain challenges. As some molecules we studied have delo-

calized orbitals (as shown in the main text Fig. 4a), the 1-rdm, unlike the Fock matrix, can 

have non-zero off-diagonal t erms b etween a tomic o rbitals f ar f rom e ach o ther. Therefore, 

predicting the 1-rdm requires the neural network architecture to directly capture delocal-

ized features of the whole molecules. In previous works [9, 10], the machine learning models 

involve all-to-all connection of atoms in the molecules in order to capture the delocalized 

features of 1-rdm. However, these model architectures also have their limitation: they only 

applies to molecules with the same number of atoms as the training data. Therefore, in 

order to generalize from small to large molecules, different m odel a rchitecture i s needed. 

Constructing appropriate model architectures for systems with strong multireference char-
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acters is an intriguing direction to explore, which is left to future work.
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While the effort seeks to address a critical challenge of great interest to the AI for Science community, it is my opinion that
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Reviewer #2 (Remarks to the Author): 

This is a very interesting paper. Authors applied machine learning technique to build DFT like Hamiltonian using data from
coupled-cluster calculations as training set. They went further and computed physical quantities in addition to the total
energy. Their effort allows low computational cost and high accuracy prediction/calculation for molecular systems. I
recommend this paper for publication in Nature Computational Science after the following questions being addressed -- 

1. Can this approach be applied to extended systems? If so, please explain if there is a plan to do so. If not, what is bottle
neck? 
2. Is this scheme general enough such that one can also use other high-level quantum chemistry methods (e.g. full-CI) to
train the network? 

3. A specific question about the supplement materials: Towards end of the left column, it says "in Eq. (S2), the summation
over m goes through all states except n. But in equation S2, there is no summation over m and n. Therefore the subsequent
argument about symmetry does not work. Also in S3, there is no epsilon_m or n. 

Reviewer #2 (Remarks on code availability): 

I only downloaded the code, no time to run or test. 

Reviewer #3 (Remarks to the Author): 

The manuscript "Multi-task learning for molecular electronic structure approaching coupled cluster accuracy" by Tang et al is
an interesting and much needed approach for machine learning approaches in electronic structure theory. Instead of
targeting energy as the output descriptor which is a low dimensional and often degenerate observable, the authors achieve
multi-task learning by targeting the Fock operator. As a result one can derive any observable that is well defined within the
single reference mean field framework. Furthermore, the high accuracy learning is achieved for smaller molecules with less
than ~100 electrons while the prediction space is much larger and can ideally be as large as required within the
hydrocarbon framework of the chemical space. Therefore, I find the goal and achievement of the approach to be quite
laudable. 

However, there are significant improvement that is required in the manuscript to improve its readability. 
1. The major problem I have with the paper is that due to condensed format in which it is written, it is very difficult to
understand the workflow in detail. The methodology section needs to be more descriptive for the readability and general



reproducibility of the work that is mentioned. 
2. I am guessing the workflow is applicable for only hydrocarbons. This is what I surmise from the figures. However, I do not
see where that is explicitly written. Page 5 (Model Performance and Applicability) should mention which class of small to
large molecules are considered. If it is hydrocarbons, are they all possible hydrocarbons? How is even this chemical space
created? Are all metastable hydrocarbons included? This is crucial to describe because the nature of molecules are quite
diverse in this chemical space and the exact degree of transferability of learning should be understood. 
3. Fig.1c also describes some of the data set creation. However, it is a bit unclear what the orange and blue dots refer to. Are
these MD and CCSD(T) calculations? But that doesn't quite make sense. What is the meaning behind the different size of
these dots? No of calculations? These are totally not mentioned in the paper. 
4. In Fig. 2c, the RMSE of each property is shown. I am guessing this RMSE is with respect to CCSD(T) numbers. In such a
case, it will be interesting to see the prediction efficiency (RMSE) in the training domain versus the generalization domain.
Furthermore, it can be easily observed that different properties show different error ranges. The reason for this should be
discussed. Also, static electric polarizability shows a trend of increasing error with increasing system size. Why? 
5. Also a question that constantly bothers me is that the intended accuracy bar is set for CCSD(T) which may or may not be
relevant for different classes of molecules (even within hydrocarbons). There are polyaromatic hydrocarbons which are more
multireference in nature. Are they even included in the data set? Maybe some of this aspect can be seen in Fig. 3a. The
experimental versus EGNN uncertainty is quite different for certain molecules. 

In short, I find the idea of the paper quite intriguing but due to brevity and condensed writing style, much of the details is quite
obscure. One further aspect that needs some discussion is why use Fock operator as the output descriptor and not include
something like a one particle density matrix? It would still have the same order of difficulty in the problem while resolving the
issue of multireference nature of the problem. An interesting example (albeit in much smaller class of systems) can be seen
in J. Chem. Theory Comput. 2024, 20, 11, 4569–4578. 

Reviewer #3 (Remarks on figshare data availability): 

I have already included that in the report. 
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Reviewer #1 (Remarks to the Author): 

The authors have addressed all comments and substantially revised the manuscript and SI to a satisfactory level. 

The updated evaluation on QM9, comparisons to B3PW91 and PWPB95, tests for Mulliken charges with B3LYP/def2-TZP,
calculated IR spectra, have significantly expanded the generality of the work. Furthermore, the updates enabled by
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The authors have answered all the questions and have corrected the paper satisfactorily. Therefore, I believe the paper can
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Reviewer #3 (Remarks on figshare data availability): 
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Response letter to reviewers 

 

Reviewer #1 (Remarks to the Author): 

The authors use multi-task learning to learn the non-local exchange interaction after calculating the 

Lowdin-symmetrized KS Hamiltonian (local DFT Hamiltonian). They predict a variety of ground state 

properties: energy, electric dipole, quadrupole moments, Mulliken charge, Mayer bond order, first 

excitation energy, and static electric polarizability, successfully demonstrating linear scaling up to 70 

electrons, outperforming CCSD(T), hybrid, and double hybrid DFT for more than 400 atoms. 

While the effort seeks to address a critical challenge of great interest to the AI for Science community, it 

is my opinion that the developed workflow and demonstrated benchmarks are too limited in scope to be 

suitable for Nature Computational Science. 

We thank the reviewer for the critical review and for pointing out the limitation in the data generation 

workflow and benchmarks. Based on the insightful comments below, we made significant efforts in 

generalizing the workflow and expanding the scope of demonstrated benchmarks. We now have an 

updated version of the model that supports a diverse range of organic molecules consisted of not only H 

and C as in the previous version, but also N, O, and F. We benchmarked the model on randomly sampled 

structures from a main-stream quantum chemistry dataset (QM9), giving consistently high prediction 

accuracy. As suggested by the reviewer, we also provided more comprehensive benchmark in terms of 

functionals, basis set, and predicted quantities. We added a section in the main text about the QM9 

version of our model, and leave other extensive discussions in the supporting information (SI) to avoid 

making the main text too crowded.. We believe these updates can resolve the concerns of the reviewer, 

particularly about the scope and generality of our work. Please see the point-to-point response below: 

On workflow: No justification for which 85 hydrocarbons are collected from PubChem;  

Thank you for this insightful comment. In the revised manuscript, we include justifications on the selection 

of the 85 hydrocarbons from the PubChem database on paragraph 2, page 5 of the main text and SI section 

S2. The molecules are selected based on the principle of structural diversity, covering different classes of 

hydrocarbons. Details about the structural diversity of our collected hydrocarbons are summarized in the 

revised supporting information Fig. S1, which is reproduced below:  



 

Hydrocarbon molecules can be classified into 4 classes [Fig. S1(a)]: saturated hydrocarbon (Alkane), 

unsaturated hydrocarbon (Alkene and Alkyne), Alicyclic hydrocarbon, and Aromatic hydrocarbon. On the 

other hand, the molecule structure can be categorized into 3 classes [Fig. S1(b)]: linear structure, 

branched structure, and cyclic (either alicyclic or aromatic) structure. Our training dataset is diverse as it 

covers a significant number of molecules in each class. We further examine the testing errors of our 

model in different classes of molecules in the dataset, which are shown as numbers in Fig. S1(c). We can 

see for each quantity (labelled on y-axis), the errors are generally close among all classes of molecules 

(labelled on x-axis).. For each quantity, we also calculated how the error for each class of molecules 

deviates from the average value among all classes, which are marked with the color. One can see that 

the deviation is no more than 60%, showing that our trained model has consistently good prediction 

accuracy for various classes of hydrocarbons. This further validates that the molecules we selected for 

training provides sufficient and balanced training data so that the model learns the electronic structure 

of different classes of hydrocarbons. 

Besides, we would like to mention that we intentionally selected 85 relatively small molecules from the 

PubChem database, which can reduce the cost for model training. The model, however, can be applied 

to large molecules beyond the training dataset (Figure 1c in the main text), showing the significant 

generalizability of our model.  

 



Furthermore, there is comparison against only one hybrid and one double-hybrid to represent those 

classes of DFT. However, B3LYP has known failure modes for hydrocarbons [1-2], and there have been 

several updates to DSD-PBE86 in the last 10 years or so. If the authors would like to use these functionals, 

more discussion with other density functionals is needed. 

Thanks. We agree that using only the B3LYP and DSD-PBEP86 functionals may not be sufficiently 

representative for hybrid and double hybrid functionals. In order to more effectively represent the hybrid 

and double hybrid class of functionals, we choose another two representative hybrid and double hybrid 

functionals to benchmark on the hydrocarbon dataset. Specifically, we choose the B3PW91 hybrid 

functional and PWPB95 double hybrid functional, which are referred as the best performed functionals in 

the Ref. [1] provided by the reviewer, [Phys. Chem. Chem. Phys. 13.14 (2011): 6670-6688], and orca 

manual [ORCA Input Library - DFT calculations (google.com)]. The comparison results are listed in Table I 

(reproduced below) in the revised main text with discussions on paragraph 1-2, page 6: 

 

From the comparison, we can see that although the newly added hybrid and double hybrid functionals 

exhibit better accuracy in certain properties than the B3LYP and D3D-PBEP86 functional, our multitask 

machine learning method still shows better overall accuracy. Therefore, we consider the main conclusion 

we made on this comparison remains valid after adding these comparisons. 

As suggested by the reviewer, we also include discussions on the limitation of the B3LYP functional in the 

manuscript on paragraph 1, page 6.  

Additionally, the prediction of Mulliken charges are known to be sensitive to basis set choice [4]. Can the 

authors comment on how the choice of B3LYP/cc-pVDZ affects their results? 

We agree that the Mulliken charges are sensitive to basis set, and that the B3LYP RMSE shown in Fig. 2c 

of the main text can (partially) come from the basis set error. Therefore, we further calculate the Mulliken 

atomic charge using the B3LYP/def2-TZVP, a larger basis set that usually gives fairly converged results. 

The calculated RMSE is shown below: 

https://sites.google.com/site/orcainputlibrary/dft-calculations


 

where the green transparent bars are the RMSE of the small-basis B3LYP results and the green solid bars 

(overlapped on the green transparent bars) are that of the large-basis B3LYP results. The results confirm 

that, as the reviewer suggested, the large RMSE of B3LYP in Fig. 2c mainly comes from the basis set 

error. Despite this, our model still exhibits a better overall accuracy even if we compare with the 

B3LYP/def2-TZVP results, so the main conclusion we made is still valid. We can also see that our ML 

model can achieve better overall accuracy with a smaller cc-pVDZ basis set (𝑁basis
𝐻 = 5,𝑁basis

𝐶 = 14) 

compared to B3LYP with the larger def2-TZVP basis set ((𝑁basis
𝐻 = 14,𝑁basis

𝐶 = 30)).   

In the revised manuscript, we clarify the basis set error of the B3LYP functional in paragraph 2, page 6, 

and include the above plot as Fig. S3 with discussions in SI section S3. 

On benchmarks: Limited to hydrocarbons only, and it is not clear how diverse the carbon bonds really are. 

Additionally, the enthalpy of formation is the only type of thermochemical data computed, and the IR 

spectra for only benzene is computed. 

Thanks. In order to make the benchmarks more general, we include a series of benchmarks according to 

the suggestions of the reviewer, as shown below: 

1. To include molecules beyond hydrocarbons, we applied our MtElect workflow to the QM9 

molecule database [https://paperswithcode.com/dataset/qm9], which includes various 

molecules consisted of 5 elements: H, C, N, O, F. The model is trained on 10,000 molecules 

randomly sampled from the QM9 database and tested on 4,000 other randomly sampled 

molecules. The model performance is shown in the main text Table II and SI Fig. S5 (reproduced 

below): 

 
where we can see that out MtElect model gives consistently high prediction accuracy for all 

properties for molecules in the QM9 dataset. We believe these results suggest that although we 

mainly focus on the hydrocarbons in this paper, our machine learning method is applicable to a 

much broader chemical space. On paragraph 2, page 5 of the main text, we also included 

clarification on the diversity of the carbon-carbon bonds (Fig. S1, see also our replies to the first 

comment). 



 

2. Besides Benzene, we calculated IR spectrum for another three common hydrocarbon molecules, 

as shown in Fig. S4: 

 

The results confirms that in methane, ethane, and ethylene, the MtElect calculations also give 

reasonably good predictions in both the IR peak positions and peak intensity compared with 

experimental results. The consistency supplements to the result of benzene shown in Fig. 3b of 

the main text, further validating the prediction accuracy of our method on IR spectra. We added 

relevant discussions to the new results to paragraph 2, page 7 of the main text, and SI section 4. 

3. Besides enthalpy of formation, we calculated two more thermochemical quantities, the inner 

energy (U) and Gibbs free energy (G) for the same set of molecules as those in in Fig. 3a of the 

main text. The results are added into SI table II. Discussions on the calculated results are also 

included in SI section S3. 

In summary, we included several more benchmarks, and we believe the included results make the 

benchmark in the manuscript more thorough and general. 



 

Other comments: 

1. How many steps was the TeaNet potential run for? How were structures selected? Was additional 

geometric relaxation needed before the CCSD(T) calculation? 

The TeaNet potential runs for about 20,000 steps for each molecule/conformer and 100,000 steps for 

each chemical formula (CxHy, in our dataset, each chemical formula contains 5 different 

molecules/conformers in most cases). Structures are selected by taking 1 structure per 200 molecular 

dynamics steps. As we aim to include out-of-equilibrium configurations, we do not perform geometric 

relaxation. In other words, our model applies to structures with and without geometric relaxation.  We 

added clarifications of these points in Methods D. 

2. What is the reason for lack of data in Table 1 for AIQM1? 

Thanks. This is because AIQM1 model applies machine learning corrections only to the ground-state 

energy. Other electron-related properties, such as electric dipole, are not modified by AIQM1, so they are 

left the same as the ODM2 semiempirical method [J. Chem. Theory Comput.15, 1743 (2019)]. Therefore, 

we think it is not a fair comparison for these semi-classical quantities without ML correction to other 

methods with ML corrections. Clarification is added to the caption of Table 1. 

3. Since all systems are closed-shell and calculated with spin-restricted DFT, can the statement, "One can 

see that Eg is larger for oligomers...due to the quantum confinement effect... " still be made? 

We agree that referring the increasing bandgap for shorter chain length as quantum confinement effect 

can lead to confusion, as we are not actually calculating the open-shell system with confined electron/hole. 

Therefore, we revised the sentence as: 

“One can see that Eg is larger for oligomers with shorter chain length and converges to a smaller value for 

long polymer. This is in analogy to the size effect on e.g., the energy gap of quantum dots” 



4. I know this is not a classical simulation, but it would be helpful to show the generality to hydrocarbons 

in the context of what has been done for classical force fields like OPLS-AA. 

Thanks. We are not very sure about what “what has been done for classical force fields like OPLS-AA” 

refers to. We guess it refers to more benchmarks of the model on different class and/or size of 

hydrocarbons. If this is the case, we think our responses to the previous comments (Fig. S1, S3, S4, S5 in 

the SI, and Table I and Table II in the main text) provide more comprehensive benchmarks that validate 

the generality of our method. If the reviewer believes more benchmark is necessary, we are open to 

include more benchmark calculations. 

We notice that the OPLS-AA force field was also used for molecular dynamics (MD) simulation of 

hydrocarbon liquid and liquid-gas phase transformations [JPCB 105.28 (2001): 6474-6487; JCTC 8.4 (2012): 

1459-1470]. Such large-scale MD simulation is, however, beyond the scope of this work. Although our 

method is much faster than CCSD(T) and hybrid functional DFT, it is certainly more computationally 

involved than a classical force field.  In principle, it is possible to calculate hydrocarbon liquids with a large 

supercell using our method, but this is not a trivial work. At current stage, our work focuses more on 

electronic structure. One can also use OPLS-AA or machine learning potentials to do the MD simulations 

and then use our model to evaluate electronic properties on structures sampled from the obtained MD 

trajectories. 

5. "Relatively small NN with only 511,589 parameters". Please cite some sources to provide context. 

Thanks. We added two representative references that use ML methods to fit the electronic properties of 

molecules. One uses 93,000,000 parameters [Nat. Commun. 10.1 (2019): 5024] and the other uses 

17,000,000 parameters [NeurIPS 34 (2021): 14434-14447]. 

If the authors can broaden the workflow and benchmarks, perhaps via the directions suggested above, 

the manuscript will garner much greater excitement for the community. 

[1] A. Karton. Journal of Computational Chemistry, 2017, 38, 370–382. 

[2] J. Tirado-Rives and W. L. Jorgensen, Journal of Chemical Theory and Computation 2008 4 (2), 297-306 

[3] J. M. L. Martin and G. Santra. Israel Journal of Chemistry, 2020, 60, 787. 

[4] M. Jablonski. J. Phys. Chem. A 2010, 114, 5, 2240–2244. 

 

  



Reviewer #2 (Remarks to the Author): 

This is a very interesting paper. Authors applied machine learning technique to build DFT like Hamiltonian 

using data from coupled-cluster calculations as training set. They went further and computed physical 

quantities in addition to the total energy. Their effort allows low computational cost and high accuracy 

prediction/calculation for molecular systems. I recommend this paper for publication in Nature 

Computational Science after the following questions being addressed – 

We thank the reviewer for the encouraging comments. Please see our point-to-point response below: 

1. Can this approach be applied to extended systems? If so, please explain if there is a plan to do so. If not, 

what is bottle neck? 

We thank the reviewer for the helpful suggestion. In principle, the approach can be applied to extended 

systems, and we indeed plan to work along this direction. We consider the main challenge in this direction 

is that our training data generation method CCSD(T) is not directly applicable to extended systems. 

Despite this, it is still possible to apply our model to extended systems. We included the following 

discussion on paragraph 6, page 8 of the main text:  

“In principle, our approach can also be applied to extended systems, where the periodic boundary 

condition (PBC) is applied to Eq. (3). The band structure and Bloch wavefunctions can then be obtained 

by solving the eigenvalue problem for each wave vector 𝑘⃗  after a Fourier transformation from the real 

space to the reciprocal space. Although the CCSD(T) method for training data generation does not directly 

support PBC, one can use CCSD(T) calculations for finite atom clusters (i.e., a truncated and possibly 

passivated supercell) to train the model and subsequently use the model to predict the properties of 

extended systems. Alternatively, the training data of extended systems can be generated by high-accuracy 

methods other than CCSD(T), such as double-hybrid DFT, that allows periodic boundary conditions.” 

2. Is this scheme general enough such that one can also use other high-level quantum chemistry methods 

(e.g. full-CI) to train the network? 

Yes, it is possible to use other high-level quantum chemistry methods different from CCSD(T) to generate 

training labels and train the network. In our machine learning training scheme, only the calculated 

properties (energy, electric dipole, electric quadrupole, …) are used as training labels. Therefore, other 

high-level quantum chemistry methods, including full-CI, can be used to train the network as long as they 

can provide the target properties. We included the following discussion on paragraph 1, page 9: 

“Besides CCSD(T), our scheme can also use other high-level quantum chemistry methods, such as full-CI, 

CASSCF, MP2, double-hybrid functional, and multireference electronic structure methods, to generate the 

training labels of molecule properties. Quantum chemistry methods can be selected according to the 

desired accuracy and the nature of systems under consideration.” 

3. A specific question about the supplement materials: Towards end of the left column, it says "in Eq. (S2), 

the summation over m goes through all states except n. But in equation S2, there is no summation over 

m and n. Therefore the subsequent argument about symmetry does not work. Also in S3, there is no 

epsilon_m or n. 

We thank the reviewer for the careful examination and we apologize for the typo in summation index. 

We have corrected the paragraph as follow to make the index consistent: 



“in Eq. (S2), the summation over p goes through all states except i. But as the summed formula in Eq. (S3) 

is antisymmetric to a and i, the terms that a goes from 1 to ne/2 cancel each other. Only terms that a goes 

from ne/2 + 1 to Nbasis have a non-zero contribution to the final gradient. Therefore, i is always occupied, 

and a is always unoccupied in the summation. As close-shell molecules have a finite bandgap, 𝜖𝑖 and 𝜖𝑎 

are not close to each other in any term of the summation, so evaluating Eq. (S3) is numerically stable.” 

At the meantime, we double checked all equations in the manuscript and SI and corrected another typo 

of pre-factor in 𝑓𝑄 (Eq. 13) from 2𝑒2 to −2𝑒.  



Reviewer #3 (Remarks to the Author): 

 

The manuscript "Multi-task learning for molecular electronic structure approaching coupled cluster 

accuracy" by Tang et al is an interesting and much needed approach for machine learning approaches in 

electronic structure theory. Instead of targeting energy as the output descriptor which is a low 

dimensional and often degenerate observable, the authors achieve multi-task learning by targeting the 

Fock operator. As a result one can derive any observable that is well defined within the single reference 

mean field framework. Furthermore, the high accuracy learning is achieved for smaller molecules with 

less than ~100 electrons while the prediction space is much larger and can ideally be as large as required 

within the hydrocarbon framework of the chemical space. Therefore, I find the goal and achievement of 

the approach to be quite laudable. 

However, there are significant improvement that is required in the manuscript to improve its 

readability. 

We thank the reviewer for the positive comments and helpful suggestions on the readability of the 

manuscript. We made careful revision to the manuscript accordingly. Please see our point-to-point 

response below:  

 

1. The major problem I have with the paper is that due to condensed format in which it is written, it is 

very difficult to understand the workflow in detail. The methodology section needs to be more 

descriptive for the readability and general reproducibility of the work that is mentioned. 

To make the methodology section more descriptive, we included more descriptions on the detailed 

workflow of dataset generation (as section IV.D on page 11) and model training (as section IV.E on page 

11) in the methodology section. In the dataset generation part, we added details on how we obtained 

the molecular structures and implemented coupled cluster calculations to build the datasets. In the 

model training part, details on the training hyperparameters are discussed. We also revised the model 

architecture part (section IV.C and IV.D on page 10) of the methodology section to improve the 

readability and reproducibility. The newly included and revised contents are highlighted in the 

resubmitted manuscript. We believe after the revision, the methodology section becomes more 

descriptive.  

Finally, we recently notice that the word “EGNN” we used to call our model can lead to confusion with 

the model architecture in E(n) Equivariant Graph Neural Networks (mlr.press). Therefore, we refer to 

our model as "Multi-task electronic Hamiltonian network" (MEHnet) for brevity. 

 

2. I am guessing the workflow is applicable for only hydrocarbons. This is what I surmise from the 

figures. However, I do not see where that is explicitly written. Page 5 (Model Performance and 

Applicability) should mention which class of small to large molecules are considered. If it is 

hydrocarbons, are they all possible hydrocarbons? How is even this chemical space created? Are all 

metastable hydrocarbons included? This is crucial to describe because the nature of molecules are quite 

diverse in this chemical space and the exact degree of transferability of learning should be understood. 

We included more clarification about the class of molecules considered and tested our model 

performance in different class of hydrocarbons to understand the model transferability. Please see our 

detailed response and revisions as follow: 

https://proceedings.mlr.press/v139/satorras21a.html


1. We added clarifications in paragraph 3, page 5 to explicitly state that our primary results focus 

on close-shell hydrocarbons. While, some additional results in the newly added section titled 

“QM9 version of MEHnet” cover a broader range of molecules. 

2. We added descriptions about the diversity of our hydrocarbon dataset in paragraph 2, page 5 

and SI section S2. We selected 85 hydrocarbon molecules from the PubChem database that 

covers diverse types of carbon-carbon bonds (single, double, triple bonds, conjugated 𝜋 bonds) 

and connections (linear, branched, and cyclic). Metastable hydrocarbons are included, and out-

of-equilibrium atomic configurations are introduced via molecular dynamics simulations. Please 

see also our replies to the first comment of reviewer 1 (page 1,2 of this document). 

3. As the structure space of hydrocarbons is in principle infinite, it is impractical to test the 

prediction accuracy of our model for all possible hydrocarbons or all metastable structures. 

Nevertheless, we can classify the molecules based on structural features, such as 

saturate/unsaturated/cyclic/aromatic, linear/branched/ring-containing molecules. The 

performance of our model is tested on different types of molecules, which helps understand the 

transferability and generalizability of our model. The results show that our model gives 

consistently good prediction accuracy in various classes of hydrocarbon, including metastable 

and our-of-equilibrium structures. The results are added in SI section S2 with brief discussions in 

the main text paragraph 3, page 6. 

 

3. Fig.1c also describes some of the data set creation. However, it is a bit unclear what the orange and 

blue dots refer to. Are these MD and CCSD(T) calculations? But that doesn't quite make sense. What is 

the meaning behind the different size of these dots? No of calculations? These are totally not mentioned 

in the paper. 

We apologize for the confusion in the meaning of dots. The blue dots refer to chemical formula in the 

training domain, while the orange dots refer to chemical formula out of the training domain, which are 

typically larger than those in the training domain. All blue dots and some orange dots contain CCSD(T) 

calculations, while some other orange dots have experimental values to check with. The size of these 

dots means how many conformers and vibrational configurations are included for each chemical 

formula. For example, the chemical formula C6H6 contains 5 conformers: Benzene, 1,5-Hexadiyne, 2,4-

Hexadiyne, Divinylacetylene, and 3,4-Dimethylene-cyclobut-1-ene. 100 vibrational configurations are 

sampled for each conformer. Then, there are 500 overall configurations in the training dataset, so a 

large dot corresponding to 500 is assigned. 

We add detailed clarification in the caption of Fig. 1c. 

 

4. In Fig. 2c, the RMSE of each property is shown. I am guessing this RMSE is with respect to CCSD(T) 

numbers. In such a case, it will be interesting to see the prediction efficiency (RMSE) in the training 

domain versus the generalization domain. Furthermore, it can be easily observed that different 

properties show different error ranges. The reason for this should be discussed. Also, static electric 

polarizability shows a trend of increasing error with increasing system size. Why? 

Yes, the RMSE is with respect to CCSD(T) numbers, and we added clarifications to the caption of Fig. 2c 

and Table 1 of the main text. We also show the numerical comparison of the RMSE in the training 

domain versus the generalization domain in Table I as RMSEtrain/RMSEgeneralization for all compared 



quantities, where we can see that despite some numerical difference, RMSEtrain and RMSEgeneralization are 

generally close to each other for intensive quantities (E per atom, C, B, and Eg). The extensive quantities 

(p, Q, 𝛼) exhibit larger RMSE in generalization domain because the quantities themselves are larger for 

larger molecules in the generalization domain. The relatively error, however, still remains similar for 

training and generalization domain.  

Discussions on the error range are added to paragraph 3, page 6 in the main text. For intensive 

quantities, the errors are in a similar level for molecules with different sizes; for extensive quantities, as 

mentioned by the reviewer, there is a trend of increasing error with increasing system size. This is 

because the absolute values of these quantities increase with system size. 

 

5. Also a question that constantly bothers me is that the intended accuracy bar is set for CCSD(T) which 

may or may not be relevant for different classes of molecules (even within hydrocarbons). There are 

polyaromatic hydrocarbons which are more multireference in nature. Are they even included in the data 

set? Maybe some of this aspect can be seen in Fig. 3a. The experimental versus EGNN uncertainty is 

quite different for certain molecules. 

Thanks. We agree that the results of CCSD(T) calculations may not be consistently accurate for all 

molecules we studied. Some of the polyaromatic hydrocarbons are more multireference in nature, so 

that the CCSD(T) calculations themselves may exhibit larger errors for these molecules than for other 

molecules. As all our training and testing data takes CCSD(T) as the ground truth, our model cannot 

capture the strong multireference effects that are not captured by CCSD(T).  

As suggested by the reviewer, molecules exhibiting larger errors in Fig. 3a of the main text may involves 

stronger multireference character. In order to study this issue, we implemented T1 diagnostic to both 

our CCSD(T) dataset and aromatic molecules in Fig. 3a to get more insight into their multireference 

character. The evaluated T1 values are shown in SI Fig. S6 and Table II: 

 

 



We see in most cases, the T1 values are below 0.02, suggesting that the studied system does not exhibit 

strong multireference character. Hence, it is generally reasonable to use CCSD(T) as the ground truth for 

molecules considered in the current work. We included discussion in paragraph 1, page 9 of the main 

text and SI section S6 about the potential error source from the multireference nature of certain 

molecules. One potential way to further improve the prediction accuracy is to conduct multireference 

configuration interaction (MRCI) calculations for the molecules with large T1 values. This is, however, 

beyond the scope of this paper, so we leave the implementation of the MRCI dataset generation to 

future work. 

 

In short, I find the idea of the paper quite intriguing but due to brevity and condensed writing style, 

much of the details is quite obscure. One further aspect that needs some discussion is why use Fock 

operator as the output descriptor and not include something like a one particle density matrix? It would 

still have the same order of difficulty in the problem while resolving the issue of multireference nature 

of the problem. An interesting example (albeit in much smaller class of systems) can be seen in J. Chem. 

Theory Comput. 2024, 20, 11, 4569–4578. 

We agree that using one particle density matrix (1-rdm) as the output descriptor is an insightful idea to 

resolve the multireference issue. The method was explored in the paper mentioned by the reviewer as 

well as [Nat. Commun. 14.1 (2023): 6281].  

In our case, as our work aims to generalize from small to large molecules, including 1-rdm as the output 

descriptor also involves certain challenges. As some molecules we studied have delocalized orbitals (as 

shown in Fig. 4a), the 1-rdm, unlike the Fock matrix, can have non-zero off-diagonal terms between 

atomic orbitals far from each other. Therefore, predicting the 1-rdm requires the neural network 

architecture to directly capture delocalized features of the whole molecules.  

In both reference papers mentioned above, the machine learning models involve all-to-all connection of 

atoms in the molecules in order to capture the delocalized features of 1-rdm. However, these model 

architectures have their limitation: it only applies to molecules with the same number of atoms as the 

training data. Therefore, as we intend to generalize from small to large molecules, different model 

architecture is needed. We think constructing new model architectures for systems with strong 

multireference characters is an intriguing direction to explore. 

We include discussions about outputting density matrix in paragraph 1, page 9 of the main text and SI 

section S6. 
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