
I. Thermodynamics

I.A Fundamental definitions

• Thermodynamics is a phenomenological description of equilibrium properties of macro-

scopic systems.

? As a phenomenological description, it is based on a number of empirical observations

which are summarized by the laws of thermodynamics. A coherent logical and mathe-

matical structure is then constructed on the basis of these observations, which leads to

a variety of useful concepts, and to testable relationships among various quantities. The

laws of thermodynamics can only be justified by a more fundamental (microscopic) theory

of nature. For example, statistical mechanics attempts to obtain these laws starting from

classical or quantum mechanical equations for the evolution of collections of particles.

? A system under study is said to be in equilibrium when its properties do not change

appreciably with time over the intervals of interest (observation times). The dependence

on the observation time makes the concept of equilibrium subjective. For example, window

glass is in equilibrium as a solid over many decades, but flows like a fluid over time scales

of millennia. At the other extreme, it is perfectly legitimate to consider the equilibrium

between matter and radiation in the early universe during the first minutes of the big bang.

? The macroscopic system in equilibrium is characterized by a number of thermodynamic

coordinates or state functions. Some common examples of such coordinates are pressure

and volume (for a fluid), surface tension and area (for a film), tension and length (for

a wire), electric field and polarization (for a dielectric), · · ·. A closed system is an ide-

alization similar to a point particle in mechanics in that it is assumed to be completely

isolated by adiabatic walls that don’t allow any exchange of heat with the surroundings.

By contrast, diathermic walls allow heat exchange for an open system. In addition to the

above mechanical coordinates, the laws of thermodynamics imply the existence of other

equilibrium state functions as described in the following sections.
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I.B The zeroth law

The zeroth law of thermodynamics describes the transitive nature of thermal equilib-

rium. It states:

• If two systems, A and B, are separately in equilibrium with a third system C, then they

are also in equilibrium with one another.

Despite its apparent simplicity, the zeroth law has the consequence of implying the

existence of an important state function, the empirical temperature Θ, such that systems

in equilibrium are at the same temperature.

Proof: Let the equilibrium state of systems A, B, and C be described by the coordinates

{A1, A2, · · ·}, {B1, B2, · · ·}, and {C1, C2, · · ·} respectively. The assumption that A and C

are in equilibrium implies a constraint between the coordinates of A and C, i.e. a change in

A1 must be accompanied by some changes in {A2, · · · ; C1, C2, · · ·} to maintain equilibrium

of A and C. Denote this constraint by

fAC(A1, A2, · · · ; C1, C2, · · ·) = 0. (I.1)

The equilibrium of B and C implies a similar constraint

fBC(B1, B2, · · · ; C1, C2, · · ·) = 0. (I.2)

Each of the above equations can be solved for C1 to yield

C1 =FAC(A1, A2, · · · ; C2, · · ·),

C1 =FBC(B1, B2, · · · ; C2, · · ·).
(I.3)

Thus if C is separately in equilibrium with A and B we must have

FAC(A1, A2, · · · ; C2, · · ·) = FBC(B1, B2, · · · ; C2, · · ·). (I.4)

However, according to the zeroth law there is also equilibrium between A and B, implying

the constraint

fAB(A1, A2, · · · ; B1, B2, · · ·) = 0. (I.5)

Therefore it must be possible to simplify eq.(I.4) by cancelling the coordinates of C. Hence,

the condition (I.5) for equilibrium of A and B must be expressible as

ΘA(A1, A2, · · ·) = ΘB(B1, B2, · · ·), (I.6)
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i.e., equilibrium is characterized by a function Θ of thermodynamic coordinates. This

function specifies the equation of state, and isotherms of A are described by the condition

ΘA(A1, A2, · · ·) = Θ.

Example: Consider three systems: (A) a wire of length L with tension F , (B) a param-

agnet of magnetization M in a magnetic field B, and (C) a gas of volume V at pressure P .

Observations indicate that when these systems are in equilibrium, the following constraints

are satisfied between their coordinates:

(

P +
a

V 2

)

(V − b)(L − L0) − c[F − K(L − L0)] = 0,
(

P +
a

V 2

)

(V − b)M − dB = 0.
(I.7)

Clearly these constraints can be organized into three empirical temperature functions as

Θ ∝
(

P +
a

V 2

)

(V − b) = c

(

F

L − L0

− K

)

= d
B

M
. (I.8)

These are the well known equations of state describing:















(

P + a/V 2)(V − b
)

= NkBT (van der Waals gas)

M = (Nµ2
BB)/(3kBT ) (Curie paramagnet)

F = (K + DT )(L − L0) (Hook′s law for rubber)

. (I.9)

The ideal gas temperature scale: As the above example indicates, the zeroth law

merely states the presence of isotherms. In order to set up a practical temperature scale

at this stage, a reference system is necessary. The ideal gas occupies an important place

in thermodynamics and provides the necessary reference. Empirical observations indicate

that the product of pressure and volume is constant along the isotherms of any gas that is

sufficiently dilute. The ideal gas refers to this dilute limit of real gases, and the ideal gas

temperature is proportional to the product. The constant of proportionality is determined

by reference to the temperature of the triple point of the ice–water–gas system, which

was set to 273.16 degrees Kelvin (0K) by the 10th General Conference on Weights and

Measures in 1954. Using a dilute gas (i.e. as P → 0) as thermometer, the temperature of

a system can be obtained from

T (oK) ≡ 273.16 ×
(

lim
P→0

(PV )system/ lim
P→0

(PV )ice−water−gas

)

. (I.10)
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I.C The First law

We now consider transformations between different equilibrium states. Such transfor-

mations can be achieved by applying work or heat to the system. The first law states that

both work and heat are forms of energy, and that the total energy is conserved. We shall

use the following formulation:

• The amount of work required to change the state of an otherwise adiabatically isolated

system depends only on the initial and final states, and not on the means by which the

work is performed, or on the intermediate stages through which the system passes.

As a consequence, we conclude the existence of another state function, the internal

energy, E(X). Up to a constant, E(X) can be obtained from the amount of work ∆W

needed for an adiabatic transformation from an initial state Xi to a final state Xf , using

∆W = E(Xf ) − E(Xi). (I.11)

In a generic (non–adiabatic) transformation, the amount of work does not equal to the

change in the internal energy. The difference ∆Q = ∆E − ∆W is defined as the heat

intake of the system from its surroundings. Clearly in such transformations, ∆Q and

∆W are not separately functions of state, in that they depend on external factors such

as the means of applying work, and not only on the final states. To emphasize this, for a

differential transformation we write

d̄Q = dE − d̄W, (I.12)

where dE =
∑

i ∂iEdXi can be obtained by differentiation, while d̄Q and d̄W generally

can not. Also note the convention that the signs of work and heat are chosen to indicate

the energy added to the system, and not vice versa.

A quasi-static transformation is one that is performed sufficiently slowly so that the

system is always in equilibrium. Thus at any stage of the process, the thermodynamic

coordinates of the system exist and can in principle be computed. For such transformations,

the work done on the system (equal in magnitude but opposite in sign to the work done

by the system) can be related to changes in these coordinates. Typically one can divide

the state functions {X} into a set of generalized displacements {x}, and their conjugate

generalized forces {J}, such that for an infinitesimal quasi-static transformation

d̄W =
∑

i

Jidxi. (I.13)
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Table [1] provides some common examples of such coordinates. Note that the displacement

is usually an extensive quantity, i.e. proportional to system size, while the forces are

intensive and independent of size. Also note that pressure is by convention calculated

from the force exerted by the system on the walls, as opposed to the force on a spring

which is exerted in the opposite direction. This is the origin of the negative sign that

usually accompanies hydrostatic work.

System Force Displacement

Wire Tension F Length L
Film Surface Tension S Area A
Fluid Pressure −P Volume V

Magnet Magnetic Field H Magnetization M
Dielectric Electric Field E Polarization P

Chemical Reaction Chemical Potential µ Particle Number N

Table 1: Generalized Forces and Displacements

Joule’s Free Expansion Experiment: Another important property of the ideal gas

is the behavior of its internal energy. Observations indicate that if such a gas expands

adiabatically (but not necessarily quasi-statically), from a volume Vi to Vf , the initial and

final temperatures are the same. Since the transformation is adiabatic (∆Q = 0) and

there is no external work done on the system (∆W = 0), the internal energy of the gas

is unchanged. Since the pressure and volume of the gas change in the process, but its

temperature does not, we conclude that the internal energy depends only on temperature,

i.e. E(V, T ) = E(T ). This property of the ideal gas is in fact a consequence of the form of

its equation of state as will be proved in problem set [2].

Response functions are the usual method for characterizing the macroscopic behav-

ior of a system. They are experimentally measured from the changes of thermodynamic

coordinates with external probes. Some common response functions are:

Heat Capacities are obtained from the change in temperature upon addition of heat to the

system. Since heat is not a function of state, the path by which it is supplied must also be

specified. For example, for a gas we can calculate the heat capacities at constant volume

or pressure, denoted by CV = d̄Q/dT |V and CP = d̄Q/dT |P respectively. The latter is

larger since some of the heat is used up in the work done in changes of volume:

CV =
d̄Q

dT

∣

∣

∣

∣

V

=
dE − d̄W

dT

∣

∣

∣

∣

V

=
dE + PdV

dT

∣

∣

∣

∣

V

=
∂E

∂T

∣

∣

∣

∣

V

,

CP =
d̄Q

dT

∣

∣

∣

∣

P

=
dE − d̄W

dT

∣

∣

∣

∣

P

=
dE + PdV

dT

∣

∣

∣

∣

P

=
∂E

∂T

∣

∣

∣

∣

P

+ P
∂V

∂T

∣

∣

∣

∣

P

.

(I.14)
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Force Constants measure the (infinitesimal) ratio of displacement to force and are gener-

alizations of the spring constant. Examples include the isothermal compressibility of a gas

κT = − ∂V/∂P |T /V , and the susceptibility of a magnet χT = ∂M/∂B|T /V . From the

equation of state of an ideal gas PV ∝ T , we obtain κT = 1/P .

Thermal Responses probe the change in the thermodynamic coordinates with temperature.

For example, the expansivity of a gas is given by αP = ∂V/∂T |P /V , which equals 1/T

for the ideal gas.

Since the internal energy of an ideal gas depends only on its temperature, ∂E/∂T |V =

∂E/∂T |P = dE/dT , and eq.(I.14) simplifies to

CP − CV = P
∂V

∂T

∣

∣

∣

∣

P

= PV αP =
PV

T
≡ NkB . (I.15)

The last equality follows from extensivity: for a given amount of ideal gas, the constant

PV/T is proportional to N , the number of particles in the gas; the ratio is Boltzmann’s

constant with a value of kB ≈ 1.4 × 10−23J0K−1.
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