
IV.G Examples

The two examples of sections (IV.C) and (IV.D) are now reexamined in the canonical

ensemble.

1. Two level systems: The N impurities are described by a macro-state M ≡ (T, N).

Subject to the Hamiltonian H = ε
∑N

i=1 ni, the canonical probabilities of the micro-states

µ ≡ {ni}, are given by

p ({ni}) =
1

Z
exp

[

−βε

N∑

i=1

ni

]

. (IV.71)

From the partition function,

Z(T, N) =
∑

{ni}

exp

[

−βε
N∑

i=1

ni

]

=

(
1∑

n1=0

e−βεn1

)

· · ·
(

1∑

nN=0

e−βεnN

)

=
(
1 + e−βε

)N
,

(IV.72)

we obtain the free energy

F (T, N) = −kBT ln Z = −NkBT ln
[

1 + e−ε/(kBT )
]

. (IV.73)

The entropy is now given by

S = − ∂F

∂T

∣
∣
∣
∣
N

= NkB ln
[

1 + e−ε/(kBT )
]

︸ ︷︷ ︸

−F/T

+NkBT

(
ε

kBT 2

)
e−ε/(kBT )

1 + e−ε/(kBT )
. (IV.74)

The internal energy,

E = F + TS =
Nε

1 + eε/(kBT )
, (IV.75)

can also be obtained from

E = −∂ ln Z

∂β
=

Nεe−βε

1 + e−βε
. (IV.76)

Since the joint probability in eq.(IV.71) is in the form of a product, the excitations of

different impurities are independent of each other, with the unconditional distribution

p(n) =
e−βεn

1 + e−βε
. (IV.77)

This result coincides with eqs.(IV.25), obtained through a more elaborate analysis in the

microcanonical ensemble. As expected, in the large N limit, the canonical and microcanon-

ical ensembles describe exactly the same physics, both at the macroscopic and microscopic

levels.
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2. The Ideal Gas: For the canonical macro-state M ≡ (T, V, N), the joint PDF for the

micro-states µ ≡ {~pi, ~qi}, is

p({~pi, ~qi}) =
1

Z
exp

[

−β

N∑

i=1

p2
i

2m

]

·
{

1 for {~qi} ∈ box

0 otherwise

. (IV.78)

Including the modifications to the phase space of identical particles in eq.(IV.51), the

dimensionless partition function is computed as

Z(T, V, N) =

∫
1

N !

N∏

i=1

d3~qid
3~pi

h3
exp

[

−β

N∑

i=1

p2
i

2m

]

=
V N

N !

(
2πmkBT

h2

)3N/2

=
1

N !

(
V

λ(T )3

)N

,

(IV.79)

where

λ(T ) =
h√

2πmkBT
, (IV.80)

is a characteristic length associated with the action h. It shall be demonstrated later on

that this length scale controls the onset of quantum mechanical effects in an ideal gas.

The free energy is given by

F = −kBT lnZ = −NkBT lnV + NkBT ln N − NkBT − 3N

2
kBT ln

(
2πmkBT

h2

)

= −NkBT

[

ln

(
V e

N

)

+
3

2
ln

(
2πmkBT

h2

)]

.

(IV.81)

Various thermodynamic properties of the ideal gas can now be obtained from dF = −SdT−
PdV + µdN . For example, from the entropy

−S =
∂F

∂T

∣
∣
∣
∣
V,N

= −NkB

[

ln
V e

N
+

3

2
ln

(
2πmkBT

h2

)]

− NkBT
3

2T
=

F − E

T
, (IV.82)

we obtain the internal energy E = 3NkBT/2. The equation of state is obtained from

P = − ∂F

∂V

∣
∣
∣
∣
T,N

=
NkBT

V
, =⇒ PV = NkBT, (IV.83)

and the chemical potential is given by

µ =
∂F

∂N

∣
∣
∣
∣
T,V

=
F

N
− kBT =

E − TS − PV

N
= kBT ln

(
nλ3

)
. (IV.84)

Also, according to eq.(IV.78), the momenta of the N particles are taken from independent

Maxwell–Boltzmann distributions, consistent with eq.(IV.39).
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IV.H The Gibbs Canonical Ensemble

We can also define a generalized canonical ensemble in which the internal energy

changes by the addition of both heat and work. The macrostates M ≡ (T,J), are specified

in terms of the external temperature and forces acting on the system; the thermodynamic

coordinates x appear as additional random variables. The system is maintained at constant

force through external elements (e.g. pistons or magnets). Including the work done against

the forces, the energy of the combined system that includes these elements is H − J · x.

Note that while the work done on the system is +J · x, the energy change associated with

the external elements with coordinates x has the opposite sign. The microstates of this

combined system occur with the (canonical) probabilities

p(µS,x) = exp [−βH(µS) + βJ · x] /Z(T, N,J) , (IV.85)

with the Gibbs partition function,

Z(N, T,J) =
∑

µS,x

eβJ·x−βH(µS) . (IV.86)

(Note that we have explicitly included the particle number N to indicate that there is no

chemical work. Chemical work is considered in the Grand Canonical Ensemble, which is

discussed next.)

In this ensemble, the expectation value of the coordinates is obtained from

〈x〉 = kBT
∂lnZ
∂J

, (IV.87)

which together with the thermodynamic identity x = −∂G/∂J, suggests the identification

G(N, T,J) = −kBT lnZ, (IV.88)

where G = E − TS − x · J is the Gibbs free energy. (The same conclusion can be reached

by equating Z in eq.(IV.86) to the term that maximizes the probability with respect to

x.) The enthalpy H ≡ E − x · J is easily obtained in this ensemble from

−∂lnZ
∂β

= 〈H − x · J〉 = H. (IV.89)

Note that heat capacities at constant force (which include work done against the external

forces), are obtained from the enthalpy as CJ = ∂H/∂T .

89



The following examples illustrate the use of the Gibbs canonical ensemble:

1. The Ideal Gas in the isobaric ensemble is described by the macrostate M ≡ (N, T, P ).

A micro-state µ ≡ {~pi, ~qi}, with a volume V occurs with the probability

p({~pi, ~qi}, V ) =
1

Z exp

[

−β

N∑

i=1

p2
i

2m
− βPV

]

·
{

1 for {~qi} ∈ box of volume V

0 otherwise

. (IV.90)

The normalization factor is now

Z(N, T, P ) =

∫ ∞

0

dV e−βPV

∫
1

N !

N∏

i=1

d3~qid
3~pi

h3
exp

[

−β

N∑

i=1

p2
i

2m

]

=

∫ ∞

0

dV V Ne−βPV 1

N !λ(T )3N
=

1

(βPλ(T )3)
N

.

(IV.91)

The Gibbs free energy is given by

G = −kBT lnZ = NkBT

[

ln P − 5

2
ln (kBT ) +

3

2
ln

(
h2

2πm

)]

. (IV.92)

Starting from dG = −SdT + V dP + µdN , the volume of the gas is obtained as

V =
∂G

∂P

∣
∣
∣
∣
T,N

=
NkBT

P
, =⇒ PV = NkBT. (IV.93)

The enthalpy H = 〈E + PV 〉 is easily calculated from

H = −∂lnZ
∂β

=
5

2
NkBT,

from which we get CP = dH/dT = 5/2NkB.

2. Spins in an external magnetic field ~B, provide a common example for usage of the

Gibbs canonical ensemble. Adding the work done against the magnetic field to the internal

Hamiltonian H, results in the Gibbs partition function

Z(N, T, B) = tr
[

exp
(

−βH + β ~B · ~M
)]

,

where ~M is the net magnetization. The symbol tr is used to indicate the sum over all

spin degrees of freedom, which in a quantum mechanical formulation are restricted to

discrete values. The simplest case is spin of 1/2, with two possible projections of the spin

along the magnetic field. A microstate of N spins is now described by the set of Ising

variables {σi = ±1}. The corresponding magnetization along the field direction is given
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by M = µ0

∑N
i=1 σi, where µ0 is a microscopic magnetic moment. Assuming that there

are no interactions between spins (H = 0), the probability of a microstate is

p ({σi}) =
1

Z exp

[

βBµ0

N∑

i=1

σi

]

. (IV.94)

Clearly, this is closely related to the example of two level systems discussed in the canonical

ensemble, and we can easily obtain the Gibbs partition function

Z(N, T, B) = [2 cosh(βµ0B)]
N

, (IV.95)

and the Gibbs free energy

G = −kBT lnZ = −NkBT ln [2 cosh(βµ0B)] . (IV.96)

The average magnetization is given by

M = −∂G

∂B
= Nµ0 tanh(βµ0B). (IV.97)

Expanding eq.(IV.97) for small B results in the well-known Curie law for magnetic sus-

ceptibility of non-interacting spins,

χ(T ) =
∂M

∂B

∣
∣
∣
∣
B=0

=
Nµ2

0

kBT
. (IV.98)

The enthalpy is simply H = 〈H − BM〉 = −BM , and CB = −B∂M/∂T .

IV.I The Grand Canonical Ensemble

The previous sections demonstrate that while the canonical and microcanonical en-

sembles are completely equivalent in the thermodynamic limit, it is frequently much easier

to perform statistical mechanical computations in the canonical framework. Sometimes

it is more convenient to allow chemical work (by fixing the chemical potential µ, rather

than at a fixed number of particles), but no mechanical work. The resulting macro-states

M ≡ (T, µ,x), are governed by the grand canonical ensemble. The corresponding micro-

states µS, contain an indefinite number of particles N(µS). As in the case of the canonical

ensemble, the system S, can be maintained at a constant chemical potential through contact
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with a reservoir R, at temperature T and chemical potential µ. The probability distribu-

tion for the micro-states of S is obtained by summing over all states of the reservoir, as in

eq.(IV.53), and is given by

p(µS) = exp [βµN(µS) − βH(µS)] /Q . (IV.99)

The normalization factor is the grand partition function,

Q(T, µ,x) =
∑

µS

eβµN(µS)−βH(µS) . (IV.100)

We can reorganize the above summation by grouping together all micro-states with a

given number of particles, i.e.

Q(T, µ,x) =
∞∑

N=0

eβµN
∑

(µS|N)

e−βHN (µS) . (IV.101)

The restricted sums in eq.(IV.101) are just the N -particle partition functions. As each term

in Q is the total weight of all micro-states of N particles, the unconditional probability of

finding N particles in the system is

p(N) =
eβµNZ(T, N,x)

Q(T, µ,x)
. (IV.102)

The average number of particles in the system is

〈N〉 =
1

Q
∂

∂(βµ)
Q =

∂

∂(βµ)
lnQ, (IV.103)

while the number fluctuations are related to the variance

〈N2〉C = 〈N2〉 − 〈N〉2 =
1

Q
∂2

∂(βµ)2
lnQ−

(
∂

∂(βµ)
lnQ

)2

=
∂2

∂(βµ)2
lnQ =

∂ 〈N〉
∂(βµ)

.

(IV.104)

The variance is thus proportional to N , and the relative number fluctuations vanish in the

thermodynamic limit, establishing the equivalence of this ensemble to the previous ones.

Because of the sharpness of the distribution for N , the sum in eq.(IV.101) can be

approximated by its largest term at N = N ∗ ≈< N >, i.e.

Q(T, µ,x) = lim
N→∞

∞∑

N=0

eβµNZ(T, N,x) = eβµN∗

Z(T, N∗,x) = eβµN∗−βF

= e−β(−µN∗+E−TS) = e−βG ,

(IV.105)
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where

G(T, µ,x) = E − TS − µN = −kBT lnQ, (IV.106)

is the grand potential. Thermodynamic information is obtained by using dG = −SdT −
Ndµ + J · dx, as

−S =
∂G
∂T

∣
∣
∣
∣
µ,x

, N = − ∂G
∂µ

∣
∣
∣
∣
T,x

, Ji =
∂G
∂xi

∣
∣
∣
∣
T,µ

. (IV.107)

As a final example, we compute the properties of the ideal gas of non-interacting

particles in the grand canonical ensemble. The macro-state is M ≡ (T, µ, V ), and the

corresponding micro-states {~p1, ~q1, ~p2, ~q2, · · ·} have indefinite particle number. The grand

partition function is given by

Q(T, µ, V ) =

∞∑

N=0

eβµN 1

N !

∫
(

N∏

i=1

d3~qid
3~pi

h3

)

exp

[

−β
∑

i

p2
i

2m

]

=
∞∑

N=0

eβµN

N !

(
V

λ3

)N

(with λ =
h√

2πmkBT
)

= exp

[

eβµ V

λ3

]

,

(IV.108)

and the grand potential is

G(T, µ, V ) = −kBT lnQ = −kBTeβµ V

λ3
. (IV.109)

But, since G = E − TS − µN = −PV , the gas pressure can be obtained directly as

P = −G
V

= − ∂G
∂V

∣
∣
∣
∣
µ,T

= kBT
eβµ

λ3
. (IV.110)

The particle number and the chemical potential are related by

N = − ∂G
∂µ

∣
∣
∣
∣
T,V

=
eβµV

λ3
. (IV.111)

The equation of state is obtained by comparing eqs.(IV.110) and (IV.111), as P =

kBTN/V . Finally, the chemical potential is given by

µ = kBT ln

(

λ3 N

V

)

= kBT ln

(
Pλ3

kBT

)

. (IV.112)
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