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In this the second of a two-part paper we formulate a method for coupling atomistic and con-
tinuum simulations in the framework of the classical alternating Schwarz method with domain
decomposition. Our approach combines the previously developed thermodynamic field estimator,
which acts to extract the macroscopic field from the results of atomistic simulation, with a novel
procedure, optimal in the sense of least disturbance, for imposing prescribed continuum boundary
conditions on the atomistic system. By means of simple feedback control, we further ensure that
the desired macroscopic field is achieved at the physical boundary by adjusting the imposed field at
an extended boundary. Validity of our method is demonstrated in the example of simple Couette
flow where the continuum solution is known analytically.
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I. INTRODUCTION

Molecular dynamics (MD) plays a unique role in the
simulation of fluids by virtue of its ability to offer insights
into atomic-level structure and dynamics that cannot be
obtained from continuum calculations. Because only a
microscopic region of the fluid can be studied in this
manner, there is considerable interest to develop hybrid
atomistic-continuum methods. The central issue here is
the coupling, or matching, of discrete particles with con-
tinuum representation of the system, whose degrees of
freedom are very different although physically related.
Though this problem has been well recognized!, there
still appears to be no completely satisfactory solution.

Two notable attempts have been made recently to rec-
tify this situation, both invoking the use of an overlap-
ping region but differing in how the molecular and contin-
uum descriptions are to be made compatible. O’Connell
and Thompson? proposed to constrain the dynamics of
atoms in the hybrid layer between the MD and continuum
regions to ensure continuity of property averages across
the coupling region. Hadjiconstantantinou and Patera®
cast their formulation in the framework of alternating
Schwarz method®® and treated the matching in terms of
refining the boundary conditions imposed on each of the
overlapping subdomains through an iterative process.

In this paper we present a formalism for hybrid
atomistic-continuum simulation, also in the spirit of the
alternating Schwarz method, and focus on the problem of
coupling continuum solution, in the form of phase space
distribution (fields), to a system of discrete particles. The
essence of the Schwarz method is to solve for the two
overlapping subdomains in an iterative fashion (see Fig.
10), first obtaining the solution in one subdomain us-
ing an approximate boundary condition inside the other
subdomain, then doing the same for the other subdomain
based on the newly obtained solution, and iterating on



this sequence of steps until convergence is reached.

In this work the atomistic subdomain will be treated
by MD simulation, while the other subdomain will be
treated by an appropriate continuum solver. Coupling
the two means that the boundary condition for the atom-
istic region will have a part determined by the continuum
solution (on the border joining the overlapping region
and the continuum), and vice versa. In order to iterate
between continuum and MD solutions, one needs meth-
ods to carry out two types of operations, one is to con-
struct the macroscopic field(s) that accurately represents
a given set of particle data, and the other is to perform
the inverse, which is to make sure that the MD particle
trajectories correspond to a prescribed macroscopic field,
and is achieved with as little artificial disturbance as pos-
sible. A method for the former has been developed in our
first paper® in the form of an algorithm called the Ther-
modynamic Field Estimator (TFE). A method for latter
operation is what we will describe below, to be named
the Optimal Particle Controller (OPC).

The basis of OPC is a transformation relating two
sets of random variables, each governed by a distribu-
tion function with certain macroscopic fields serving as
parameters. In conjunction with TFE, this transforma-
tion allows us to impose arbitrary continuum solution as
boundary condition for MD simulation. We regard this
particular coupling procedure as optimal in the sense that
the resulting artificial disturbance to the particle dynam-
ics, as measured in terms of the square deviation in the
two sets of random variables, is minimal.

Our coupling method incorporates another technique,
designed to reduce further the artificial disturbance of
imposing a prescribed macroscopic field. This involves
applying the boundary condition at a distance extended
beyond the MD-continuum interface normally associated
with Schwarz-type overlapping domain decompositions.
Using a first-order feedback control algorithm relating
the field actually imposed at the extended boundary and
the intended field at the MD-continuum interface, we
show that faster convergence to the prescribed field can
be achieved. We will refer to this procedure as the Ex-
tended Boundary Condition (EBC).

To demonstrate the validity of our hybrid atomistic-
continuum simulation formalism, with emphasis on the
atomistic aspects, we consider a particularly simple prob-
lem, that of planar Couette flow between two parallel
walls. In this case the continuum solution is simply a lin-
ear flow velocity field, which conveniently eliminates the
need for a real continuum solver, but suffices to illustrate
the ideas.

This paper is organized as follows. We begin with the
development of the Optimal Particle Controller in Sec.II,
first defining a simple measure of disturbance to the par-
ticle dynamics, then formulating the optimal transforma-
tion, and lastly deriving the various distributions needed
for the implementation. Given the OPC as a direct
method of imposing field boundary condition on a system
of particles with least disturbance, one can proceed in an



even more gentle manner by incorporating the Extended
Boundary Condition and feedback control, discussed in
Sec.III. Validation of our method which involves all three
techniques, TFE, OPC, and EBC, in the case of Couette
flow, is first discussed without reference to the larger pic-
ture of alternating Schwarz method, in Sec.IV. And then
in Sec.V we consider specifically the effects of different
types of Schwarz iterations on the convergence of the so-
lution. A number of concluding remarks are offered in
Sec.VI.

II. OPTIMAL PARTICLE CONTROLLER
A. Minimal Disturbance to Particle Dynamics

The basic problem we face is the following. Given a
set of particle coordinates in phase space, namely the po-
sitions and velocities of a system of N particles, which
can be reasonably well described by a distribution func-
tion characterized by a set of macroscopic fields (density,
velocity, and temperature)*. How does one modify the
particle coordinates such that the corresponding distribu-
tion is now characterized by a different set of macroscopic
fields? Stated in another way, given that the current
particle coordinates are governed by a certain distribu-
tion function, how does one find a new set of coordinates
which are governed by a different distribution, the one
that is prescribed by the continuum subdomain solution?
One may try to decouple the two first, and use only the
latter to sample the new set of coordinates. While this
would indeed lead to a coupling scheme, it is quite con-
ceivable that ignoring the current state will result in a
procedure which strongly disturbs the particle dynam-
ics. If decoupling the two distributions, or equivalently,
the two sets of particle coordinates, is not a good idea,
then one should look for a way to relate them such that
the disturbance is minimized. We will now introduce
a quantitative measure of this disturbance and suggest
a relation connecting the current state and the desired
state that minimizes this measure.

To be explicit we consider a coupling scheme where
the continuum velocity field is imposed on the atomistic
simulation, and for the moment suppose we already know
the transformation that are to give the desired continuum
field. Then we can define

B =3 [Avs]? = Ivprt =it %, (2.1)
n n

where Av,, is the change in particle velocity of the nth
particle (vi® and v are the velocity before and after the
transformation). This quantity will be used as a simple
measure of the artificial disturbance to particle dynamics,
which should be minimized as much as possible.

For the developments to follow, we note that a reason-
able form to take for the distribution which describes the
particle coordinates is the local Maxwellian function



dP = far (x,vI{p(x), T(x), ¥ (x}) dxdv (2.2)
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where x, v are single particle position and velocity, and
p(x), T'(x), v(x) are the macroscopic density, velocity
and temperature fields, respectively. In (2.2) D is the
dimensionality of the system, and we have taken the mass
of particles and the Boltzmann constant to be unity.

Consider now the different ways one can modify the
existent particle velocities to achieve a distribution that
is characterized by a different macroscopic field. We can
think of two criteria which need to be satisfied. First, the
resulting macroscopic field must be correct. A common
way to estimate the macroscopic field from particle data
is to assume a distribution and calculate its averaged mo-
ments. In most situations a local Maxwellian form (2.2)
provides a good description, and that can always be ex-
plicitly checked. Second, correct particle dynamics is de-
sired. If the particle dynamics is strongly disturbed, MD
simulation will lose its physical significance. Conforming
to a prescribed distribution does not mean that the dy-
namics is also correct. If a macroscopic field has reached
the correct value and can be maintained without further
coupling, a good controller should do nothing more to
the particles. This means that the modified phase coor-
dinates should not be decoupled from the original ones.

As an illustration let us consider a simple problem of
1D convection-less heat conduction, for which we wish to
impose a temperature boundary condition of high tem-
perature T}, on the left (z = 0) and low temperature T;
on the right (x = 1). Intuitively one could imagine doing
the following.

When a particle crosses either boundary (z = 1 or
xz = 0), give it a random velocity drawn from distri-
bution (2.2) with parameters v .= 0 and T' = T}, (or
T = T;). However, this procedure can be shown not to
work. When implemented in practice, the case of homo-
geneous heating (T}, = T;) shows that the bulk tempera-
ture reaches a value of T}, /2.

The above scheme fails because one is dealing with a
conditional probability problem. The speed distribution
of atoms which cross the boundary is different from the
speed distribution of atoms in the bulk

= p(x)dx -
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(v?) from distribution (2.4) is 2T, not T. Thus, if we
sample the boundary crossing atoms using bulk distribu-
tion (2.3) with parameter T = T = T}, the energy can



only be balanced (in a statistical sense) when the bulk
temperature reaches T}, /2.

A more subtle defect of this scheme is that, for what-
ever the incoming velocity v, of the particle before hit-
ting the boundary, a new velocity voyt is drawn from a
given distribution, say g(v), entirely independent of viy.
Thus if we evaluate the disturbance to particle dynamics
using (2.1), it is always substantial no matter how long
one runs the simulation. In the example of homogeneous
heating, where the correct distribution (2.4) is used as
g(v) in drawing veut’s, even when the system reaches the
desired temperature, the scheme continues to disturb the
particles by giving each boundary crossing atom a new
VUout- On the other hand, if we just let vout = vin, i-e.,
do nothing, the system temperature stays at Tp! A more
intelligent particle controller should automatically tune
down its influence as the system approaches the desired
state, a behavior we may call the coalescence property.

B. The Optimal Transformation

We now formulate the above considerations mathemat-
ically. Suppose we have an incoming random variable
series { Xy}, conforming to distribution function f(X):

dP(n < X <n+dn) = f(n)dn, (2.5)

and we would like the series to conform to a different
distribution g. We propose to achieve this by replacing
every X with another variable Y which is distributed
according to g. Thus the goal is to find a transformation

T,
T:Xn— Y, (2'6)

with the requirement that if {X,,} conforms to distribu-
tion f(X), {Y,} will conform to distribution g(¥"):

dP(£ <Y < &+ dE) = g(&)dE. (2.7)

There are many possible 7’s. However our previous
discussion shows that the following property is desirable:
if f =g, then T gives Y, = X,,.

To incorporate the idea of minimally disturbing the dy-
namics, we adopt the criterion that

B[T] = (Y - X)?) (2.8)

be minimized among all possible 7’s.

Thus our output series {Y},} is least altered from { X, },
while it is still distributed according to g(Y). As f ap-
proaches g, Y approaches X.

We see that if 7 is randomly drawing Y from g¢(Y)
without reference to X, it satisfies the basic requirement
of (2.7) but not the coalescence property. We will call
this transformation 7;.



To incorporate coalescence one may consider the trans-
formation 7,

X
y=Xx: r< 0

Ts :

draw Y randomly from ¢(Y): p> Kg](‘f)g)

where p is a random number uniformly distributed over
[0,1], and K is a constant (scheme fails if K does not
exist) such that

Kf(X)>g(X) for —oo< X < +o0. (2.9)

But is 75 the best one?
We propose the following transformation, in the form
of an implicit relation,

X Y
To:X oY ~ /_ F(©)de = /_ g(6)de.  (210)

It can be checked that Y indeed conforms to distribution
g(Y) if the incoming random number X conforms to dis-
tribution f(X), and it satisfies the coalescence property.
In fact this should come as no surprise because it is the
only one-to-one continuous mapping which satisfies (2.7),
without the extra randomness like in 7.

We believe that 73 is the mathematically optimal
transformation which minimizes (2.8). A plausibility ar-
gument is given in the Appendix. Our experience has
shown that while 73 works rather well, it is an implicit
algorithm and could be computationally demanding.

Thus far we have assumed f(X) to be known. In real-
ity it has to be inferred from {X,}, and this invokes the
separate issue of how we extract continuum representa-
tion from the atomistic description. A straightforward
approach would be to collect {X,,} over a period of time
to compile a histograph. For fields with spatial and tem-
poral variations this is not a very good idea, especially
if the available data set is small. If one believes that the
actual field has smooth variation, then particle data out-
side the point of interest carry useful information about
the field at this point and should not be discarded. One
then should use the Thermodynamic Field Estimator in-
troduced in the first paper*. The continuous represen-
tation given by this method is based on the principle of
Maximum Likelihood Inference and a judicious choice of
basis functions, which makes good use of all available in-
formation. It is assumed in this method as well, that
the local-equilibrium distribution (2.2) holds, which is
the bridge between macroscopic fields (continuum) and
microscopic statistical mechanics (MD).

C. 3D Implementation

To implement the foregoing formulation we need to
find the coupling distributions f and g that will relate
the continuum description to an atomistic system. Since



the coupling takes place through the particle velocities,
we will give in this section explicit expressions for the
velocity distribution. With D = 3 and particles con-
forming to distribution (2.2) with microscopical fields
({T(x),v(x)}), we calculate the boundary crossing rate
at OC (see Fig. 1) for any small piece of the surface area.
For choice of the coordinate system, we take the trans-
verse basis s and t such that the macroscopic field v(x)
lies entirely in the place of n and s. Thus, in this local
frame,

v = (Up, Us, 0), (2.11)

(from now on we will omit x but it is implicitly under-
stood that everything is local). In the same frame the
particle velocities can be expressed as

v = (Un, Vs, V). (2.12)
The boundary crossing rate from interior to exterior is
dN
asdt|_, ..
(Un — 0n)? + (vs — V)% + 2\ vpdvndvsduy
=P exp | — 3/2
vn>0 2T (27 T)
+oo 5 )2
p (vn — Tn) )
= Upexp | ——————— | dv
I—QWTA n p( 9T n
1 77 pT 02
= —po, | 1+ erf(—2 )+ exp(—=2), 2.13
o (14 enl( ) ) + 2 exp(- 12) (213)
where the error function is defined as
2 r 2
erf(z) = —/ e dn.
VT Jo
Similarly the reverse crossing rate is
dN
asdt| ., .
1 -y pT 2
= ——pu (1 +erf(—)) + exp(—=2). 2.14
3ol erf( Z20)) + P exp(~32). (214

With the boundary crossing rate depending only on the
normal component of the field velocity, the distribution
function which relates the particle and field variables be-
comes three decoupled distributions. For the boundary
hitting (—n — n) atoms, they are

(2nT)~/?v,, exp(— (v, — 0,)%/2T)

gn(vn) = - —
%ﬁn(l +erf(\})2"7)) + %exp(—;’—")

vn € (0, +e0), (2.15)

95(vs) = ;ﬂ, exp(—(vs — 5)*/2T)

vy € (—00,4+00), (2.16)

u(u) = o exp(—0?/2T)

Vi € (=00, F00). (2.17)



Notice we use symbol g here to indicate that (T, V) are
the desired macroscopic fields. In order to achieve these
fields using 73 transformation (2.10) we need to know
the f’s, i.e., the actual, or current, velocity distribution
functions of boundary hitting atoms. They are also given
by (2.2) but with different parameters (77,¥'). If we
express

v = (v,,,7,, ) (2.18)
in the same coordinate frame and repeat the steps (2.13)
to (2.17), we get corresponding results for the distribu-
tions describing the current state,

2 T") 120, exp(—(vn — 7,)2/2T")

In(vn) = _, " 512
204 (1 + erf(—2=)) + \/gexp(—;%,)

vn € (0, 400), (2.19)

fuls) = \/;F_T exp(—(v, — 7)2/2T")

vs € (—00,+00), (2.20)

folw) = ﬂ;_T exp(— (e — 71)*/2T")

vy € (—00, +00). (2.21)

Because the distributions in v,,vs,v; are decoupled,
we can apply (2.10) separately on the three variables, for
each —n — n boundary hitting particle. The situation
for n - —n is exactly the same after v,, — —uv,, substi-
tution.

All the above derivations for imposing boundary condi-
tions do not include density coupling. To couple density,
one has to inject or remove particles, then the distur-
bance to particle dynamics cannot be quantified by what
we are proposing here. Maintaining certain density field
is in general more difficult than maintaining temperature
or velocity field. On the other hand, one usually are not
required to apply density boundary condition explicitly.
In most problems, the density field rather comes as a re-
sponse to the other fields through the equation of state,
for example in the micro-channel Poiseuille flow problem
discussed in our first paper*.

III. EXTENDED BOUNDARY CONDITION

In Section II a method was proposed to control the field
boundary condition of an MD simulation which results in
least disturbance to the particle dynamics in the sense of
(2.1). Nevertheless the disturbance is still existent for
particles in the skin region near the boundary, which can
be shown to be proportional to the rate of dissipation
in the system. In this Section we will formulate a pro-
cedure which eliminates that disturbance entirely at the
specified boundary. Since any artificial action necessarily



alters the particle dynamics in the vicinity where it is im-
posed, the best one can do is to act some distance away
from the intended boundary and cause the macroscopic
field at the boundary to be what is prescribed.

This can be done using a three-region approach which
we will call the Extended Boundary Condition (EBC),
shown in Fig. 2, and through a feedback control mech-
anism. The physical region of interest, C (core), is sur-
rounded by a buffer zone B. Actions are applied on an
outer MD region A which is sufficiently separated from
C, its aim being to induce the prescribed field boundary
conditions on the core boundary dC. Due to molecular
chaos in fluids, perturbation to particle dynamics will de-
cay over a distance of a few mean free paths, thus setting
a lower limit for C-A separation. The action in A is in
general a matter of choice, but here we will use the OPC
developed in last section because it minimizes the dis-
turbance, thus B could be as thin as possible. The TFE
serves as the detector of the control loop, inferring cur-
rent fields on OC based on particle data from the entire
C region. A Control Algorithm compares the estimated
current field with the prescribed field on 0C, and gives
instructions to the particle controller.

Note that although A and B are discrete particle re-
gions governed by the same molecular dynamics as C,
they are conceptual constructs which have no physical
correspondence and do not appear explicitly anywhere
in Fig. 10. They exist solely to ensure that the phys-
ical region of interest C has the correct field boundary
conditions and evolves according to natural particle dy-
namics. Properly implemented, it could be a powerful
tool for studying fluid systems because a fluid atom in C
has no way to tell any difference from reality. It in turn
can be used as a perfect benchmark for comparing the
actual performance of 7; and 73, as we will see below.

We now demonstrate how such a procedure could be
implemented in the context of simulation of shear flow. In
classic Couette flow problem, the continuum fluid moves
between parallel sliding plates with a linear velocity pro-
file as shown in Fig. 3. The entire fluid is of macroscopic
dimension (> pm). The part of the problem which is
appropriate for MD simulation is only a small region at
the fluid-wall interface. This atomistic region is depicted
as consisting of three layers of atoms representing the
wall and a fluid of N atoms. To maintain the flow field,
a boundary action representing the continuum-atomistic
coupling acts at plane 0.4 in Fig. 4 which, as we saw,
need not to be the outer boundary of the physical core
(subdomain) 8C. But as a comparison, we will also imple-
ment the direct Particle Controller (PC) approach shown
in Fig. 5, where A 4s C and there is no buffer zone.

In practice it is more convenient to work with a sim-
ulation cell that is periodic in the z-direction, for this
reason our MD simulation will be carried out in a sym-
metric geometry as shown in Fig. 4 and 5. Since our
MD program is O(N)*, this merely doubles the compu-
tational effort but we get twice as much particle data as
well; and with each side serving as a particle reservoir for



the other. It is important to keep in mind the connection
between this particular simulation setup and the Couette
flow problem in the framework of Schwarz coupling (Fig.
10); otherwise, the significance of simulating a periodic
system of fluids flowing between static walls driven by a
velocity field along the center line may not be apparent.
In applying the EBC (Fig. 4), the buffer region is be-
tween A4 and OC. Actions are applied on 0A instead
of 9C in such a way that the desired field at OC is ob-
tained (see Fig. 4). The question then becomes, given
the desired flow velocity at 0C, v{,, how does one control
the flow velocity at 0.A (prescribed value of the OPC),
v%? Adopting a first-order feedback control algorithm,
we may write
dv (t
A0 - (v (t) -2, (3.)

where the rate constant k should be picked according to
the response time at dC due to an action on 9.4, to make
(3.1) converge as quickly as possible without oscillations’.
This simple equation allows us to control the action on
A based on current values at 9C and 8A (from TFE),
as well as prescribed value at OC.

A further drawback of the direct approach (Fig. 5)
besides disturbing the particle dynamics is that in a sys-
tem with finite dissipation, we have to ”overshoot” in the
prescribed field value by some unknown amount in order
to achieve the desired value at the same locale, because
dissipation is always dragging the gradients down, and
the particle controller only acts when the current value
is off, so the time-averaged value is always below what
is prescribed. The problem is, we do not know before-
hand how much overshooting is needed to achieve the
desired field. If the dissipation is zero (as in the homo-
geneous heating case), then we do not need overshooting
at all and the coalescence property works perfectly. But
in case of finite dissipation, its influence on the results of
direct PC approach is significant (see Fig. 7 in the fol-
lowing section). This problem can only be satisfactorily
handled by the EBC, where the feedback control mech-
anism automatically takes care of the overshooting, and
not on 9C but dA.

IV. COUETTE FLOW TEST

In this Section we demonstrate how the above ideas
are implemented for Couette flow. The process is some-
what reversed: we first implement the direct approaches
(Fig. 5) using 71 and OPC, obtain the actual flow veloc-
ity value at OC which has dropped somewhat from the
prescribed value due to dissipation, and use EBC to re-
produce that actual value at C by acting on A (Fig.
4). We then in turn calculate a specially defined particle
velocity auto-correlation function with EBC, and com-
pare with those of the direct approaches, to show that
OPC is indeed much more effective than 77 in preserving
the particle dynamics.
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Consider a fluid of atoms which interact through a
Lennard-Jones 6-12 interatomic potential with a cutoff
at r. = 2.20,

o { 1[92 - (2P - (22 + ()] (r<r)
0 (r>re).

The interaction parameters define a set of reduced
units: length in terms of o, energy in terms of €, mass in
terms of single fluid particle mass m. Thus one reduced
time unit is 7 = (mo?/e)'/?, one reduced velocity unit
is (¢/m)'/?, etc. All numbers given in this paper are in
reduced units unless otherwise specified.

The wall consists of three layers of atoms fixed in
fce structure which interact with the fluid atoms also
through a Lennard-Jones 6-12 potential but with param-
eters £,,; = 2¢ and oy = 0. This choice of parameters
gives a more pronounced nonlinear effect near the fluid-
wall interface.

The core region C has size (Lg,Ly,L;) = (8,8,10),
with the wall occupying 20% and the fluids 80%. The
buffer zone B has size (8,8,1). The action region A is
just a plane O A here, meaning that we only act on par-
ticles passing through the plane. As mentioned above,
the real simulation cell contains two identical, mirror-
reflected systems, so the size of simulation cell is (8, 8, 22)
for EBC simulations (Fig. 4) and (8,8,20) for direct PC
simulations (Fig. 5); the total number of particles is
N = 979 and 870, respectively. For the fluid state, we
choose density p = 0.81 and temperature 7' = 1.2 to
ensure that it is in stable liquid phase.

As a check of the simulations, we plotted in Fig. 6 the
fluid density profile across the simulation cell with and
without an imposed velocity field the centerline. One sees
the familiar layering effect near the wall®; apparently the
presence of a flow field has no discernible effect on the
density profile.

Fig. 7 shows the profile of shear flow velocity with
distance normal to the fluid-wall interface, which starts
at the interface (z = 2) and extends into the bulk. A
continuum field boundary condition v, = 0.12 is to be
achieved on the 9C plane. Three sets of simulation re-
sults are shown. Two (stars and circles) are obtained by
directly applying the particle controllers 7; and OPC on
plane 9C (Fig. 5), with prescribed velocity value v, = 0.2
(” overshooting”) to counteract the dissipation. The third
(solid line) result is obtained by using the EBC (Fig. 4)
to achieve v, = 1.2 on 9C, and serves as the benchmark
of this test. It can be seen that overall, all three results
agree well away from the artificial action region, with
linear velocity profile in the bulk and strongly nonlinear
behavior near the fluid-wall interface. However, the di-
rect approaches have no way to determine the amount
of overshooting a priori; and the deleterious effects of
sudden velocity drop near the action zone boundary due
to dissipation, and the artificial disturbance to particle
dynamics, are completely avoided in the EBC simulation
for OC, to be replaced by what is happening near 0.4.
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To show how the feedback control mechanism works,
we start with a stationary fluid, and let the desired
boundary condition at 8C to be vy, = 0.12. Starting with
v*%(0) = 0.12, Fig. 8 shows how v* (¢) evolves according
to (3.1), and how vc(t) responds to that action on OA,
separated by a buffer. A rate constant of Kk = 0.024
is picked for the current buffer thickness of 1. To fil-
ter out the large thermal noises residing in instantaneous
ve(t), it is plotted in Fig. 8 after a sliding bin average of
At = 50. We can see that vc (t) converges to the desired
value of v} = 0.12 at about ¢ = 80, while v% (¢) has also
converged to a value of about 0.21.

To quantify the effectiveness of OPC in preserving the
particle dynamics, let us consider a quantity which rep-
resents the microscopic dynamics much better than the
overall flow velocity. The velocity autocorrelation func-
tion is a quantity in the theory of liquids which is an
important characteristic of single-particle motion. We
can define its localized and normalized version

G

for any ith particle which crosses the OC plane and comes
into C region at a certain moment; its contribution to
U (t) is terminated whenever the particle re-crosses that
plane. Since the EBC acts on 0 A instead of 9C, Ugpc(t)
should be the same as that of nature where no artificial
disturbance is discernible locally. On the other hand,
it is not so if we directly act on dC. However, ¥(t) of
OPC direct should be better than that of 7; direct in
comparing with ¥gpc(t). Fig. 9 shows the difference
lIlEBC (t) — ‘I’Tl (t) in stars and II'EBC (t) — ‘I"OPC (t) in cir-
cles; the three functions themselves are plotted in the up-
per right inset. Notice that U (t = 0) is 1 as expected,
but there is a drastic loss of correlation in the first 0.05ps,
clearly attributable to the drastic reaction of surrounding
atoms when its direction is suddenly altered without con-
sidering its original motion. On the other hand, ¥opc(t)
is almost indistinguishable from Ugpc(t). This is reason-
able since ¥ (t) is normalized, and the shear flow velocity
is only a fraction of the particle total velocity.

V. THE SCHWARZ COUPLING METHOD

Hadjiconstantinou and Patera® have proposed to cou-
ple atomistic and continuum simulations of fluid flow
based on a classical procedure known as domain de-
composition and the alternating Schwarz method®¢. In
this approach one divides the domain into two or more
overlapping subdomains and treats each one separately
through an iterative procedure where the boundary con-
ditions for one subdomain are derived from the solutions
for the other subdomains. Suppose our domain of inter-
est is decomposed into two subdomains C and U, with
an overlapping region bounded by two boundaries, 0C
and OU, as shown in Fig. 10. To obtain the solution for
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the entire domain, one iterates on the following. Start-
ing with a trial boundary condition on 0C which we de-
note as v%, one obtains the solution for the subdomain
C. With this initial solution one then determines what is
the boundary condition on U, denoted as v};. Knowing
this, one obtains the solution in subdomain . Now a
refined value for the boundary condition on 8C, v{, can
be determined to go on with the next iteration. The al-
ternating process continues until convergence is reached
in both subdomains. For a large class of problems where
both subdomains are treated by continuum solvers, con-
vergence can be proved®. When one of the subdomains
is treated atomistically, convergence should be similarly
achieved so long as the overlapping region is describable
by both continuum and atomistic representations.

To implement the alternating Schwarz method in our
simulation of shear flow we consider the system is de-
composed into two overlapping regions (Fig. 11), with
C being the atomistic region, I/ the continuum, and an
overlapping region bounded by planes 9C and OU. In the
event that the computational costs involved in determin-
ing the velocity fields in the two regions are markedly
different, we have found (see below) it is more efficient
not to wait for the slow solver to converge, since the
initial boundary conditions for the subdomains are not
likely to be accurate. With the present continuum region
always characterized by a linear velocity field, the calcu-
lation required for the continuum part of the iteration is
just a linear interpolation. Given the current or averaged
velocity field at plane 9U, the desired boundary value at
plane 9C is readily obtained as

UE’ — (dCUvZ +dZC’UU)7 (51)

dzu

where vz is a constant which sets the magnitude of the
velocity on the real boundary 0Z of continuum region
(see Fig. 11), doy is the distance between 9C and OU,
etc. In the following simulations, the values are vz = 0.2,
douv = 3, dze = 8 and dzy = 11 (in a real simulation
dzu should be much larger). Taking advantage of the fact
that the the continuum solver requires no computational
effort, we update the boundary condition at plane 9C
after every MD step. This is tantamount to relaxing both
boundary conditions simultaneously. The MD solver is
realized using EBC and (3.1) developed in section III.
Fig. 12 shows the convergence of shear flow velocities
at plane 9C to the value given by the continuum solu-
tion. The fluid atoms are given initial velocities sampled
from (2.2) according to a uniform temperature field and
a linear velocity field. At beginning of the simulation the
desired velocity at plane 9C is set to a value of 0.1 based
on the above initial guess. A simulation is taken following
the classical alternating Schwarz method, where at each
iteration the MD calculation is carried out to conver-
gence. At this point the flow velocity at U is averaged
for previous 500,000 timesteps or 25007. This average
vy is used in (5.1) to update the desired value at plane
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9C, for the next period of MD simulation. The resultant
vg, is shown in Fig. 12 in straight solid line.

One could also proceed in a slightly different manner,
that is to adjust v, using (5.1) after every MD step, as
the continuum solution costs nothing here. The resultant
vg is shown in Fig. 12 as the zigzag solid line, after a
sliding bin average of £12507. Convergence is achieved
after a coupling time of 50007. One can see that the
classical alternating Schwarz coupling may have a slower
convergence here, by a factor of about 2, compared to
the method of simultaneous relaxation at each MD step.
Thus, invoking the two subdomain solvers in an asym-
metrical fashion (one always converges, the other very
little) leads to a more efficient scheme.

The fully converged, uniform hybrid continuum-
atomistic solution is plotted in Fig. 13, for both the
classical alternating Schwarz coupling (circles) and the
new simultaneous coupling (stars). One should note the
perfect matching between MD and continuum solution in
the overlapping region.

In general, if the continuum solver also requires finite
amount of computational effort, the continuum to MD
coupling can be updated at intervals of n MD steps, with
adjustable n. If n = 1, it is the simultaneous relaxation
method; if n is a large number such that the MD solver
fully converges each time, we recover the classical alter-
nating Schwarz method. An optimal n can be chosen
according to the ratio of computational costs of the two
solvers in achieving respective convergence. Also notice
that one needs to take care of the thermal noises coming
out of the MD solution, although it may have been re-
duced somewhat by the TFE. In general, even if the con-
tinuum solver is very fast, one may still need to wait for a
while for the MD solver to average out the thermal noises.
Feeding large fluctuations into the continuum solver may
likely cause oscillatory behavior or divergence. In our
case, the continuum solver is linear and does not have
a convergence problem, because the fluctuations which
come into the continuum solver will go back linearly and
be filtered out by feedback loop.

VI. DISCUSSIONS

We have developed a hybrid continuum-atomistic sim-
ulation scheme based on the concept of domain decom-
position, in the same spirit as Hadjiconstantinou and Pa-
tera. Such methods are useful for problems where much
of the region of interest can be treated by continuum de-
scription, but a small critical, embedded part requires
atomistic simulation. While Hadjiconstantinou and Pa-
tera implemented their method with attention to both
the atomistic and continuum representations, we have
focused our efforts on techniques for coupling continuum
boundary conditions to atomistic simulations. In this
work matching of the two different levels of representa-
tion, each with its own set of degrees of freedoms, takes

14



place in the overlap region through an implicit transfor-
mation which we have called the Optimal Particle Con-
troller, with the local Maxwellian distribution serving as
the bridge, which depends on both particle and field vari-
ables. Relative to the conventional method of sampling
from a desired distribution, such as the 7; transforma-
tion, OPC has the advantage that it is least disturbing
to the particle dynamics, and that disturbance is propor-
tional to the rate of dissipation, i.e., field gradients in the
system instead of the absolute magnitude of the fields.

We have incorporated OPC along with the Thermody-
namic Field Estimator and the Extended Boundary Con-
dition into the framework of alternating Schwarz method
and implemented our formalism in a study of shear flow.
We should regard the numerical results presented here as
proof of principle of the entire hybrid scheme. Since each
one of these three techniques has its own novel features,
further applications, including separate investigations of
each technique, will be worthwhile to bring out their ca-
pabilities and limitations. We believe that relative to the
other hybrid methods recently proposed?? our method
should be the most gentle as far as treating the atom-
istic subdomain is concerned. For this reason the method
should be most useful when one is interested in delicate
or subtle molecular effects where minimizing local distur-
bance to particle dynamics is a significant concern.

Up to now we have only concerned with ourselves
steady state fluid problems. One may wonder if a con-
tinuum solver could be dynamically coupled with an MD
solver using the above techniques in real time. We do not
have the solution yet but it seems quite difficult. On the
other hand, the timescale of an macroscopic dynamical
event is usually much greater than that of its underlying
microscopic mechanism, thus to the critical microscopic
region at any given moment of the event, the outside
would seem to be in a steady state flow condition and
could be modeled by our techniques. Such is in fact the
rationale behind constitutive equations; but it should be
able to handle more complex databases as well, such as
stick-slip motion and chemisorption.

The case for solids is different. Solids, unlike fluids,
have long range order. The assumption of molecular
chaos is invalid here, and a buffer zone cannot cover up
the disturbed dynamics elsewhere, which is the under-
pinning of the Extended Boundary Condition. Thus, it
is quite difficult to isolate a region in a crystalline ma-
terial since the phonons have very long mean free paths,
and their scattering and reflections determine important
macroscopic properties such as the thermal conductiv-
ity. Although researchers have developed successful tech-
niques to couple continuum with atomistic regions for
static calculations®, no one has yet claimed to success-
fully implement such a scheme to study finite tempera-
ture properties.
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APPENDIX A: PROOF THAT 7; IS OPTIMAL

By our definition, a transformation is an operation
which gives an output Y from an input X, but not nec-
essarily in a deterministic manner, which differs from the
concept of a function. Ty, 72 and 73 in section (IIB) are
all examples of such transformations. Mathematically it
is equivalent to a mapping from a real number z = X to
a real function in y, which is the conditional probability
distribution W (y|z), from which Y is drawn. The joint
probability distribution function is simply

W(z,y) = W(ylz) f(z) (A1)

for the two random variables on zy plane.
W (z,y) has the properties of:

1. Non-negativeness:

V.’E,y € (_OO7+OO) W(.’E,y) Z 0 (A2)

2. Normalization:

" Wiy = 5@ (49
o W (z,y)dzdy = 1 (A4)

3. To satisfy the basic requirement (2.7), there must
be:

" W, yyda = g(y) (45)

—00

Now, we want to find the Wy, (z,y) which minimizes
“disturbance” to the sequence, quantified as

+oo
B[W] = / (& — y)?W (2, y)dedy

—00

We want to show that the distribution W,;, must be
zero almost everywhere on the zy plane. Suppose we
have found such a Wiyin, and Wiy (z,y) > 0 everywhere
in a small region A. We can always find some function
S4(z,y) which is nonzero only inside A and satisfies
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Sa(z,y)de =0 (A6)

A
/ Sa(z,y)dy =0 (AT)
A

For instance in a rectangular area (z1,y1) — (22,y2) we
can pick S4 to be

. r—T1, . Yy—Un
Sa(z,y) = sin(2wn sin(27n A8
(@.9) = sin(2mn, L) sin(2mn, L=H0) - (a8)
where ng, n, are non-zero integers, and zero elsewhere.
Since the expression for B[W] contains (z — y)?, it can
not be that

B[S4]=0 (A9)

for all valid S4’s, and we can always choose a small
enough A to ensure that |[ASa(z,y)| < W(z,y) every-
where. Let

Wnew = Whmin + )\S.A (A]'O)

Whew Wwill also satisfy the constraints (A2) to (A5).
Lastly let us pick the sign of A to make AB[S4] < O,
S0

B[Waew] = B[Winin] + AB[S4] < B[Wmin]  (Al1)

which is a contradiction. So, a finite area A where
Wmin(z,y) > 0 does not exist, and Wy, must equal
to zero almost everywhere, which can only be satisfied if
Wmin(z,y) are combinations of §-functions; that is, the
optimal transformation 7T is a function-like mapping from
X to Y, without any randomness.

Now, assuming Wy, takes the form

which is equivalent to saying that the transformation is
in fact a function y = H(z). Then the problem simplifies
to finding a function H,;, which minimizes the sum (for
illustrative purposes we use summation here instead of
integration)

B[H] = lim > (x; — H(z;))*/N (A13)

N—>oco

2

with the requirement that z;’s are randomly drawn from
distribution f and H(z;)’s are randomly distributed with
distribution g.

We want to show that Hy,(z) must be a monotoni-
cally non-decreasing function: because if there exists a
pair

x1 > 22 but H(xzy) < H(z2)

we can construct an H(z) with x1, 22 exchanged
)

H(z) (z# 21,2 # 22)
H(z) =< H(z2) (x =11) (A14)
H(zy) (z = z2)
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without influencing g, but

(z1 — H(21))” + (w2 — H(,))?
= (21 — H(22))? + (22 — H(1))?
= (21 — H(21))? + (22 — H(x2))?

—(z1 — z2)(H (22) — H(z1))
< (z1 — H(z1))” + (w2 — H(x2))*

So B[H] < B[H], which means Hy;,(z) must be a mono-
tonically non-decreasing function.

Thus there is a unique, one-to-one relation between x
and y, and there must be, because of (2.7),

dP = f(z)dz = g(y)dy (A15)

because any small interval (z,z + dz) is uniquely and
deterministically mapped into (y,y + dy) by the opti-
mal transformation. So if we integrate from z,y — —oo
where P = 0, there must be

/ ;f(ﬁ)dﬁ -/ Lg(&)de

which is the T3 transformation of (2.10).
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FIG. 1. In the direct approach, C is our domain of interest, OC is its boundary which the particle controller acts on to
achieve the desired macroscopic fields. For any small piece of the boundary, we choose the local coordinate frame to express the
prescribed macroscopic velocity field as ¥ = (vn, vs,0). In the same frame the actual, or current velocity field is v/ = (v;,, vs, v}).
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FIG. 2. Schematic diagram of the Extended Boundary Condition (EBC), which incorporates a field estimator, a particle
controller and a feedback control algorithm.
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FIG. 3. Geometry for simulation of planar Couette flow. The continuum solution is a linear velocity profile, 7,(z). In the
atomistic description, the fluid is represented by IV particles evolving according to molecular dynamics, and the wall is modeled
by three layers of stationary particles which interact with the fluid. Dashed line depicts qualitatively the expected flow velocity

profile on the molecular scale.
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FIG. 4. MD simulation cell incorporating the Extended Boundary Condition (EBC). A buffer region B (between 0.A and

0C) is inserted between the physical region of interest C and the action region A (just a plane .A). The simulation cell is
symmetric with respect to 0.A.
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FIG. 7. Profile of shear flow velocity 7,(z) obtained from three different MD simulations: smooth line is result from EBC
(Fig. 4); stars and circles are results from direct particle controller simulations (Fig. 5) using 7; and OPC.
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FIG. 8. Starting with zero flow velocity vc(0) = 0 and the prescribed velocity v} (0) = 0.12, this plot shows how v} and
ve evolves in time. ve(t) in this graph is the sliding bin average over At = 507. For comparison, v is plotted in dotted line.
Convergence in both ve and v} is obtained at around ¢ = 80.
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FIG. 9. Comparison of the change to the normalized velocity autocorrelation function ¥(t) due to 71 and OPC.
Ugpc(t) — Ur (t) is plotted in stars and Yeac(t) — Yorc(t) is plotted in circles. In the inset, Yrsc(t), ¥r (t) and Topc(t)
are plotted in solid line, stars and circles respectively. Notice that ¥, (0) = 1, but it is quickly scattered in the ensuing period.
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Alternating steps of Schwarz coupling:
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FIG. 10. Classical alternating Schwarz method, which joins the two overlapping regions/solvers C and U through iteration
of boundary conditions.
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FIG. 11. Geometry of Schwarz coupling in simulating shear flow.
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FIG. 12. Comparison of convergence speed using classical alternating Schwarz method (straight lines), and the simultaneous
relaxation method (zigzag lines) which takes advantage of the fact that the continuum solver takes no time at all for this simple
scenario.
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FIG. 13. Fully converged hybrid continuum-atomistic solution. The classical alternating Schwarz method (circles) and the
simultaneous relaxation method (stars) give essentially the same result, and there is good matching with the continuum solutions
in the overlapping region.
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