
V.C The Second Virial Coefficient & van der Waals Equation

Let us study the second virial coefficient B2, for a typical gas using eq.(V.33). As

discussed before, the two-body potential is characterized by a hard core repulsion at short

distances and a van der Waals attraction at large distances. To make the computations

easier, we shall use the following approximation for the potential,

V(r) =







+∞ for r < r0

−u0 (r0/r)
6

for r > r0

, (V.37)

which combines both features. The contributions of the two portions can then be calculated

separately as,

b̄2 =

∫ ∞

0

d3~r
(

e−βV(r) − 1
)

=

∫ r0

0

4πr2dr(−1) +

∫ ∞

r0

4πr2dr
[

e+βu0(r0/r)6 − 1
]

.

(V.38)

The second integrand can be approximated by βu0(r0/r)
6 in the high temperature limit,

βu0 � 1, and leads to

B2 = −
1

2

[

−
4πr30

3
+ 4πβu0r

6
0

(

−
r−3

3

)∣
∣
∣
∣

∞

r0

]

=
2πr30

3
(1 − βu0). (V.39)

We can define an excluded volume of Ω = 4πr3
0/3 which is 8 times the atomic volume (since

the distance of minimum approach r0, is twice an atomic radius), to get

B2(T ) =
Ω

2

(

1 −
u0

kBT

)

. (V.40)

• Remarks and observations:

(1) The tail of the van der Waals attractive potential (∝ r−6) extends to very long sep-

arations. Yet, its integral in eq.(V.39) is dominated by contributions from the short

scales r0. In this limited context, the van der Waals potential is short-ranged, and

results in corrections to the ideal gas behavior that are analytical in density n, leading

to the virial series.

(2) By contrast, potentials that fall off with separation as 1/r3 or slower, are long-ranged.

The integral appearing in calculation of the second virial coefficient is dominated by

long distances, and is divergent. As a result, corrections to the ideal gas behavior can
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not be written in the form of a virial series, and are in fact non-analytic. A good

example is provided by the Coulomb interactions discussed in problem set 8. The

non-analytic corrections can be obtained by summing all the ring diagrams in the

cumulant (or cluster) expansions.

(3) The second virial coefficient has dimensions of volume, and (for short-range potentials)

is proportional to the atomic volume Ω. In the high temperature limit, the importance

of corrections to ideal gas behavior can be estimated by comparing the first two terms

of eq.(V.14),

B2n
2

n
=

B2

n−1
∼

Atomic volume

volume per particle in gas
∼

gas density

liquid density
. (V.41)

This ratio is roughly 10−3 for air at room temperature and pressure. The corrections

to ideal gas behavior are thus small at low densities. On dimensional grounds, a similar

ratio is expected for the higher order terms, B`n
`/B`−1n

`−1, in the virial series. We

may thus suspect the convergence of the series at high enough densities (when the gas

liquifies).

(4) The virial expansion breaks down not only at high densities, but also at low temper-

atures. This is suggested by the divergences in eqs.(V.40) and (V.38) as T → 0, and

reflects the fact that in the presence of attractive interactions the particles can lower

their energy at low temperatures by condensing into a liquid state.

(5) The truncated virial expansion,

P

kBT
= n+

Ω

2

(

1 −
u0

kBT

)

n2 + · · · , (V.42)

can be rearranged as

1

kBT

(

P +
u0Ω

2
n2

)

= n

(

1 + n
Ω

2
+ · · ·

)

≈
n

1 − nΩ/2
=

N

V −NΩ/2
. (V.43)

This is precisely in the form of the van der Waals equation

[

P +
u0Ω

2

(
N

V

)2
] [

V −
NΩ

2

]

= NkBT, (V.44)

and we can identify the van der Waals parameters, a = u0Ω/2 and b = Ω/2.

• Physical interpretation of the van der Waals equation: Historically, van der Waals

suggested eq.(V.44) on the basis of experimental results for the equation of state of various
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gases, towards the end of the19th century. At that time the microscopic interactions

between gas particles were not known, and van der Waals postulated the necessity of an

attractive interaction between gas atoms based on the observed decreases in pressure. It

was only later on that such interactions were observed directly, and then attributed to the

induced dipole–dipole forces by London. The physical justification of the correction terms

is as follows.

(a) There is a correction to the gas volume V due to the hard core exclusions. At first sight,

it may appear surprising that the excluded volume b, in eq.(V.44) is one half of the volume

that is excluded around each particle. This is because this factor measures a joint excluded

volume involving all particles in phase space. In fact, the contribution of coordinates to

the partition function of the hard-core gas can be estimated at low densities, from

SN =

∫ ′ ∏

i d
3~qi

N !
=

1

N !
V
(
V − Ω

)(
V − 2Ω

)
· · ·
(
V − (N − 1)Ω

)
≈

1

N !

(

V −
NΩ

2

)N

.

(V.45)

The above result is obtained by adding particles one at a time, and noting that the available

volume for the mth particle is (V −mΩ). At low densities, the overall effect is a reduction

of the volume available to each particle by approximately Ω/2. Of course, the above result

is only approximate, since the effects of excluded volume involving more than two particles

are not correctly taken into account. The relatively simple form of eq.(V.45) is only exact

at for spatial dimensions d = 1 and infinity. As proved in problems set 9, the exact

excluded volume in d = 1 is in fact Ω.

(b) The decrease in pressure P , due to attractive interactions, is somewhat harder to

quantify. In sec.III.F, the gas pressure was related to the impacts of particles on a wall via

P = (nvx)(2mvx)
∣
∣
∣
vx<0

= nmv2
x, (V.46)

where the first term is the number of collisions per unit time and area, while the second is

the momentum imparted by each particle. For the ideal gas, the usual equation of state

is recovered by noting that the average kinetic energy is mv2
x/2 = kBT/2. Attractive

interactions lead to a reduction in pressure given by

δP = δn
(

mv2
x

)

+ nδ
(

mv2
x

)

. (V.47)

While different statistical ensembles give the same pressure, which is a bulk state function,

they may lead to different behaviors at the surface. We must thus be careful, and consistent,

in evaluation of eq.(V.47), which depends of surface properties.
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In a canonical ensemble, the gas density is reduced at the walls. This is because the

particles in the middle of the box experience an attractive potential V from all sides, while

at the edge only an attractive energy of V/2 is available from half of the space. The

resulting change in density is approximately

δn ≈ n
(

e−βV/2 − e−βV
)

≈ βnV/2. (V.48)

Integrating the interaction of one particle in the bulk with the rest gives

V =

∫

d3 ~r Vattr.(r)n = −nΩu0. (V.49)

The change in density thus gives the pressure correction of δP = −n2Ωu0/2 calculated

in eq.(V.44). There is no correction to the kinetic energy of the particles impinging on

the wall, since in the canonical formulation the probabilites for momentum and location

of the particles are independent variables. The probability distribution for momentum is

uniform in space, giving the average kinetic energy of kBT/2 for each direction of motion.

A different explanation is presented in a kinetic formulation in which particles follow

the deterministic Hamiltonian equations of motion. In this formulation, the impinging

particles lose kinetic energy in approaching the wall from the surface, since they have to

climb out of the potential well set up by the attractions of bulk particles. The reduction

in kinetic energy is given by

δ
mv2

x

2
=

1

2

∫

d3 ~r Vattr.(r)n = −
1

2
nΩu0. (V.50)

The reduced velocities lead to an increase in the surface density in this case, as the slower

particles spend a longer time τ in the vicinity of the wall! The relative change in density

is given by

δn

n
=
δτ

τ
= −

δvx

vx
= −

1

2

δv2
x

v2
x

, =⇒ δn = −βnV/2. (V.51)

The increase in density is precisely the opposite of the result of eq.(V.48) in the canonical

formulation. However, with the decrease in kinetic energy calculated in eq.(V.50), it again

leads to the correct reduction in pressure.
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V.D Breakdown of the van der Waals equation

As discussed in sec.I.I, mechanical stability of a gas requires the positivity of the

isothermal compressibility, κT = −V −1 ∂V/∂P |T . This condition can be obtained by

examining density fluctuations in a grand canonical ensemble. The probability of finding

N particles in a volume V is given by eq.(IV.102) as

p(N, V ) =
eβµNZ(T,N, V )

Q
. (V.52)

Since for a gas lnQ = −βG = PV/kBT , eqs.(IV.103) and (IV.104) simplify to







〈N〉c = N =
∂(lnQ)

∂(βµ)
= V

∂P

∂µ

∣
∣
∣
∣
T,V

,

〈N2〉c =
∂2(lnQ)

∂(βµ)2
=
∂〈N〉c
∂(βµ)

= kBT
∂N

∂µ

∣
∣
∣
∣
T,V

.

(V.53)

Dividing the two equations, and using the chain rule, results in

〈N2〉c
N

=
kBT

V

∂N

∂P

∣
∣
∣
∣
T,V

= −
kBT

V

∂N

∂V

∣
∣
∣
∣
P,T

∂V

∂P

∣
∣
∣
∣
N,T

= nkBTκT . (V.54)

The positivity of κT is thus tied to that of the variance of N . A stable value of N

corresponds to a maximum of the probability p(N, V ), i.e. a positive compressibility. A

negative κT actually corresponds to a minimum in p(N, V ) implying that the system is least

likely to be found at such densities. Fluctuations in density will then occur spontaneously

and change the density to a stable value.

Any approximate equation of state, such as the van der Waals equation, must at

least satisfy the stability requirements. However, the van der Waals isotherms contain a

portion with − ∂P/∂V |T < 0, for temperatures less than a critical value Tc. The negative

compressibility implies an instability towards forming domains of lower and higher density,

i.e. phase separation. The attractive interactions in real gases do indeed result in a liquid–

gas phase separation at low temperatures. The isotherms then include a flat portion,

∂P/∂V |T = 0, at the coexistence of the two phases. Can the (unstable) van der Waals

isotherms be used to construct the phase diagram of a real gas?

One way of doing so is by the following Maxwell construction: The variations of the

chemical potential µ(T, P ), along an isotherm are obtained by integrating eq.(V.53), as

dµ =
V

N
dP, =⇒ µ(T, P ) = µ(T, PA) +

∫ P

PA

dP ′V (T, P ′)

N
. (V.55)
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Since the van der Waals isotherms for T < Tc are non-monotonic, there is a range of

pressures that correspond to three different values, {µα}, of the chemical potential. The

possibility of several values of µ at a given temperature and pressure indicates phase

coexistence. In equilibrium, the number of particles in each phase Nα, adjusts so as

to minimize the Gibbs free energy G =
∑

α µαNα. Clearly, the phase with lowest µα

will acquire all the particles. A phase transition occurs when two branches of allowed

chemical potentials intersect. From eq.(V.55), the critical pressure Pc, for this intersection

is obtained from the condition

∮ Pc

Pc

dP ′V (T, P ′) = 0. (V.56)

A geometrical interpretation of the above result is that Pc corresponds to a pressure that

encloses equal areas of the non-monotonic isotherm on each side. The Maxwell construction

approach to phase condensation is somewhat unsatisfactory, as it relies on integrating a

clearly unphysical portion the van der Waals isotherm. A better approach that makes the

approximations involved more apparent is presented in the next section.

V.E Mean Field Theory of Condensation

In principle, all properties of the interacting system, including phase separation,

are contained within the thermodynamic potentials that can be obtained by evaluating

Z(T,N) or Q(T, µ). Phase transitions, however, are characterized by discontinuities in

various state functions and must correspond to the appearance of singularities in the par-

tition functions. At first glance, it is somewhat surprising that any singular behavior

should emerge from computing such well behaved integrals (for short-ranged interactions)

as

Z(T,N, V ) =

∫ ∏N
i=1 d

3~pid
3~qi

N !h3N
exp



−β
N∑

i=1

p2
i

2m
− β

∑

i<j

V(~qi − ~qj)



 . (V.57)

Instead of evaluating the integrals perturbatively, we shall now set up a reasonable ap-

proximation scheme. The contributions of the hard core and attractive portions of the

potential are again treated separately, and the partition function approximated by

Z(T,N, V ) ≈
1

N !

1

λ3N
V
(
V − Ω

)
· · ·
(
V − (N − 1)Ω

)

︸ ︷︷ ︸

Excluded volume effects

exp(−βŪ ). (V.58)
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Here Ū represents an average attraction energy, obtained by assuming a uniform density

n = N/V , as

Ū =
1

2

∑

i,j

Vattr.(~qi − ~qj) =
1

2

∫

d3~r1d
3~r2n(~r1)n(~r2)Vattr.(~r1 − ~r2)

≈
n2

2
V

∫

d3~r Vattr.(~r ) ≡ −
N2

2V
u.

(V.59)

The parameter u describes the net effect of the attractive interactions. Substituting into

eq.(V.58) leads to the following approximation for the partition function

Z(T,N, V ) ≈
(V −NΩ/2)N

N !λ3N
exp

[
βuN2

2V

]

. (V.60)

From the resulting free energy,

F = −kBT lnZ = −NkBT ln(V −NΩ/2) +NkBT ln(N/e) + 3NkBT lnλ−
uN2

2V
, (V.61)

we obtain the expression for the pressure in the canonical ensemble as

Pcan = −
∂F

∂V

∣
∣
∣
∣
T,N

=
NkBT

V −NΩ/2
−
uN2

2V 2
. (V.62)

Remarkably, the uniform density approximation reproduces the van der Waals equa-

tion of state. However, the self-consistency of this approximation can now be checked.

As long as κT is positive, eq.(V.54) implies that the variance of density vanishes for large

volumes as
〈
n2
〉

c
= kBTn

2κT /V . But κT diverges at Tc, and at lower temperatures its

negativity implies an instability towards density fluctuations as discussed in the previous

section. When condensation occurs, there is phase separation into high (liquid) and low

(gas) density states, and the uniform density assumption becomes manifestly incorrect.

This difficulty is circumvented in the grand canonical ensemble. Once the chemical poten-

tial is fixed, the number of particles (and hence density) in this ensemble is automatically

adjusted to that of the appropriate phase.

As the assumption of a uniform density is correct for both the liquid and gas phases,

we can use the approximations of eqs.(V.59) and (V.60) to estimate the grand partition

function

Q(T, µ, V ) =

∞∑

N=0

eβµNZ(T,N, V ) ≈

∞∑

N=0

exp

[

N ln

(
V

N
−

Ω

2

)

+
βuN2

2V
+ ∆N

]

, (V.63)
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where ∆ = 1 + βµ − ln(λ3). As in any sum over exponentials in N , the above expression

is dominated by a particular value of particle number (hence density), and given by

Q(T, µ, V ) ≈ exp

{

max

[

N∆ +N ln

(
V

N
−

Ω

2

)

+
βuN2

2V

]

N

}

. (V.64)

Hence, the grand canonical expression for the gas pressure is obtained from

βPg.c =
lnQ

V
= max[Ψ(n)]n, (V.65)

where

Ψ(n) = n∆ + n ln

(

n−1 −
Ω

2

)

+
βu

2
n2. (V.66)

The possible values of density are obtained from dΨ/dn|nα
= 0, and satisfy

∆ = − ln

(

n−1
α −

Ω

2

)

+
1

1 − nαΩ/2
− βunα. (V.67)

The above equation in fact admits multiple solutions nα for the density. Substituting the

resulting ∆ into eq.(V.65) leads after some manipulation to

Pg.c. = max

[
nαkBT

1 − nαΩ/2
−
u

2
n2

α

]

α

= max[Pcan(nα)]α, (V.68)

i.e. the grand canonical and canonical values of pressure are identical at a particular

density. However, if eq.(V.67) admits multiple solutions for the density at a particular

chemical potential, the correct density is uniquely determined as the one that maximizes

the canonical expression for pressure (or for ψ(n)).

The mechanism for the liquid–gas phase transition is therefore the following. The

sum in eq.(V.63) is dominated by two large terms at the liquid and gas densities. At

a particular chemical potential, the stable phase is determined by the larger of the two

terms. The phase transition occurs when the dominant term changes upon varying the

temperature. In mathematical form

lnQ = lim
V →∞

ln
[
eβV Pliquid + eβV Pgas

]
=







βV Pgas for T > T ∗

βV Pliquid for T < T ∗
. (V.69)

The origin of the singularity in density can thus be traced to the thermodynamic limit of

V → ∞. There are no phase transitions in finite systems!
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