
IV.D The Ideal Gas

As discussed in chapter II, micro-states of a gas of N particles correspond to points µ ≡
{~pi, ~qi}, in the 6N -dimensional phase space. Ignoring the potential energy of interactions,

the particles are subject to a Hamiltonian

H =
N
∑

i=1

[

~pi
2

2m
+ U(~qi)

]

, (IV.26)

where U(~q) describes the potential imposed by a box of volume V . A microcanonical

ensemble is specified by its energy, volume, and number of particles, M ≡ (E, V, N). The

joint PDF for a micro-state is

p(µ) =
1

Ω(E, V, N)
·
{

1 for ~qi ∈ box, and
∑

i ~pi
2/2m = E (±∆E)

0 otherwise

. (IV.27)

In the allowed micro-states, coordinates of the particles must be within the box, while

the momenta are constrained to the surface of the (hyper-)sphere
∑N

i=1 ~pi
2 = 2mE. The

allowed phase space is thus the product of a contribution V N from the coordinates, with

the surface area of a 3N -dimensional sphere of radius
√

2mE from the momenta. (If the

microstate energies are accepted in the energy interval E ±∆E , the corresponding volume

in momentum space is that of a (hyper-)spherical shell of thickness ∆R =
√

2m/E∆E.)

The area of a d-dimensional sphere is Ad = SdR
d−1, where Sd is the generalized solid

angle.

A simple way to calculate the d–dimensional solid angle is to consider the product of

d Gaussian integrals,

Id ≡
(
∫ ∞

−∞

dxe−x2

)d

= πd/2. (IV.28)

Alternatively, we may consider Id as an integral over an entire d–dimensional space, i.e.

Id =

∫ d
∏

i=1

dxi exp
(

−x2
i

)

. (IV.29)

The integrand is spherically symmetric, and we can change coordinates to R2 =
∑

i x2
i .

Noting that the corresponding volume element in these coordinates is dVd = SdR
d−1dR,

Id =

∫ ∞

0

dRSdR
d−1e−R2

=
1

2

∫ ∞

0

dyyd/2−1e−y =
1

2
(d/2 − 1)! , (IV.30)
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where we have first made a change of variables to y = R2, and then used the integral

representation of n!. Equating expressions (IV.28) and (IV.30) for Id gives the final result

for the solid angle,

Sd =
2πd/2

(d/2 − 1)!
. (IV.31)

The volume of the available phase space is thus given by

Ω(E, V, N) = V N 2π3N/2

(3N/2 − 1)!
(2mE)(3N−1)/2∆R. (IV.32)

The entropy is obtained from the logarithm of the above expression. Using Stirling’s

formula, and neglecting terms of order of 1 or lnE ∼ ln N in the large N limit, results in

S(E, V, N) =kB

[

N lnV +
3N

2
ln(2πmE)− 3N

2
ln

3N

2
+

3N

2

]

=NkB ln

[

V

(

4πemE

3N

)3/2
]

.

(IV.33)

Properties of the ideal gas can now be recovered from TdS = dE + PdV − µdN ,

1

T
=

∂S

∂E

∣

∣

∣

∣

N,V

=
3

2

NkB

E
. (IV.34)

The internal energy E = 3NkBT/2, is only a function of T , and the heat capacity CV =

3NkB/2, is a constant. The equation of state is obtained from

P

T
=

∂S

∂V

∣

∣

∣

∣

N,E

=
NkB

V
, =⇒ PV = NkBT. (IV.35)

The unconditional probability of finding a particle of momentum ~p1 in the gas can be

calculated from the joint PDF in eq.(IV.27), by integrating over all other variables,

p(~p1) =

∫

d3~q1

N
∏

i=2

d3~qid
3~pip({~qi, ~pi})

=
V Ω(E − ~p1

2/2m, V, N − 1)

Ω(E, V, N)
.

(IV.36)

The final expression indicates that once the kinetic energy of one particle is specified, the

remaining energy must be shared amongst the other N − 1. Using eq.(IV.32),

p(~p1) =
V Nπ3(N−1)/2(2mE − ~p1

2)(3N−4)/2

(

3(N − 1)/2 − 1
)

!
· (3N/2 − 1)!

V Nπ3N/2(2mE)(3N−1)/2

=

(

1 − ~p1
2

2mE

)3N/2−2
1

(2πmE)3/2

(3N/2 − 1)!
(

3(N − 1)/2 − 1
)

!
.

(IV.37)
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From Stirling’s formula, the ratio of (3N/2 − 1)! to
(

3(N − 1)/2 − 1
)

! is approximately

(3N/2)3/2, and in the large E limit,

p(~p1) =

(

3N

4πmE

)3/2

exp

(

−3N

2

~p1
2

2mE

)

. (IV.38)

This is a properly normalized Maxwell-Boltzmann distribution, which can be displayed in

its more familiar form after the substitution E = 3NkBT/2,

p(~p1) =
1

(2πmkBT )3/2
exp

(

− ~p1
2

2mkBT

)

. (IV.39)

IV.E Mixing Entropy and Gibbs’ Paradox

The expression in eq.(IV.33) for the entropy of the ideal gas has a major shortcoming in

that it is not extensive. Under the transformation (E, V, N) → (λE, λV, λN), the entropy

changes to λ(S + NkB lnλ). The additional term comes from the contribution V N , of the

coordinates to the available phase space. This difficulty is intimately related to the mixing

entropy of two gases. Consider two distinct gases, initially occupying volumes V1 and V2

at the same temperature T . The partition between them is removed, and they are allowed

to expand and occupy the combined volume V = V1 + V2. The mixing process is clearly

irreversible, and must be accompanied by an increase in entropy, calculated as follows.

According to eq.(IV.33), the initial entropy is

Si = S1 + S2 = N1kB(lnV1 + σ1) + N2kB(lnV2 + σ2), (IV.40)

where,

σα = ln

(

4πemα

3
· Eα

Nα

)3/2

, (IV.41)

is the momentum contribution to the entropy of the αth gas. Since Eα/Nα = 3kBT/2 for

a monotonic gas,

σα(T ) =
3

2
ln (2πemαkBT ) . (IV.42)

The temperature of the gas is unchanged by mixing, since

3

2
kBTf =

E1 + E2

N1 + N2
=

E1

N1
=

E2

N2
=

3

2
kBT. (IV.43)
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The final entropy of the mixed gas is

Sf = N1kB ln(V1 + V2) + N2kB ln(V1 + V2) + kB(N1σ1 + N2σ2). (IV.44)

There is no change in the contribution from the momenta which depends only on temper-

ature. The mixing entropy,

∆SMix = Sf − Si = N1kB ln
V

V1
+ N2kB ln

V

V2
= −NkB

[

N1

N
ln

V1

V
+

N2

N
ln

V2

V

]

, (IV.45)

is solely from the contribution of the coordinates. The above expression is easily generalized

to the mixing of many components, with ∆SMix = −NkB

∑

α(Nα/N) ln(Vα/V ).

Gibbs’ Paradox is related to what happens when the two gases, initially on the two

sides of the partition, are identical with the same density, n = N1/V1 = N2/V2. Since

removing or inserting the partition does not change the state of the system, there should

be no entropy of mixing, while eq.(IV.45) does predict such a change. For the resolution of

this paradox, note that while after removing and reinserting the partition, the system does

return to its initial configuration, the actual particles that occupy the two components

are not the same. But as the particles are by assumption identical, these configurations

cannot be distinguished. In other words, while the exchange of distinct particles leads to

two configurations
• | ◦
A | B

and
◦ | •
A | B

,

a similar exchange has no effect on identical particles, as in

• | •
A | B

and
• | •
A | B

.

Therefore, we have over-counted the phase space associated with N identical parti-

cles by the number of possible permutations. As there are N ! permutations leading to

indistinguishable micro-states, eq.(IV.32) should be corrected to

Ω(N, E, V ) =
V N

N !
· π3N/2−1

(3N/2 − 1)!
(2mE)3N/2−1∆R, (IV.46)

resulting in a modified entropy,

S = kB ln Ω = kB[N ln V − N lnN + N ln e] + NkBσ = NkB

[

ln
eV

N
+ σ

]

. (IV.47)
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As the argument of the logarithm has changed from V to V/N , the final expression is now

properly extensive. The mixing entropies can be recalculated using eq.(IV.47). For the

mixing of distinct gases,

∆SMix = Sf − Si = N1kB ln
V

N1
+ N2kB ln

V

N2
− N1kB ln

V1

N1
− N2kB ln

V2

N2

= N1kB ln

(

V

N1
· N1

V1

)

+ N2kB ln

(

V

N2
· N2

V2

)

= −NkB

[

N1

N
ln

V1

V
+

N2

N
ln

V2

V

]

,

(IV.48)

exactly as obtained before in eq.(IV.45). For the ‘mixing’ of two identical gases, with

N1/V1 = N2/V2 = (N1 + N2)/(V1 + V2),

∆SMix = Sf − Si = (N1 + N2)kB ln
V1 + V2

N1 + N2
− N1kB ln

V1

N1
− N2kB ln

V2

N2
= 0. (IV.49)

Note that after taking the permutations of identical particles into account, the available

volume in the final state is V N1+N2/N1!N2! for distinct particles, and V N1+N2/(N1 + N2)!

for identical particles.

• Additional comments on the microcanonical entropy:

1. In the example of two-level impurities in a solid matrix (sec.IV.C), there is no need for

the additional factor of N !, as the defects can be distinguished by their locations.

2. The corrected formula for the ideal gas entropy in eq.(IV.47) does not affect the com-

putations of energy and pressure in eqs.(IV.34) and (IV.35). It is essential to obtaining an

intensive chemical potential,

µ

T
= − ∂S

∂N

∣

∣

∣

∣

E,V

= − S

N
+

5

2
kB = kB ln

[

V

N

(

4πmE

3N

)3/2
]

. (IV.50)

3. The above treatment of identical particles is somewhat artificial. This is because

the concept of identical particles does not easily fit within the framework of classical

mechanics. To implement the Hamiltonian equations of motion on a computer, one has to

keep track of the coordinates of the N particles. The computer will have no difficulty in

distinguishing exchanged particles. The indistinguishability of their phase spaces is in a

sense an additional postulate of classical statistical mechanics. This problem is elegantly

resolved within the framework of quantum statistical mechanics. Description of identical

particles in quantum mechanics requires proper symmetrization of the wave function. The
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corresponding quantum microstates naturally yield the N ! factor, as will be shown later

on.

4. Yet another difficulty with the expression (IV.47), resolved in quantum statistical me-

chanics, is the arbitrary constant that appears in changing the units of measurement for

q and p. The volume of phase space involves products pq, of coordinates and conjugate

momenta, and hence has dimensions of (action)N . Quantum mechanics provides the ap-

propriate measure of action in Planck’s constant h. Anticipating these quantum results,

we shall henceforth set the measure of phase space for identical particles to

dΓN =
1

h3NN !

N
∏

i=1

d3~qid
3~pi . (IV.51)

IV.F The Canonical Ensemble

In the microcanonical ensemble, the energy E, of a large macroscopic system is pre-

cisely specified, and its equilibrium temperature T , emerges as a consequence (eq.(IV.7)).

However, from a thermodynamic perspective, E and T are both functions of state and on

the same footing. It is possible to construct a statistical mechanical formulation in which

the temperature of the system is specified and its internal energy is then deduced. This is

achieved in the canonical ensemble where the macro-states, specified by M ≡ (T,x), allow

the input of heat into the system, but no external work. The system S, is maintained

at a constant temperature through contact with a reservoir R. The reservoir is another

macroscopic system that is sufficiently large so that its temperature is not changed due

to interactions with S. To find the probabilities p(T,x)(µ), of the various micro-states of

S, note that the combined system R ⊕ S, belongs to a microcanonical ensemble of energy

ETot � ES. As in eq.(IV.3), the joint probability of micro-states (µS ⊗ µR) is

p(µS ⊗ µR) =
1

ΩS⊕R(ETot)
·
{

1 for HS(µS) + HR(µR) = ETot

0 otherwise

. (IV.52)

The unconditional probability for micro-states of S is now obtained from

p(µS) =
∑

{µR}

p(µS ⊗ µR) . (IV.53)
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Once µS is specified, the above sum is restricted to micro-states of the reservoir with energy

ETot − HS(µS). The number of the such states is related to the entropy of the reservoir,

and leads to

p(µS) =
ΩR

(

ETot −HS(µS)
)

ΩS⊕R(ETot)
∝ exp

[

1

kB
SR

(

ETot −HS(µS)
)

]

. (IV.54)

Since by assumption the energy of the system is insignificant compared to that of the

reservoir,

SR

(

ETot −HS(µS)
)

≈ SR(ETot) −HS(µS)
∂SR

∂ER
= SR(ETot) −

HS(µS)

T
. (IV.55)

Dropping the subscript S, the normalized probabilities are given by

p(T,x)(µ) =
e−βH(µ)

Z(T,x)
. (IV.56)

The normalization,

Z(T,x) =
∑

{µ}

e−βH(µ), (IV.57)

is known as the partition function, and β ≡ 1/kBT . (Note that probabilities similar to

eq.(IV.56) were already obtained in eqs.(IV.25), and (IV.39), when considering a portion

of the system in equilibrium with the rest of it.)

Is the internal energy E, of the system S well defined? Unlike in a microcanonical

ensemble, the energy of a system exchanging heat with a reservoir is a random variable.

Its probability distribution p(E), is obtained by changing variables from µ to H(µ) in p(µ),

resulting in

p(E) =
∑

{µ}

p (µ) δ (H(µ) − E) =
e−βE

Z

∑

{µ}

δ (H(µ) − E) . (IV.58)

Since the restricted sum is just the number Ω(E), of micro-states of appropriate energy,

p(E) =
Ω(E)e−βE

Z
=

1

Z
exp

[

S(E)

kB
− E

kBT

]

=
1

Z
exp

[

−F (E)

kBT

]

, (IV.59)

where we have set F = E − TS(E), in anticipation of its relation to the Helmholtz free

energy. The probability p(E), is sharply peaked at a most probable energy E∗, which

minimizes F (E). Using the result in sec.(III.F) for sums over exponentials,

Z =
∑

{µ}

e−βH(µ) =
∑

E
e−βF (E) ≈ e−βF (E∗) . (IV.60)
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The average energy computed from the distribution in eq.(IV.59) is

〈H〉 =
∑

µ

H(µ)
e−βH(µ)

Z
= − 1

Z

∂

∂β

∑

µ

e−βH = −∂ ln Z

∂β
. (IV.61)

In thermodynamics, a similar expression was encountered for the energy (eq.(I.37)),

E = F + TS = F − T
∂F

∂T

∣

∣

∣

∣

x

= −T 2 ∂

∂T

(

F

T

)

=
∂(βF )

∂β
. (IV.62)

Eqs.(IV.60) and (IV.61), both suggest identifying

F (T,x) = −kBT ln Z(T,x) . (IV.63)

However, note that eq.(IV.60) refers to the most likely energy, while the average energy

appears in eq.(IV.61). How close are these two values of the energy? We can get an idea

of the width of the probability distribution p(E), by computing the variance 〈H2〉c. This is

most easily accomplished by noting that Z(β) is proportional to the characteristic function

for H (with β replacing ik) and,

−∂Z

∂β
=
∑

µ

He−βH, and
∂2Z

∂β2
=
∑

µ

H2e−βH. (IV.64)

Cumulants of H are generated by lnZ(β),

〈H〉c =
1

Z

∑

µ

He−βH = − 1

Z

∂Z

∂β
= −∂ ln Z

∂β
, (IV.65)

and

〈H2〉c = 〈H2〉 − 〈H〉2 =
1

Z

∑

µ

H2e−βH − 1

Z2

(

∑

µ

He−βH
)2

=
∂2 ln Z

∂β2
= −∂〈H〉

∂β
.

(IV.66)

More generally, the nth cumulant of H is given by

〈Hn〉c = (−1)n ∂n ln Z

∂βn
. (IV.67)

85



From eq.(IV.66),

〈H2〉c = − ∂〈H〉
∂(1/kBT )

= kBT 2 ∂〈H〉
∂T

∣

∣

∣

∣

x

, ⇒ 〈H2〉c = kBT 2Cx, (IV.68)

where we have identified the heat capacity with the thermal derivative of the average

energy 〈H〉. Eq.(IV.68) shows that it is justified to treat the mean and most likely energies

interchangeably, since the width of the distribution p(E), only grows as
√

〈H2〉c ∝ N1/2.

The relative error,
√

〈H2〉c/〈H〉c vanishes in the thermodynamic limit as 1/
√

N . (In fact

eq.(IV.67) shows that all cumulants of H are proportional to N .) The PDF for energy in

a canonical ensemble can thus be approximated by

p(E) =
1

Z
e−βF (E) ≈ exp

(

− (E − 〈H〉)2
2kBT 2Cx

)

1√
2πkBT 2Cx

. (IV.69)

The above distribution is sufficiently sharp to make the internal energy in a canonical

ensemble unambiguous in the N → ∞ limit. Some care is necessary if the heat capacity

Cx is divergent, as is the case in some continuous phase transitions.

The canonical probabilities in eq.(IV.56) are unbiased estimates obtained (as in

sec.(III.G)) by constraining the average energy. The entropy of the canonical ensemble

can also be calculated directly from eq.(IV.56) (using eq.(III.68)) as

S = −kB 〈ln p(µ)〉 = −kB 〈(−βH + ln Z)〉 =
E − F

T
, (IV.70)

again using the identification of ln Z with the free energy from eq.(IV.63). For any finite

system, the canonical and microcanonical probabilities are distinct. However, in the so

called thermodynamic limit of N → ∞ limit, the canonical probabilities are so sharply

peaked around the average energy that they are essentially indistinct from microcanonical

probabilities at that energy. The following table compares the prescriptions used in the

two ensembles.

Ensemble Macro-state p(µ) Normalization

Microcanonical (E,x) δ∆

(

H(µ) − E
)

/Ω S(E,x) = kB ln Ω
Canonical (T,x) exp

(

− βH(µ)
)

/Z F (T,x) = −kBT ln Z

Table 3: Comparison of canonical and microcanonical ensembles.
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