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Abstract:

We present a general approach for coupling continuum to molecular dynamics
simulation. Macroscopic thermodynamic field (temperature, velocity) boundary
conditions can be coupled to a MD system while minimally disturbing particle
dynamics of the system. And by acting far away from the region of interest through a
feedback control mechanism, we can even eliminate that disturbance. The field
estimator serves as the detector of the control loop, based on Mazximum Likelihood
Inference, which infers smooth instantaneous thermodynamic fields from particle data;
The optimal particle controller, defined through an implicit relation T3(X —Y) :

i~ f(&)dE =¥ g(n)dn, can be proven to come up to the required task with least
disturbance to particle dynamics; The reflecting particle method (RPM) is a (funny)
way to drive fluid flow in MD by employing selectively reflecting “‘Maxwell’s
demons” at ends of the cell. Under steady flow, heat generated by viscous dissipation

inside the fluid is to be balanced with the entropy/information input by the

demons, for which we estimate analytically and has been explicitly verified.




Reflecting Particle Method to Drive Fluid Flow:

The RPM membrane at x=0

.................. .QQ@@@@@@@&&Q‘.
‘ ‘e O & # & & & & & ¢ e O
O e © 0 s & ® © € © ¢ @ © .A -----
O e o o O
Heepess o o © o g
o © >
O o © o © c
i O O O i
O . o0 © © ° o |0
: oo ©O © |z
o © o) .y
e ¢ 0 28 & & & ® &6 @0 00
Y e 0 & &8 & 6 & 86 0 O
.................... ’..eegﬁﬁ@m..‘
1p Whpdaehlyp : i :
direction of flow ‘
_ X [ + & Solid wall atom (movable) Yy
3 ) ) ® Solid wall atom (fixed)
O  Fluid atom X

x=0
. nozzle
/ Ly, FBC
N

X=X

Consider a Poiseuille (pipe/channel) flow scenario: fluid comes in with pressure P, and exits
with pressure P,,;. AP = P, — P, > 0 is what drives the fluid flow.

e How do we set up the pressure head AP in MD ?




0
Continuum description : p(a—‘tf +v-Vv)=—-VP+uV?v+pg

ov

In steady state, 57 = 0 and pg is usually negligible, which means the fluid in concern

is only pushed by other fluids.

In order to simulate such flows in MD, we have to make sure that in the region of
interest D, the fluid atoms are not affected on by artificial forces of any kind, and that
the local dynamics of particles should be the same as in nature. The desired flow should
only be achieved by applying appropriate boundary conditions/actions far from D
(could be artificial). Because of molecular chaos, the disturbance to particle dynamics due
to artificial action on the boundary will decay rapidly (in a few mean free paths) as it
approaches D. In a sense we want to build a feedback control system: certain flow
conditions are desired in D, yet we can not directly act on D because it will invariably
disturb the local particle dynamics. Thus it would be ideal if by acting far away, we
can achieve the desired flow conditions in D, because then local particle dynamics will

also be preserved. In fact, the fluid atoms will not be able to distinguish any difference

from “reality” inside D, and how the flow is set up has become irrelevant.




Mechanism: A bunch of “Maxwell’s demons” sit on a membrane at £ = 0: they are
such that if an atom crosses x = 0 from left (x = Ly) to right (x = 0%), it passes
through without hindrance; but if it crosses x = 0 from right to left, then it could be

elasticly reflected with probability p. The membrane is otherwise transparent in the sense

that particles on two sides can interact.

Our method is simple and effective. It
e conserves number of particles (so steady flow is possible)
e conserves total energy (no need for temperature rescaling in the system)
e reaches steady state gracefully.

But most importantly, particle dynamics (except in regions near the membrane) are preserved!,
and we recover the Navier-Stokes equation in continuum limit (the so-called gravity method
does not). However it is an implicit method, i.e., AP is an “output” (a function of p and
geometry) rather than being specified. For AP to serve as input, we need to have a feedback

control mechanism.

1A fluid atom in midstream has no way to tell whether the local pressure gradient is set up by RPM or by neighbor’s kid’s water gun.



RPM "V OI'kS: (zyz = 51.0 x 5.1 x 12.7, 1783 fluid atoms, 900 wall atoms, p = 0.81, T = 1.1, prefiect = 1.)
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Density and flowrate profile of fluid atoms in cross-section z. The dotted lines indicate the
positions of fluid-solid interfaces. The characteristic time and length scales of the fluid and
solid atoms are made equal, so “no-slip” condition is seen to hold very well near the interface.
The flowrate profile is in rough accord with the parabolic shape predicted by Navier-Stokes

equation for incompressible fluids.



RPM Works...

Average cross—sectional Pxz Variation of mid-stream Pxx along X
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Shear stress 7., profile in z, and midstream pressure 7,, along . The objective of setting up

pressure difference between two ends of the channel is indeed realized by RPM.

e Using the obtained total flowrate and pressure gradient, we can infer the fluid shear viscosity,
assuming the continuum description to hold everywhere. It gives p = 2.47, in fair agreement

with © = 2.14, as predicted by bulk liquid simulation® at the same condition.

%S, T. O’Connell and P. A. Thompson, Phys. Rev. E 52, 5792 (1995).




Demons vs Heat:

Facts:
— Demons don’t do work (by selectively reflecting), so system energy stays constant.

— Heat is generated by viscous action inside fluid bulk®. The rate, as calculated by

continuum description, is

Ly Lyw?® (AP>2

= v = 120 \Az

— Steady state is observed to be reached. The system does not heat up.

2QOther dissipative sources may exist, such as “stick-slip” motion at fluid-solid interfaces. In our examples it should be negligible.

e Q: Where does the heat go?
e A: A(Q) = T'AS .The demons reduce system entropy by selectively reflecting atoms at = = 0.

e Q: How do we calculate this AS?
o A: Let f1/ f2 be the rate of particles hitting x = 0 from left /right when the system reaches steady state. If the demons

do not act, then in a unit period of time, the parameters specifying the membrane system is f; and f5, which correspond to
— (fitfo)! ; feTO . ; ; — (f1t/f2)!
O = ir vays of crossing (micro-states); after the demons interfere it becomes 2y = EDIE D the system can not

distinguish between atoms which hit from the right and then get reflected and atoms which originally hit from the left. Thus we
arrive at the following heat balance equation:




} _ LxLyuw? (AP>2

kpT log g—; = kpT {fl log(1 + pf—ﬁ) + pfalog(p + ?) + f2(1 —p) log(1 — p) As

1 2
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Verification of the Heat Balance Equation in RPM
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This balance has been explicitly verified using data obtained from our MD simulations. The difference (in nu-
merical value) between LHS and RHS is usually within 15%, which is extremely good agreement? considering all
the assumptions made. The fact that LHS is consistently a bit higher than RHS is in the right direction because

fluids near the membrane are more “turbulent” and the continuum dissipation kernel tends to underestimate.

2In a much bigger system (76.5 x 10.2 x 20.4) run with 10179 fluid atoms and 2700 wall atoms, LHS and RHS are found to agree within 1%.



Thermodynamic Field Estimator:

Basic Assumption:

At any given instant, there exist continuous, slowly wvarying thermodynamic fields

{p(x),T(x),v(x)}, such that particles conform to single-particle distribution function of

dP = fu (x,v[{p(x), T(x),v(x}) dxdv = (QWZP”EQ)DQ exp (_ v —v(x)] ) dxdv.

2T (x)

Inverse problem:

Given a set of particle data, {(x;,v;),i = 1..IN}, how can we obtain the “actual” set of

continuous functions {p(x), T'(x), v(x)}, such as required for drawing streamlines in fluid flow?

e Usual answer: Divide the geometry into bins and average over each bin.

e Shortcomings: We neglect spatial correlations between particle data, implied by the fact
that the “actual” fields should be continuous and slowly varying. For this reason we

often face the choice between spatial resolution and statistical accuracy, especially when data

are scarce and expensive.

= Is it the best we can do? Are we maximally utilizing the information?



Maximum Likelihood Inference: Given a set of independent data (sample) points
{(xi,v;), %= 1..N}, the “most probable” fields {p(x), T'(x), v(x)} are which maximizes

P = zi_:V[1 v (xi; vil{p(x), T'(x), v(x)})

In actual implementation we expand the fields in a certain spatial basis and optimize the coefficients using
conjugate gradient minimizer. The spatial basis usually consist of low order polynomials (Chebyshev),
which is equivalent to assigning “priors” to fields with slow spatial variations.
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Snapshot of a 2D liquid system with 500 atoms which is heated on one side (z = 1) and cooled on the other

(r = 0). Dots represent particle positions (z) and kinetic energies (y). A sliding bin average (size=0.12) is

taken to give the zig-zag curve, representing an instantaneous temperature profile; our method (4 bases) gives

the smooth curve, which laces through the bin-averaged results. The physical origin of this method gives us

confidence in the quality of the estimation, which is of great value in the general coupling formalism.



Applying Field Estimator to Fluid Flow:

The Results:

Following two graphs are bin-averaged (60 x 30) plot of the fluid velocity and corresponding
streamline plot based on fields given by the estimator. The flow (2D LJ6-12 system, 150 x 50,
2000 atoms, T ~ 1.50) is driven by RPM (p = 1, two membranes), with a vertical wall barrier
(fixed atoms) in midstream. 200,000 particle data (collected in 50,000 time steps) are fed into
the field estimator (same data are used in the bin-average), which employs 4 basis functions
for the T field and 121 basis functions for v,, v, fields inside domain (20, 0) — (140, 50). The
geometrical singularity (the barrier) inside the domain may influence the accuracy but not the
qualitative features of the estimation, especially, the vortices are believed to be real. From the
continuum perspective, the Reynolds number Re = pvL/pu is around 10!, which corresponds
to vortex generation in similar fluid mechanical situations. But the high flow speed and

significant temperature and density variations (~ 20%) along the flow deem it difficult to be

fully treated by any continuum descriptions.
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Bin (60x30) averaged velocity plot of flow driven by RPM
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Streamlines of 2D fluid flow driven by RPM
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Optimal Particle Controller — Prelude

e A Case of Failure:

Consider a simple fluid system for which we want to have high temperature 7} at £ = 0 boundary and
low temperature 71; at x = 1 boundary, to study convectionless heat conduction. One immediate idea is
that when a particle crosses either boundary, give it a random velocity drawn from distribution fy(v)

with parameters v = 0, T' =T}, (or 7;) and put the particle back.

This method fails. For simplicity let us take 1} = Ty, i.e., homogeneous heating. We have implemented
the scheme on both 1D fluid with soft-core interactions, and on 2D LJ6-12 fluid where we only re-sample

the normal velocities v,, when particles cross the boundaries. Both simulations end up with the bulk

temperatures dropping to approximately T},/2!

e Reason:
We are dealing with a conditional probability problem: the speed distribution of atoms which cross

the boundary (say, from left to right) is different from that of atoms in the bulk

1 v,
dP = exp | —— | dvy, —o00 < vy < +00, 0.1
VorT P ( 2T> (0-1)
but weighted by the normal velocity v, > 0
2
Uy €XP (—%) dv, Vg V2
dP = 5 =—e —— | dv,, 0<uv, <+oc. 0.2




Optimal Particle Controller — Prelude

It can be checked that (v,?) from distribution (2) is 27", not T'. Thus, if we rescale the

boundary crossing atoms using bulk distribution (1) with parameter T' = T}, the energy

can only be balanced when the bulk temperature reaches T} /2.

Insight:

A more obscure defect of the scheme is that, for whatever the incoming velocity vj,
of the particle before hitting the boundary, a new velocity v, is drawn from a given
distribution, say g(v), entirely independent of vi,. Thus if we evaluate the disturbance
to particle dynamics using B = (|Vou — Vin|?) for the scheme, it is going to be big. Take
the example of homogeneous heating, where we shall use the correct distribution (2) as
g(v) in drawing vou’s: even when the system reaches T}, the desired temperature, the
scheme still disturbs particle dynamics by giving each boundary crossing atom a new
Vout; On the other hand, if we just let vy, = Vin, 1.€., do nothing, the system temperature
stays at 13! In fact, a “smart” method should be able to automatically tune down its

influence when the system approaches the desired state — and just do nothing if the actual

distribution s the desired distribution. We shall call this the coalescence property.




Optimal Particle Controller:

Objective:

We want to achieve certain macroscopic field boundary conditions on 0D, on the cost of least disturbing
the particle dynamics inside D. Any artificial interference besides the natural course of evolution for
the particles, such as temperature rescaling, acceleration, or RPM, constitute disturbances to the local
dynamics. Very often acting on 0D (or beyond) is desirable because the deeper in D, the less the effect.
A reasonable quantification for such “boundary disturbance” is

B = {|Av[?) = (w3t v

n

where Av, is the change in particle velocity before and after the nth particle crosses the boundary. Field
“boundary conditions” on 9D are satisfied if outgoing particles conform to fu(x,v) distribution with
the desired on-site parameters {p(x),7'(x), v(x)}.

Let us formulate these ideas mathematically. Suppose we have incoming random number series {X,,},
conforming to distribution function f(X) :dP(n < X <n+dn) = f(X)dn, but we would like the series
to conform to distribution g(X). We believe that by replacing X with another random number Y which
has distribution ¢g(Y), we will be able to gradually achieve that purpose (let us first not consider the

overshooting approach). Thus our goal is to find a transformation 7 : X,, — Y,,, with the requirement
that if {X,} conforms to distribution f(X), {Y,} will conform to distribution g(Y).




There exist many possible 7’s:

e 71 = Draw Y randomly from ¢(Y") without referencing X.

o= Take Y = X if p < Kg})&), but randomly draw Y from ¢(Y) if otherwise. Here

p is a random number uniformly distributed over [0,1], and K is a constant such that
K f(X) > g(X) for all X. 7T, satisfy the coalescence property®. But is it the best?

e 73 = Solve Y from X by the implicit equation: /X _ f(&)d¢ = /¥ g(n)dn.

°Tf T satisfy the requirement that when f = g, Y,, = X,,, it is said to have the coalescence property.

If we come back to our previous idea about minimally influencing the dynamics,
let us adopt the reasonable criterion that B[T] = ((Y — X)?) be minimized among
all possible T ’s. That is, we want a series {Y,,} which is least altered from {X,},
yet representing a desired distribution g(Y'). We believe that 73 is the mathematically
optimal transformation which minimizes B. A tentative proof is given at the end.

T3 works rather well in our applications, but it is an implicit algorithm and could be

computationally demanding.




e How can we know f(X) at 0D, in order to use 77

A straight forward answer would be to collect incoming data {X,} of the past for a certain
period of time, to compile a histograph. For fields with spatial and temporal variations this
turns out to be not a very good idea, because boundary-hitting is rare compared to bulk data.
If we believe that the actual fields have small spatial variations, then particle data inside the
bulk carry useful information about the system and should not be discarded: this is where
the thermodynamic field estimator comes into use, because the continuous function we
get for the field using Maximum Likelihood Inference is based on all particle data. Especially,
field values at the boundary can be thought of as extrapolations from the bulk, where
each particle data makes a contribution. This is of course based on the assumption that

quasi-equilibrium distribution fy(x, v|{p(x), T(x), v(x}) holds, which is the bridge between

macroscopic fields (continuum) and microscopic statistical mechanics (MD).




General 3D Boundary Particle Controller I

D is our domain of interest, 0D is its boundary upon which the particle controller acts on in order to achieve the desired
macroscopic fields. For any small piece of the boundary, we can always choose the local coordinate frame to express the desired
(g9) macroscopic velocity field as v = (vp, v5,0). In the same frame the actual (f) velocity field is v/ = (v!,, v%, v}).

n

ny Ysy

We found that (v, vs, v;) distributions for boundary hitting (—n — n) atoms are decoupled. And they are, respectively,

(27T) %0, exp(— (v, — 9,)%/2T)

gn(vn) = T 5 T 22 vn € (0, +00)
2Un(1+erf(J25)) + /57 exp(—25)
1
9s(vs) = exp(—(vs — 0,)%/2T) vs € (—00,+00)
2T
1

exp(—v; /2T) v € (—00, +00)

gt(Ut) = \/%—T

{fn(v)), fs(v)), fr(vi)} have similar expressions. We only need to plug each (f, g) pair into 73 to calculate the (v), — vy,
vl — vs,v; — v;) action for each boundary hitting atom, and it is believed to be optimal.



General Feedback Control Formalism:
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Schwarz Coupling

Overlapped Region
Overlapped Region

c
o

The two alternitive steps of schwarz coupling:

>
i S
) 3
v..,_p W c
R @ >
S @
5
ST
Ry o
oG A
AN m ©
e =
A
AR =
Ko
XXX =
AR ¥ <
OO : .
I I
I I
I I
I I
I I
I I
I I



Appendix. The proof that 73 is optimal: I

In our definition, a transformation is an operation which gives an output Y from an input X, but not necessarily in a deterministic
manner, which differs from the concept of a function. 77,75 and 73 are all examples of such transformations. Mathematically
it is equivalent to a mapping from a real number x = X to a real function in y, which is just the conditional probability
distribution W (y|x), from which Y is drawn. The joint probability distribution function is simply

W(z,y) = W(ylz)f(z) (:3)
for the two random variables on zy plane.
W (z,y) has the properties of:
1. Non-negativeness:
2. Normalization:
+oo
| weydy = 5@) ®
+oo
/ W(z,y)dzdy =1 (.6)
3. Basic requirement:
+oo
| Wi ydz=g() (7

Now, we want to find the Wy, (x, y) which minimizes “disturbances” to the sequence, quantified as

BW] = [ @~y W(a,y)dedy

—00

We want to show that the distribution Wy,;, must be zero almost everywhere on the xy plane. Suppose we have found



Winin, and Wiin(z,y) > 0 everywhere in a small region 4. We can always find some function S4(x,y) which is nonzero only
inside A, satisfying

/A Sa(z,y)dz =0 (.8)

/,4 Sa(z,y)dy =0 (-9)

and zero elsewhere3.

Since the expression for B[W] contains (z — y)?, it can not be that B[S4] = 0 for all valid S4’s, and we can always choose a
small enough A to ensure that |AS4(x,y)| < W(x,y) everywhere. Let Wiew = Winin +AS 41 Whew Will also satisfy the constraints
(4) to (7). Lastly let us pick the sign of A to make AB[S4] < 0, so

B[Wnew] = B[Wmin] + )‘B[SA] < B[Wmin] (10)

which is a contradiction. So, a finite area A where Win(x,y) > 0 does not exist, which can only be explained if Wiy, (2, y) are
combinations of -functions; that is, the optimal transformation 7 is function-like mapping from X to Y where (almost all) the

extra randomness are gone.

Now, assuming Wi, takes the form Wy, = 6(y — H(z)), which is equivalent to saying that the transformation is a function
y = H(x). Then the problem simplifies to finding a function H,;, which minimizes the sum (for illustrative purposes we use

summation here instead of integration)
B[H] = lim Y (z; — H(z;))*/N, (.11)

N—o P

with the requirement that z;’s are from distribution f and H(z;)’s will conform to distribution g.

We want to show that Hp,(x) must be a monotonicly non-decreasing function: because if there exists a pair

x1 > x9 but H(z) < H(zs)

r—T1
To—xT1

) sin(27n, L¥L) where n,, n, are non-zero integers.

3For instance in a rectangular area (z1,y1) — (22,%2), we can pick Sa(z,y) = sin(27n, .



we can construct an H (x) with z1, 2o exchanged

H(z) (xz# z,2 # x9)

H(z) =14 H(zy) (x = 1) (.12)
H(z) (x = x9)
without influencing g, however
(@1 — H(z1))? + (w2 — H(zy))”
= (21— H(22))* + (22 — H(21))?
= (21— H(21))* + (22 — H(22))” — (21 — 22)(H (22) — H(x1))
< (21— H(z1))* + (z2 — H(z9))?

so B[H| < B[H], which is a contradiction.

Thus there must be a unique, one-to-one relationship between x and y. And because of the basic requirement,
dP = f(z)dz = g(y)dy (-13)

since any small interval (z,z + dz) is uniquely and deterministicly mapped into (y,y + dy) by the optimal transformation. So

if we integrate from x,y — —oo where P = 0, there must be

| r@de= [ g

—OoQ

which is the 73 transformation.
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