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Chapter 1

Introduction

As a term project for MIT course 22.113 Nuclear and Atomic Collision Phenomena, I inves-
tigated the computational approaches to various kinds of quantum scattering problems. My
motivation is first to understand the analytic formulations on which these computational
methods are made possible, and then to implement them on the computer and get correct
results. Two characteristic problems were chosen:

1) The quantum scattering problem for arbitary central pair potential.

2) Time-dependent 1D and 2D Schrodinger Equation.

These problems, in general, are not very complicated. But we can learn something from
these nice “little” ones, and solve more complex problems in the future.

Reference Books:

1) Computational Physics
by Steven E.Koonin, 1986 Addison-Wesley.

2) Computational Methods in Physics & Engineering
by Samual S.M.Wong, 1992 Prentice-Hall.

3) Numerical Recipes in C — The Arts of Scientific Computing.
2nd Edition, 1992 Cambridge University Press.



Chapter 2

Central Pair Scattering

2.1 Theoretical Formulation

Denote the pairwise central potential as V(r), the problem for two-body quantum scattering
can be routinely transformed into the one body Schrodinger equation:

(ZEV2 4 V) = Bo@

2p
where 4 is the effective mass
mM
= 2.1
m+ M (21)
Let k = \/2uE/h. The asymptotic behaviour of the scattered plane wave is
. eikr
Y(F) — % + £(6) " (2.2)
and the corresponding differential cross section is
dN/dQ)
o) = XIE _ s (2.9
mn

Because V (r) is pairwise, [#, J] = 0. The angular momentum and the Hamiltonian can be
diagonalized concurrently, so

W(r,8) = i (") b (cos ) (2.4)
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with u,(r) satisfies
d?uy(r) 2 Ml+1) 2uV(
arz + (" - 2 R2

The general solution to this equation is of the form

”mm=o (2.5)

u(r) = Birji(kr) + Cyrny(kr) (2.6)

where ji(r) and ny(r) are the regular and irregular (Neumann function) spherical Bessel
functions. The asymptotic behaviour of u(r) at kr > 1 is

m - g cos(kr — %)

L sin(kr — —5) .

w(r) — k

. l
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so
sin(kr — lw /2 + §;)
kr

) — i (20 + 1)a; P(cos 8) (2.8)
=0

There’s also an frequently used expansion of plane wave into spherical harmonics:
e o]
exp(ikr cos ) = > (20 + 1)5;(kr) P(cos )
=0

sin(kr — In/2)
kr

[e e}
— S d'(21 + 1) P(cos 6) (2.9)
=0

Compare with (2.2), we see that in order to achieve the predicted scattering behaviour, there
should be

asin(kr — Im/2 + &) — sin(kr — In/2) = fie™*" (2.10)

and f; should not be a function of r, so

eikr—ilw/2+i6; _ e—ikr+il1r/2—i61 eikr—ilﬂ'/? — e—ikr+il7r/2

ikr
ay ; - " = Ji€e
2t 2t f

The e~**" terms on the right hand side must vanish, so
o = et (2.11)

and we get
—ilm e — 1

)Zi

fi = exp( = (—1)'e! sin 4, (2.12)
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So the scattered wave is

16 e: = :)(21 + 1)e* sin 6, P,(cos 9)%:;]") (2.13)
and the differential cross section is just
o(f) = —kl—2| 2(21 + 1)e* sin 6, P;(cos 6) |2 (2.14)
and the total cross section is o
=13 g(zz + 1) sin? §, (2.15)

Although the sums above extends over all I, we can select a reasonable cutoff in the sense
that when )
lmaz (lmaz + 1)h

2ur2

max

>F

the lmq, partial wave decrease so quickly even at the surface of the potential field that it
became negligible, which leads to the approximation of

lmaa: ~ krmaz (216)

This estimate is usually slightly low.



2.2 Computational Method

To find the phase shift for each partial wave, we solve the equation
d?uy(r) o MWl+1)  2uV(r)
dr? r2 h2

numerically using the Numerov Method, which is a particular simple and efficient method
in intergrating 2nd-order differential equations.

+ [k

Ju(r) =0 (2.17)

Numerov Method: For equations with the general form

d?y
Iz T k@)Y = S(2) (2.18)
the method gives
h? 5h? %
(1+ Ekn+1)yn+1 -2(1- ﬁ'kn)yn +(1+ ﬁkn_l)yn_l
2
= '1_2(Sn+1 +10S, + Sp—1) + O(hs) (2.19)

Notice the local error of O(h®), which is one order more accurate than the fourth-order
Runge-Kutta method.

Since for our particular problem, S(z) = 0, it’s a linear differential equation. And we know
that u;(r = 0) = 0, so the choice of u;(r = h) became totally arbitary, because we can always
normalize the entire partial wave later if neccesary. (However, u;(r = h) is often chosen to
be a small number to avoid overflow at greater r).

We intergrate the equation to a certain point r; where V(r;) is small enough so that the
wave function can be regarded as approaching asymptotic behaviour. So

w(r1) = Akrq[cos(8;)7i(kr1) — sin(d;)ny(kry)] (2.20)

We continue intergrating to a larger radius r, > ry, it also has

wi(r2) & Akra[cos(6;)7i(krs) — sin(d;)ny (krs)] (2.21)

We can interpolate §; from these two points, after some manipulations we get

G _ Tlul(’f“g)
T2Ul(7‘1)

Gyi(ri) — si(ra)
G’I’Ll(’l‘l) — TL[(TQ)

8§ = tan™(



2.3 Results
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In this section we’ll mainly show the computation results for hard sphere potential. (Al-
though arbitary central potential is easily applicable, there don’t exist much to compare
with.) In classical mechanics we’ve shown that the total cross section for hard sphere colli-
sion is 772, with r as the radius of the sphere. In quantum mechanics, however, the result
is quite different: For kr < 1, 0; — 4772, and there will only be significant contribution
from | = 0 so the scattering is isotropic, i,e, the differntial cross section is a constant. This
is clearly shown in Fig.1.

When kr > 1, 0y — 2772, and the differential cross section is highly condensed in the front.
The computation result is shown in Fig.2.



The intermediate state of kr = 1 is shown in Fig.3.

Fig.4 is the o;/7r? versus kr curve, it start at kr = 0 with the value of 4, and then come

down to 2 as kr — oo. This curve is not directly available from theory, but should be quite
important. We can call it our first score.

Scattered by a Gaussian potential, ka =
T T T

40

0 05 1 15 2 25 3
Fig.5

Fig.5 is the scattering by a Guassian potential:

V(r) = exp(—(kr)?/a?) (2.22)

Here o is chosen to be 1, corresponding to situation of hard sphere collison with kr = 1.
One should note the unusual tail inflextion at 6 ~ 1.



Chapter 3

Time Dependent Schrodinger
Equation

The Time Dependent Schrodinger Equation (TDSE) is

oy —RE_,
thar = Hy = ( o Ve+ V(M) (3.1)
Using reduced length and time unit we transform the equation into
0
i = = (<Y + V() (32)

Such partial differential equation with 1st-order time derivative is classified as parabolic, with
respect to elliptic equations (Oth order) and hyperbolic equations (2nd order). Another kind
of parabolic differential equations is the diffusion equation.

Under discretization, the 2nd order derivative becomes

02 1
T L6+ ) 26() + p(a — W)} + O(h) (33)
and the general solution for (3.2) can be written as

Y(z,t) = exp(—itH)y(=, 0) (3.4)
The propagation operator can be approximated in the small time limit as
exp(—iTH)Y(z,0) = (1 — irH)y(z, 0) + O(r?) (3.5)

The right hand side of the equation can be directly evaluated using (3.3). It is called the
ezplictt scheme for the solution of parabolic equations. However, this scheme has severe
limitations, that is, when the time constant 7 get large, the scheme become unstable. This
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can be easily understood if we consider the eigenfunctions of H under current boundary
conditions:

%"/}n = €xUn (36)

Since H is discretized, the number of eigenmodes for (3.6) isn’t infinity as in continuum
space, but equals to the N, the degree of discretization in space domain. Let’s consider the
highest eigenvalue (energy level), under rough approximation

EN R (E)2 (3.7)

because 7/h is the edge of the first Brillouin zone, and we treat it as a free particle. We
can see that when Tey is in the order of unity, the expansion (3.5) become invalid and those
high eigenvalued modes (actually noise) would be endlessly amplified until the system breaks
down. So the criterea of stabilty for the explicit scheme is

T
h
Since h is usually chosen to be small in order to minimize the error in (3.3), we had to pick

very small 7 to stablize the scheme, thus making the observation of a time evolution process
very difficult.

(=) «1 (3.8)

There is a much better scheme called the Crank-Nicholson method: we can approximate
the propagation operator of (3.4) in the Cayley form as

1-LirH
exp(—iTH) = —2— + O(7° 3.9

p(-ir#) = T + 06 (39)
We observe that this form is one order more accurate than the explicit scheme. What’s
more, it’s an unitary operator and therefor the amplitude of each eigenvalue component will
always remain the same as the initial amplitude, because

1— Lire

—2 Tl=1 (3.10)

1+ JiTe,

This property is called norm conserving and it is the fundamental attribute of the Schrodinger
wave equation. One direct conclusion is that the scheme is always stable, even when Tey ~
1, provided that the initial amplitude of the high & components are small, they will still
cause little error later. What count are those components in the low k regime with large
amplitudes, where Te is small and the expansion is valid.

However, this is an implicit scheme because the Cayley operator can’t be directly evaluated.
We can rewrite (3.9) as

1 1
{1+ 52’77-[}1/)(@, t+7)={1- 5iT%}¢(xj,t) (3.11)
For one dimensional case 2
H= P + V() (3.12)
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SO ,
T d?

_ : .
{1+ %V(-Tj) - Eaﬁ}w(%a t+7)={1- g—V(xj) + gd_x?}w(xj’t) (3.13)

After some rearrangements we get the following equation

ATYiy + A+ ATl = b (3.14)
with .
- — At = T
A7 = A7 = o (3.15)
0_ 14Ty o
Ai=1+SVi+ 5 (3.16)
bi = (2 — A — Af iy — A7y (3.17)

This forms a set of N x N linear equations, which usually requires N? operations even in
applying the inversion matrix each time. Fortunately, the following algorithm (Gaussian
elimination and back-substitution) provides a very efficient solution (of the order N opera-
tions) for the tri-diagonal system as (3.14).

Using C language convention, let’s represent the space in an N + 1 matrix: the Dirichlet
boundary condition is imposed on 9} and 1}, which might be time dependent. We assume
that solution of (3.14) satisfies relations of the form

Vir1 = cit + B (3.18)
and substitute it into (3.14)
ATy + AN+ Af (catl + B;) = b, (3.19)

This is of the same form as (3.18) except one regresion of index, so comparing with the
assumed relation for ¢]_;, we identify the backward recursion relationship for o;_; and 8;_;
to be

= —L/(A+ Afa)
a1 = vYA7
Bi-i  =v(A G —b) (3.20)

In order to satisfy the boundary condition at Wi, we let
an-1=0 Oy-1=1Yy (3.21)

and make a backsweep from here to get a;, B;(i = N — 2,0). After that we do a forward
sweep from ¢ =0 to N — 1 to get the new wave function.
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3.1 One Dimensional Scattering of a Wave Packet

There are several possibilities in selecting the initial form of the wave function. The recom-
mendation of Goldberg, Schey, and Schwartz is to use a Guassian wave packet:

¥(z,t = 0) = exp(ikoz — (z — z.)%/202) (3.22)

The wave packet has a group velocity of kg, but it will also spread out by itself(dispersion)
as time evolves. We let it collide with an square barrier potential to see what happens.

The total length of the scenario was chosen to be 1, and was divided into 1000 equal parts,
so h = 0.001.09 = 40 and k, was chosen to be 507, and 7 was chosen to be 2 x 1078, so
the expansion parameter in the spectrum center is about kit ~ 0.05, which is marginally
satisfactory since the Cayley form perserves 2nd order accuracy. The height of the potential
barrier was in the order 10* to match the kinetic energy, and the width to be of 0.05, thus
about 50 mesh sites.

Shown in Fig.1 is the case of V = 50000, which is about twice the energy of the incoming
wave — 50 it’s mostly bounced back when hitting the barrier.

Fig.2 is the case where the kinetic energy is one time higher than the potential barrier, so it
passed through quite easily.

In Fig.3 V' = 50000, which is the same as the first case. But instead of Gaussian form,
the initial wave pack is a square. Since there are usually more high-frequency components
contained in a discontinous function, there are more wave components passing through than
the first case.

12
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3.2 Two dimensional TDSE

There are complications in the two dimensional TDSE: we can no longer solve the implicit
equations using the efficient back-substitution method for tri-diagonal systems as in the one
dimensional case, because the discretization

1
Vi, ;= ﬁ(wwl,j + i1 + Vi + Vi1 — 4 5) + O(h?)

(3.23)

involves more than 3 variables. However, we can always seperate H into H, + H,, and
apply each Cayley operator onto the system seperately. We’ll analyze the accuracy of such

factorization down below:

Since
Let’s define
S0
and
exp(—1TH)
Because
1-— %’iT?‘[z
1+ imH,
SO
1— it 1 — LirH,

(

1+ %im,)(

1+ LitH,

d? d?

H——%E—rqﬂ+V(x,y)
2

H. = —Elp-i—Vl(x,y)
2

My = ~aE + Va(z,y)

Viz,y) =Vi(z,y)+ Va(z,v)

H="H,+H,

= exp(—iTH, — itH,)

=1—1mH, —itHy, + %(ir?—lz +1mH,)? + O(3)

(- %m{x)u _ %i?’}{z + (%m{z)?] + O

=1—1TH, + %(iT'Hz)2 + O(7?)

) = (L= irHy + SrHa )L~ irH, + L(i7H, )]+ O()

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

= 1—irH, — irH, + %(ir?—lz)z + %(m{y)? — UM, + O(%) (3.29)
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Comparing with (3.27)

1 - ity 1 — LitH,

2
1+ LirH, )(1 + 1itH,

exp(—17H) = ( )+ 7;[7{,, H,| + O(T3) (3.30)

We can see that the error caused by this two-step process is in the order of 72, thus destroying

one order of accuracy. Nevertheless, we’ll adopt this method because otherwise the cost would
become unbearable.

One may intuitively suggest picking V;(z,y) and Va(z,y) such that [H,,H,] = 0. Indeed,
that’s the purpose of the author at the first time to split V(z,y) into two parts. However,
after some manipulations it’s found to be generally impossible, because the commutation of
d?/dz? with a scaler function would generate free d/dx operators, which can’t be offset by

simple manipulations. Another idea is to symmetrize the right hand side of (3.30) and use
the fact that

1—ZirH, 11— SiTH,

Y 1-— %iTHy 1
1+ 3imH, 1+ LirH,

) LitH,
1+ LitH,

— 2
1+ 3iTH,

exp(—iTH) = (

)+ ( )+ O(13) (3.31)

However, that destroy the norm conserving property of the simple scheme (3.30), because
the sum of two unitary operators isn’t necessarily an unitary operator.

Next we’ll analyze the influence of finite discretization in both space and time to our compu-
tation. One may immediately remember the dispersion relation derived by Huang in our first
solid state physics course, and how the finite discretization of space (lattice sites) influence
the behaviour of a should-be-continous wave. In general, suppose a wave component

Y = exp(ikzx — iwt) (3.32)

in free propagation (without potential). Under finite discretization of space:

Hy = ﬁ[exp(ik(x + h) — iwt) + exp(ik(z — h) — iwt) — 2 exp(ikz — iwt)]
_ %(exp(ikh) + exp(—ikh) — 2))
2 — 2cos(kh)
- —Zz_w
= e (3.33)

and under further discretization of time by putting it into the Cayley form (recursion rela-
tion), we get the following dispersion relation:

l,
1-— FITE€

exp(—iwt) = 1—:%

(3.34)
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or

_ 2 _; 7—rTcos(kh)
w(k) —Ttan ( b2 )
1 1 1
_ 2 12,4 4_ L 2.6 8
=k 12hk +(360h TH )k® + O(k®) (3.35)

Obviously in the long wave length limit we have our
w(k) ~ k? (3.36)

behaviour back. The question is how long is long, and that is answered by the other terms
in (3.34).

As an example of 2D TDSE implementation, the following scenario was devised: A 1.0 x 1.0
square was devided into a 500 x 500 mesh array. At t = 0 the initial condition was a steady
plane wave flow in the X direction

Y(x,y) = exp(tkz — iwt) (3.37)

k = 107 so the wavelength A = 1/5 = 100 mesh points, which was considered to be enough
for a sinusoidal function. 7 was chosen to be 2x10~6 and w can be calculated using dispersion
relation (3.34). The boundary condition of (3.36) was imposed on 4 sides of the square, to
simulate the enviroment of an infinite “river” of steady flow. (However, this would cause
the biggest trouble later on.) Such situation would continue for 3007 to test the code, if it’s
working, then the plane wave would continue to be a plane wave and |¢(z,y,t < 3007)| = 1.
At t = 3007 something happens: a cylinder barrier of radius = 50 mesh points, height =
300000 suddenly jump out of nothing in the center, and stirs the flow.

=330 t=330

18



0.5+

0,

150

2

t=480

il
\l(‘ll\uv"‘,

;‘qu‘ 4

=630

Il

i
I

i
U
y

100F

90

19




t=780

t=780

100F— T
%ok
259 sl
24

0.54

o

150

t=930

30 40 50 60 70 80 90

=930

20




t=1230

24

1.54

“I \
""\IJL\\N
il

10 20 30 40 50 60 70 80

21



