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Because of their disordered atomic structure, amorphous 
metals (termed metallic glasses) have fundamentally different
deformation mechanisms compared with polycrystalline 

metals.These different mechanisms give metallic glasses high strength,
but the extent to which they affect other macroscopic deformation
properties is uncertain. For example, the nature of the plastic-yield 
criterion is a point of contention, with some studies reporting yield
behaviour roughly in line with that of polycrystalline metals,and others
indicating strong fundamental differences. In particular, it is unclear
whether pressure- or normal stress-dependence needs to be included 
in the plastic-yield criterion of metallic glasses, and how such a 
dependencecould arise from their disordered structure1–4.In this work
we provide an atomic-level explanation for pressure-dependent yield
in amorphous metals, based on an elementary unit of deformation.
This simple model compares favourably with new atomistic simulations
of metallic glasses,as well as existing experimental data.

In polycrystalline metals, the fundamental unit of plastic
deformation is the motion of an individual dislocation. Because
dislocations generally interact only weakly with a pressure field5, the
yield criterion for most metals is based on the maximum shear stress.
Two well-known criteria that are used in this case are those of Tresca and
von Mises, the latter of which accurately matches experimental data for
a variety of metals and alloys6.An important characteristic of these yield
criteria is their symmetry,predicting yield stresses of equal magnitude in
either tension or compression. In contrast, metallic glasses have
displayed asymmetric yield behaviour in several experimental studies2,7,
and it has been suggested that a different yield criterion is required for
these materials. In particular, the Mohr–Coulomb criterion has been
suggested as an alternative description that depends not only on the
applied shear stress, τ, but also on the stress normal to the shear
displacement,σn:

τy = τ0 – ασn . (1)

Here,τy is the effective shear yield stress,τ0 is a constant,and α is a system-
specific coefficient that controls the strength of the normal stress effect.
Physically,the form of equation (1) was originally proposed for granular
materials,where the σn term arises from the geometric rearrangement of
sliding particles and the friction between them,and thus α is an effective
coefficient of friction.It has been postulated that equation (1) may apply
to amorphous metals, because the relative motion of randomly packed

atoms in a metallic glass is analogous to that of randomly packed
particles in a granular solid1,8.However, the available experimental data
are limited and, to our knowledge, there has been no theoretical
underpinning of equation (1) for metallic glasses, which we seek to
provide in this work.

According to the prevailing theory of plastic flow in metallic
glasses9–12,the fundamental unit of plasticity in amorphous metals is the
shear transformation zone (STZ), which is a small cluster of randomly
close-packed atoms that spontaneously and cooperatively reorganize
under the action of an applied shear stress. A two-dimensional
schematic is given in Fig. 1a, which shows how an STZ can
accommodate a small increment of shear strain. The continued
propagation of shear strain occurs by a process of self-assembly: the
operation of one STZ creates a localized distortion of the surrounding
material, and triggers the autocatalytic formation of large planar bands
of STZs,commonly called shear bands.

Because the STZ has proved valuable for describing most of the
important deformation physics of metallic glasses, we begin by
considering a very simple STZ composed of nine close-packed atoms,as
illustrated in Fig. 1b, and examine the effect that an applied normal
stress σn has on the shear deformation of this unit. For this highly
idealized system, the stress components are calculated using the 
usual approach13:

in which V is the system volume, ϕ is the interatomic potential, rij is the
distance between atoms i and j, the superscripts n and t refer to normal
and transverse components of the atomic separations, respectively, and
N is the number of atoms in the system.

If no normal stress is applied (that is, σn = 0) and no thermal
activation is allowed, then the shear displacement of the atoms as shown
in Fig. 1b requires an applied shear stress that varies with position, as
shown in Fig. 1c. On this curve, the maximum value of τ occurs before 
the atoms reach the saddle-point configuration, and is equal to the 
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shear-yield stress.The curve in Fig. 1c has been calculated (see Methods)
using Lennard–Jones potentials for the Cu–Zr atomic interaction14,
which is relevant for comparison with our larger simulations 
discussed later.

The approach described above can be extended to consider the
effect of applied normal stress by solving equation (2) for a shear
displacement across the saddle point where σn is constant at a prescribed
value (see Methods).An example,with σn ≈–6τo,is also shown in Fig. 1c.
For this large applied compressive stress on the shear plane, the shear
stress required to permanently deform the STZ increases by a factor of
about 1.7. By repeating this calculation for multiple values of σn, we
derive a direct relationship between τy and σn, as shown in Fig. 2. For a
physically reasonable range of both tensile and compressive applied
stresses, these data unequivocally fit a single line with the form of
equation (1). Furthermore, this simple model provides a quantitative

prediction for the friction coefficient α; for Cu–Cu, Zr–Zr, or Cu–Zr
interaction potentials we find α=0.123±0.004.We have also used other
physically realistic potentials, as well as various atomic arrangements
and boundary conditions different from those in Fig. 1b (see Methods),
and in all cases we observe the same fundamental response. Common
metallic interaction potentials result in atomistic friction,and therefore
the operation of STZs is governed by the Mohr–Coulomb criterion.

Because STZs are frequently observed in large-scale molecular
simulations of amorphous systems15–17, and because the above
developments show that STZs obey the Mohr–Coulomb criterion, we
speculate that this same behaviour will be observed at larger length
scales.To test this hypothesis,we have conducted atomistic simulations
of Cu50Zr50 metallic glasses composed of several thousand atoms.
Using a fully periodic three-dimensional simulation cell with standard
energy-minimization algorithms18–20, we perform molecular statics
computations using the same Lennard–Jones potentials as in the small
system above. By controlling the relative strain increments in all three
principle directions (denoted x, y and z)21, we perform plane-stress
simulations (σzz = 0) designed to probe the entire yield surface in the
σxx–σyy plane (see Methods for more details).

A complete map of the biaxial yield surface derived from our
simulations is shown in Fig. 3. The most striking feature of this data set
is its pronounced asymmetry from tensile to compressive loading.
For example, the asymmetry between pure tension and compression is
approximately 25%, and the biaxial tensile and compressive lobes in
quadrants I and III, respectively, exhibit a commensurate imbalance.
As discussed above, this asymmetry is inconsistent with any yield
criterion based only on maximum shear stress, including the Tresca 
and von Mises criteria common to polycrystalline materials.
However, tension–compression asymmetry is characteristic of
the Mohr–Coulomb criterion of equation (1).For comparison with the
simulation data, the plane-stress Mohr–Coulomb yield surface is also
included in Fig. 3; following our earlier analysis of an individual STZ,

Figure 1 Shear transformation zones in metallic glasses.a,A two-dimensional
schematic of a shear transformation zone in an amorphous metal.A shear displacement
occurs to accommodate an applied shear stress τ,with the darker upper atoms moving
with respect to the lower atoms (after ref.9).b,A representation of the elementary three-
dimensional shear transformation zone used in this study.The four upper (darker) atoms
move as a unit with respect to the five lower atoms,and a trajectory with constant normal-
stress σn is determined in the shear direction.c,The applied shear stress τ necessary to
maintain a given atomic shear displacement,normalized by the maximum value of τ at
σn = 0,τ0.The beginning and end of the curve correspond to the starting and ending
structures seen in b.The maximum value of τ necessary to complete the shear
displacement of b increases with an applied compressive stress.
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Figure 2 Fundamental yield criterion for an elementary shear transformation zone.
The maximum normalized shear stress,τy/τo, required to translate the atoms of Fig.1b
from their beginning to their end state, for a constant applied normal stress,σn / τo.
The data show an excellent fit to equation (1) with α = 0.123,providing a physical basis
for the Mohr–Coulomb yield criterion.
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we use as input the value α = 0.123 obtained for the Cu–Zr system.
The conformity between the simulation data and the Mohr–Coulomb
yield surface is very good.

We note that where the Mohr–Coulomb criterion considers the role
of normal stresses on shear yield, there are other criteria based on the
Tresca or von Mises criteria that make a similar attempt to account for
tension–compression asymmetry by including a hydrostatic pressure
term (for example,ref.22).These criteria can be stated in a similar form
to equation (1), but use the hydrostatic pressure in place of the normal
stress σn. These various criteria are all inherently similar to the
Mohr–Coulomb criterion, and as such, could likely fit the data in Fig. 3
with reasonable accuracy. However, based on our analysis in Fig. 2, we
believe that the physical origin of this effect in metallic glasses lies in the
principle of ‘atomistic friction’, as embodied in the Mohr–Coulomb
criterion, and therefore only compare the simulation results to that
criterion here.

The excellent mutual agreement between equation (1), the STZ
analysis in Fig. 2, and the simulation data in Fig. 3, provides a strong
physical basis for the Mohr–Coulomb yield criterion in metallic glasses.
These theoretical results are also in good agreement with the available
experimental data from a variety of metallic glasses. For example,
mechanical tests on a Pd40Ni40P20 metallic glass were conducted23 using
various multiaxial stress states, and it was found that the data were best
described by the Mohr–Coulomb criterion with α = 0.11 ± 0.03.
More recently, instrumented indentation experiments on a Zr-based
glass were performed8, and finite-element simulations showed that the
data could best be described using the Mohr–Coulomb criterion with
α = 0.13. The value of α = 0.123 ± 0.004 found in our analyses above
matches these experimental values quite well.

Further contact can be made with experimental data on the basis 
of shear-band angles measured in simple uniaxial tests. For Tresca or

von Mises yielding of a compression specimen, this angle would be
expected to lie at θ = 45° to the compression axis, whereas the
Mohr–Coulomb criterion predicts a smaller angle given implicitly by8:

Using the value of α = 0.123 ± 0.004 found in our analyses above,
equation (3) predicts a compressive shear angle of θ = 41.5 ± 0.15°.
This value is in agreement with previous experimental results2 with a
range of θ = 39.5–43.7° for a variety of metallic glass compositions.

To summarize the above discussion, we find that simulated
amorphous metals plastically yield in a manner consistent with the
Mohr–Coulomb criterion.Using a fundamental model of shear atomic
shuffles, we show that this behaviour is intrinsic to the atomic-scale
processes involved in metallic glass deformation. This simple approach
agrees remarkably well with our larger-scale atomistic simulations and
a variety of independent experiments. Given the current ambiguity on
this issue in the experimental literature, we believe that our analysis
provides convincing support for the Mohr–Coulomb criterion, and
propose that future studies on metallic glass should be carried out
within the framework of such a pressure- or normal stress-dependent
yield criterion. The resulting asymmetric yield behaviour has broad
implications for structural applications of metallic glasses, because
these materials can be expected to be uniformly weaker in tension than
they are in compression,regardless of future advances in compositional
control.It will also be necessary to consider this asymmetry in the design
of amorphous-matrix metallic composites, which are widely sought
after for improved ductility24,25.

As a final note, we suggest that these considerations may also have
significant implications for nanostructured materials, in addition to
metallic glasses. The lowest physical limit for nanostructure length
scales is the amorphous state26,and molecular simulations show that the
deformation mechanisms of polycrystalline materials diverge from
typical behaviour in the nanostructural range21,27.Although we know of
no experimental or computational investigations that consider the yield
surface of nanocrystalline materials, we predict a transition from
dislocation-dominated yield processes (following the von Mises
criterion) to STZ-dominated yield (following the Mohr–Coulomb
criterion) as grain size decreases toward zero.

METHODS

NINE-ATOM STZ MODEL

We determine the stress components given by equation (2) for simple shear shuffles of the nine-atom

model shown in Fig. 1b. Here the atoms are initially in a close-packed configuration, with four atoms in

the upper plane, and five atoms below. The upper plane is then moved as a rigid unit relative to the lower

plane, with the position of this unit being specified by a single vector away from the initial position.

We calculate the stresses σn and τ for every vector in a three-dimensional space within 1.5 interatomic 

distances of the initial configuration. We then identify trajectories of constant σn that connect the initial

and final close-packed configurations, and cross the saddle-point configuration. The shear stress τ
calculated at every point along this constant-σn-trajectory describes a curve such as those shown in 

Fig. 1c. We have performed these calculations for several boundary conditions, including the free-boundary

conditions shown in Fig. 1b,c, where the nine atoms are isolated in space, as well as the shearing of

infinite close-packed sheets. We find that due to the symmetry and periodicity of the nine-atom unit, any

reasonable boundary conditions yield similar results and are not critical to the fundamental form of the

curves. Finally, we have also considered other STZ geometries, including the four-atom model of Falk16

(who did not consider the normal stress dependence of the shear transformation), and in all cases we find

that equation (1) is strictly obeyed at the atomic level.

MOLECULAR STATICS SIMULATIONS
For larger-scale molecular simulations, we use the method of conjugate gradients to relax atoms to their

local equilibrium positions, within a simulation cell periodic in all three dimensions. The potentials are

those cited in the text, and also used in the smaller nine-atom STZ model described above. For multiaxial

testing, we apply small increments of strain in the principle directions, relocating each atom by a self-

affine transformation of coordinates; strain increments may not exceed 0.1%. Stresses are calculated with

equations similar to those of equation (2), generalized to determine each component of the stress

tensor13. The resulting stress–strain curves are linear elastic at low strains and fully plastic at high strains,

with a gradual transition between. The yield point lies in this transition region, and numerical values for

the yield-stress components are extracted from the data using a standard linear offset method22. Full data

sets from these simulations will be reported elsewhere.

α = (3)
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Figure 3 Yield surface of a metallic glass. Normalized principle stresses σxx and σyy

at yield (σzz = 0) extracted from computational multiaxial mechanical tests. Data for
two different amorphous structures are shown, composed of 2609 and 2781 atoms,
respectively.The solid line is the Mohr–Coulomb yield criterion, equation (1), plotted
with the value of α = 0.123 obtained from the elementary shear transformation zone
analysis of Fig. 2.
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The molecular simulation results presented in Fig. 3 have also been extensively corroborated by 

additional computations whose analysis we omit here for brevity. For example, we have studied systems

with sizes from a few hundred to several thousand atoms, and find no fundamental deviation from the

results presented here. Additionally, we have used not only fully periodic boundary conditions, but have

also considered a three-dimensional cell that is periodic in only two dimensions (equivalent to biaxial testing

of an infinite thin sheet). Again, the boundary condition had no fundamental effect on our conclusions

about the yield criterion. Finally, we have used several different sets of interatomic potentials in addition

to those presented in Fig. 3, and found the same results. Further details of these variations and our 

methods will be reported elsewhere.
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