
III.H Zeroth order hydrodynamics

As a first approximation, we shall assume that in “local equilibrium,” the density f1

at each point in space can be represented as in eq.(III.53), i.e.

f0
1 (~p, ~q, t) =

n(~q, t)

(2πmkBT (~q, t))
3/2

exp

[

−
(~p − m~u(~q, t))

2

2mkBT (~q, t)

]

. (III.90)

The choice of parameters clearly enforces
∫

d3~pf0
1 = n, and 〈~p/m〉0 = ~u, as required.

Average values are easily calculated for the Gaussian form; in particular

〈cαcβ〉
0

=
kBT

m
δαβ , (III.91)

leading to

P 0
αβ = nkBTδαβ , and ε =

3

2
kBT. (III.92)

Since the density f0
1 is even in ~c, all odd expectation values vanish, and in particular

~h0 = 0. (III.93)

The conservation laws in this approximation take the simple forms























Dtn = −n∂αuα

mDtuα = Fα −
1

n
∂α (nkBT )

DtT = −
2

3
T∂αuα

. (III.94)

In the above expression, we have introduced the material derivative

Dt ≡ [∂t + uβ∂β ] , (III.95)

which measures the time variations of a quantity as it moves along the stream-lines set up

by the average velocity field ~u. By combining the first and third equations, it is easy to

get

Dt ln
(

nT−3/2
)

= 0. (III.96)

The quantity ln
(

nT−3/2
)

is like a local entropy for the gas (see eq.(III.64)), which according

to the above equation is not changed along stream-lines. The zeroth order hydrodynamics

thus predicts that the gas flow is adiabatic. This prevents the local equilibrium solution

of eq.(III.90) from reaching a true global equilibrium form.
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To demonstrate that eqs.(III.94) do not describe a satisfactory approach to equilib-

rium, examine the evolution of small deformations about a stationary (~u0 = 0) state, in a

uniform box ( ~F = 0), by setting
{

n(~q, t) =n + ν(~q, t)

T (~q, t) =T + θ(~q, t)
. (III.97)

We shall next expand eqs.(III.94) to first order in the deviations (ν, θ, ~u). Note that to

lowest order, Dt = ∂t+O(u), leading to the linearized zeroth order hydrodynamic equations






















∂tν = −n∂αuα

m∂tuα = −
kBT

n
∂αν − kB∂αθ

∂tθ = −
2

3
T∂αuα

. (III.98)

• Normal modes of the system are obtained by Fourier transformations,

A
(

~k, ω
)

=

∫

d3qdt exp
[

i
(

~k · ~q − ωt
)]

A (~q, t) , (III.99)

where A stands for any of (ν, θ, ~u). The natural vibration frequencies are solutions to the

matrix equation

ω





ν
uα

θ



 =





0 nδαβkβ 0
kBT
mn δαβkβ 0 kB

m δαβkβ

0 2
3
Tδαβkβ 0









ν
uβ

θ



 . (III.100)

It is easy to check that this equation has three zero frequency modes. One corresponds to

“entropy” waves, as noted before, satisfying ν/n + 3θ/2T = 0. There is also no evolution

for transverse velocity modes which satisfy ~k · ~uT = 0, i.e. shear flows are not relaxed in

the zeroth order approximation. Finally, the longitudinal velocity (~u` ‖ ~k) combines with

density and temperature fluctuations in eigenmodes of the form




n|~k|

ω(~k)
2
3T |~k|



 , with ω(~k) = ±v`|~k|, (III.101)

where

v` =

√

5

3

kBT

m
, (III.102)

is the longitudinal sound velocity.

We thus find that none of the conserved quantities relaxes to equilibrium in the zeroth

order approximation. Shear flow and entropy modes persist forever, while the two sound

modes have undamped oscillations. This is a deficiency of the zeroth order hydrodynamics,

which is removed by finding a better solution to the Boltzmann equation.
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III.I First order hydrodynamics

While f0
1 (~p, ~q, t) of eq.(III.90) does set the right hand side of the Boltzmann equation

to zero, it is not a full solution, as the left hand side causes its form to vary. The left hand

side is a linear differential operator, which using the various notations introduced in the

previous sections, can be written as

L [f ] ≡

[

∂t +
pα

m
∂α + Fα

∂

∂pα

]

f =

[

Dt + cα∂α +
Fα

m

∂

∂cα

]

f. (III.103)

It is simpler to examine the effect of L on ln f 0
1 . which can be written as

ln f0
1 = ln

(

nT−3/2
)

−
mc2

2kBT
−

3

2
ln (2πmkB) . (III.104)

Using the relation ∂(c2/2) = cβ∂cβ = −cβ∂uβ, we get

L
[

ln f0
1

]

=Dt ln
(

nT−3/2
)

+
mc2

2kBT 2
DtT +

m

kBT
cαDtuα

+cα

(

∂αn

n
−

3

2

∂αT

T

)

+
mc2

2kBT 2
cα∂αT +

m

kBT
cαcβ∂αuβ −

Fαcα

kBT
.

(III.105)

If the quantities n, T , and uα, satisfy the zeroth order hydrodynamic eqs.(III.94), we can

simplify the above equation to

L
[

ln f0
1

]

=0 −
mc2

3kBT 2
∂αuα + cα

[(

Fα

kBT
−

∂αn

n
−

∂αT

T

)

+

(

∂αn

n
−

3

2

∂αT

T

)

−
Fα

kBT

]

+
mc2

2kBT 2
cα∂αT +

m

kBT
cαcβuαβ

=
m

kBT

(

cαcβ −
δαβ

3
c2

)

uαβ +

(

mc2

2kBT
−

5

2

)

cα

T
∂αT.

(III.106)

The characteristic time scale τU for L is extrinsic, and can be made much larger than

τ×. The zeroth order result is thus exact in the limit (τ×/τU ) → 0; and corrections can be

constructed in a perturbation series in (τ×/τU ). To this purpose, we set f1 = f0
1 (1 + g),

and linearize the collision operator as

C [f1, f1] = −

∫

d3~p2d
2~b|~v1 − ~v2|f

0
1 (~p1)f

0
1 (~p2) [g(~p1) + g(~p2) − g(~p1

′) − g(~p2
′)]

≡− f0
1 (~p1)CL[g].

(III.107)
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While linear, the above integral operator is still difficult to manipulate in general. As a

first approximation, and noting its characteristic magnitude, we set

CL[g] ≈
g

τ×
. (III.108)

This is known as the single collision time approximation, and from the linearized Boltz-

mann equation L[f1] = −f0
1 CL[g], we obtain

g = −τ×
1

f0
1

L [f1] ≈ −τ×L
[

ln f0
1

]

, (III.109)

where we have kept only the leading term. Thus the first order solution is given by (using

eq.(III.106))

f1
1 (~p, ~q, t) = f0

1 (~p, ~q, t)

[

1 −
τµm

kBT

(

cαcβ −
δαβ

3
c2

)

uαβ − τK

(

mc2

2kBT
−

5

2

)

cα

T
∂αT

]

,

(III.110)

where τµ = τK = τ× in the single collision time approximation. However, in writing

the above equation, we have anticipated the possibility of τµ 6= τK which arises in more

sophisticated treatments (although both times are still of order of τ×).

It is easy to check that
∫

d3~pf1
1 =

∫

d3~pf0
1 = n, and thus various local expectation

values are calculated to first order as

〈O〉1 =
1

n

∫

d3~pOf0
1 (1 + g) = 〈O〉0 + 〈gO〉0 + · · · . (III.111)

The calculation of averages over products of cα’s, distributed according to the Gaussian

weight of f0
1 , is greatly simplified by the use of Wick’s theorem, which states that expecta-

tion value of the product is the sum over all possible products of paired expectation values,

for example

〈cαcβcγcδ〉0 =

(

kBT

m

)2

(δαβδγδ + δαγδβδ + δαδδβγ) . (III.112)

(Expectation values involving a product of an odd number of cα’s are zero by symmetry.)

Using this result, it is easy to verify that

〈pα

m

〉1

= uα − τK
∂βT

T

〈(

mc2

2kBT
−

5

2

)

cαcβ

〉

= uα. (III.113)
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The pressure tensor at first order is given by

P 1
αβ =nm 〈cαcβ〉

1
= nm

[

〈cαcβ〉
0 −

τµm

kBT

〈

cαcβ

(

cµcν −
δµν

3
c2

)〉0
]

=nkBTδαβ − 2nkBTτµ

(

uαβ −
δαβuγγ

3

)

.

(III.114)

(Using the above result, we can further verify that ε1 =
〈

mc2/2
〉1

= 3kBT/2, as before.)

Finally, the heat flux is given by

h1
α =n

〈

cα
mc2

2

〉1

= −
nmτK

2

∂βT

T

〈(

mc2

2kBT
−

5

2

)

cαcβc2

〉0

= −
5

2

nk2
BTτK

m
∂αT.

(III.115)

At this order, we find that spatial variations in temperatures generate a heat flow that

tends to smooth them out, while shear flows are opposed by the off-diagonal terms in the

pressure tensor. These effects are sufficient to cause relaxation to equilibrium, as can be

seen by examining the linearized hydrodynamic equations. There is now a contribution to

Dtuα ≈ ∂tuα, given by

δ1 (∂tuα) ≡
1

mn
∂βδ1Pαβ ≈ −

µ

mn

(

1

3
∂α∂β + δαβ∂γ∂γ

)

uβ , (III.116)

where we have introduced the viscosity coefficient µ ≡ kBTnτµ. Similarly, there is a first

order correction to the equation for DtT ≈ ∂tθ, which is given by

δ1 (∂tθ) ≡ −
2

3kBn
∂αhα ≈ −

2K

3kBn
∂α∂αθ, (III.117)

where K = (5k2
BTnτK)/(2m) is the coefficient of thermal conductivity of the gas.

After Fourier transformation, the matrix equation (III.100) is modified to

ω





ν
uα

θ



 =







0 nδαβkβ 0
kBT
mn

δαβkβ −i µ
mn

(

k2δαβ +
kαkβ

3

)

kB

m
δαβkβ

0 2
3
Tδαβkβ −i 2Kk2

3kBn











ν
uβ

θ



 . (III.118)

It is simple to verify that the longitudinal normal models (~k · ~uT = 0) have a frequency

ωT = −i
µ

mn
k2. (III.119)

The imaginary frequency implies that these modes are damped over a characteristic

time τT (k) ∼ 1/|ωT | ∼ (λ)2/(τµv2), where λ is the corresponding wavelength, and

v ∼
√

kBT/m is a typical gas particle velocity. We see that the characteristic time scales

grow as the square of the wavelength, which is characteristic of diffusive processes. Sim-

ilarly, the entropy mode become diffusive, while the longitudinal sound modes turn into

damped oscillations. It is this damping that guarantees the, albeit slow, approach of the

gas to its final uniform and stationary equilibrium state.
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