
III.G Conservation Laws

• Approach to equilibrium: We now address the third question posed in the introduction

of how the gas reaches its final equilibrium. Consider a situation in which the gas is

perturbed from the equilibrium form described by eq.(III.53), and follow its relaxation to

equilibrium. There is a hierarchy of mechanisms that operate at different time scales.

(i) The fastest processes are the two body collisions of particles in immediate vicinity.

Over a time scale of the order of τc, f2(~q1, ~q2, t) relaxes to f1(~q1, t)f1(~q2, t) for separa-

tions |~q1 − ~q2| � d. Similar relaxations occur for the higher order densities fs.

(ii) At the next stage, f1 relaxes to a local equilibrium from, as in eq.(III.50), over the

time scale of the mean free time τ×. This is the intrinsic scale set by the collision term

on the right hand side of the Boltzmann equation. After this time interval, at each

point we can define a local (time dependent) density by integrating over all momenta

as

n(~q, t) =

∫

d3~pf1(~p, ~q, t), (III.66)

as well as a local expectation value for any operator O(~p, ~q, t)

〈O(~q, t)〉 =
1

n(~q, t)

∫

d3~pf1(~p, ~q, t)O(~p, ~q, t). (III.67)

(iii) After the densities and expectation values have relaxed to their local equilibrium forms

in the intrinsic time scales τc and τ×, there is a subsequent relaxation to equilibrium

over extrinsic time and length scales. The slow relaxation is controlled by the conserved

quantities, which evolve according to hydrodynamic equations.

Conserved quantities, are left unchanged by the two body collisions, i.e. satisfy

χ(~p1, ~q, t) + χ(~p2, ~q, t) = χ(~p1
′, ~q, t) + χ(~p2

′, ~q, t), (III.68)

where (~p1, ~p2) and (~p1
′, ~p2

′) refer to the momenta before and after a collision respectively.

For such quantities, we have

J =

∫

d3~p χ(~p, ~q, t)
df1

dt

∣

∣

∣

∣

coll.

= 0. (III.69)

• Proof: Using the form of the collision integral, we have

J =

∫

d3~p1d
3~p2d

2~b|~v1 − ~v2| [f1(~p1)f1(~p2) − f1(~p1
′)f1(~p2

′)]χ(~p1). (III.70)
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We now perform the same set of changes of variables that were used in the proof of the

H-theorem. The first step is averaging after exchange of the dummy variables ~p1 and ~p2,

leading to

J =
1

2

∫

d3~p1d
3~p2d

2~b|~v1 − ~v2| [f1(~p1)f1(~p2) − f1(~p1
′)f1(~p2

′)] (χ(~p1) + χ(~p2)) . (III.71)

Next, change variables from the originators (~p1, ~p2,~b), to the products (~p1
′, ~p2

′,~b ′) of the

collision. After relabeling the integration variables, the above equation is transformed to

J =
1

2

∫

d3~p1d
3~p2d

2~b|~v1 − ~v2| [f1(~p1
′)f1(~p2

′) − f1(~p1)f1(~p2)] (χ(~p1
′) + χ(~p2

′)) . (III.72)

Averaging the last two equations leads to

J =
1

4

∫

d3~p1d
3~p2d

2~b|~v1 − ~v2| [f1(~p1)f1(~p2) − f1(~p1
′)f1(~p2

′)]

[χ(~p1) + χ(~p2) − χ(~p1
′) − χ(~p2

′)] ,

(III.73)

which is zero from eq.(III.68).

Let us explore the consequences of this result for the evolution of expectation values

involving χ. Substituting for the collision term in eq.(III.69) the streaming terms on the

left hand side of the Boltzmann equation leads to

J =

∫

d3~pχ(~p, ~q, t)

[

∂t +
pα

m
∂α + Fα

∂

∂pα

]

f1 = 0, (III.74)

where we have introduced the notations ∂t ≡ ∂/∂t, ∂α ≡ ∂/∂qα, and Fα = −∂U/∂qα. We

can manipulate the above equation into the form

∫

d3~p

{[

∂t +
pα

m
∂α + Fα

∂

∂pα

]

(χf1) − f

[

∂t +
pα

m
∂α + Fα

∂

∂pα

]

χ

}

= 0. (III.75)

The third term is zero, as it is a complete derivative. Using the definition of expectation

values in eq.(III.67), the remaining terms can be rearranged into

∂t (n 〈χ〉) + ∂α

(

n
〈pα

m
χ
〉)

− n 〈∂tχ〉 − n
〈pα

m
∂αχ

〉

− nFα

〈

∂χ

∂pα

〉

= 0. (III.76)

As discussed earlier, for elastic collisions, there are 5 conserved quantities: particle

number, the three components of momentum, and kinetic energy. Each leads to a corre-

sponding hydrodynamic equation, as constructed below:
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(a) Particle number: Setting χ = 1 in eq.(III.76) leads to

∂tn + ∂α (nuα) = 0, (III.77)

where we have introduced the local velocity

~u ≡

〈

~p

m

〉

. (III.78)

This equation simply states that the time variation of the local particle density is due to

a particle current ~Jn = n~u.

(b) Momentum: Any linear function of the momentum ~p is conserved in the collision, and

we shall explore the consequences of the conservation of

~c ≡
~p

m
− ~u. (III.79)

Substituting cα into eq.(III.76) leads to

∂β (n 〈(uβ + cβ) cα〉) + n∂tuα + n∂βuα 〈uβ + cβ〉 − n
Fα

m
= 0. (III.80)

Taking advantage of 〈cα〉 = 0, from eqs.(III.78) and (III.79), leads to

∂tuα + uβ∂βuα =
Fα

m
−

1

mn
∂βPαβ , (III.81)

where we have introduced the pressure tensor,

Pαβ ≡ mn 〈cαcβ〉 . (III.82)

The left hand side of the equation is the acceleration of an element of the fluid d~u/dt, which

should equal ~Fnet/m according to Newton’s equation. Clearly the net force has acquired

an additional component due to the variations in the pressure tensor in the fluid.

(c) Kinetic energy: We first introduce an average local kinetic energy

ε ≡

〈

mc2

2

〉

=

〈

p2

2m
− ~p · ~u +

mu2

2

〉

, (III.83)

and then examine the conservation law obtained by setting χ equal to mc2/2 in eq.(III.76).

Noting that ∂χ = mcβ∂cβ, we obtain

∂t(nε)+∂α

(

n

〈

(uα + cα)
mc2

2

〉)

+nm∂tuβ 〈cβ〉+nm∂αuβ 〈(uα + cα)cβ〉−nFαm 〈cα〉 = 0.

(III.84)
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Taking advantage of 〈cα〉 = 0, the above equation is simplified to

∂t(nε) + ∂α (nuαε) + ∂α

(

n

〈

cα
mc2

2

〉)

+ Pαβ∂αuβ = 0. (III.85)

We next take out the dependence on n in the first two terms of the above equation, finding

ε∂tn + n∂tε + ε∂α (nuα) + nuα∂αε + ∂αhα + Pαβuαβ = 0, (III.86)

where we have also introduced the local heat flux

~h ≡
nm

2

〈

cαc2
〉

, (III.87)

and the rate of strain tensor

uαβ =
1

2
(∂αuβ + ∂βuα) . (III.88)

Eliminating the first and third terms in eq.(III.86) with the aid of eq.(III.77) leads to

∂tε + uα∂αε = −
1

n
∂αhα −

1

n
Pαβuαβ . (III.89)

Clearly to solve the hydrodynamic equations for n, ~u, and ε, we need expressions for Pαβ

and ~h, which are either given phenomenologically, or calculated from the density f1, as in

the next sections.
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