
VII.B Canonical Formulation

Using the states constructed in the previous section, we can calculate the canonical

density matrix for non-interacting identical particles. In the coordinate representation we

have

〈{~x ′}|ρ|{~x}〉η =

′
∑

{~k}

∑

P,P ′

ηP ηP ′〈{~x ′}|P ′{~k}〉ρ({~k})〈P{~k}|{~x}〉 1

Nη
, (VII.11)

where ρ({~k}) = exp
[

−β
(

∑N
α=1 h̄

2k2
α/2m

)]

/ZN . The sum,
∑′

{~k1,~k2,···,~kN}, is restricted to

ensure that each identical particle state appears once and only once. In both the bosonic

and fermionic subspaces, the set of occupation numbers {n~k} uniquely identify a state.

We can, however, remove this restriction from eq.(VII.11), if we divide by the resulting

over-counting factor (for bosons) of N !/(
∏

~k n~k!), i.e.,

′
∑

{~k}

=
∑

{~k}

∏

~k n~k!

N !
.

(Note that for fermions, the (−1)P factors cancel out the contributions from cases where

any n~k is larger than one.) Therefore,

〈{~x ′}|ρ|{~x}〉 =
∑

{~k}

∏

~k n~k!

N !
· 1

N !
∏

~k n~k!
·

∑

P,P ′

ηP ηP ′

ZN
exp

(

−β
N
∑

α=1

h̄2k2
α

2m

)

〈{~x ′}|P ′{~k}〉〈P{~k}|{~x}〉.
(VII.12)

In the limit of large volume, the sums over {~k} can be replaced by integrals, and using the

plane wave representation of wavefunctions, we have

〈{~x ′}|ρ|{~x}〉 =
1

ZN (N !)2

∑

P,P ′

ηP ηP ′

∫ N
∏

α=1

V d3~kα

(2π)3
exp

(

−βh̄
2k2

α

2m

)

×







exp
[

−i
∑N

α=1(
~kPα · ~xα − ~kP ′α · ~x ′

α)
]

V N







.

(VII.13)

We can order the sum in the exponent by focusing on a particular ~k-vector. Since
∑

α f(Pα)g(α) =
∑

β f(β)g(P−1β), where β = Pα and α = P−1β, we obtain

〈{~x ′}|ρ|{~x}〉 =
1

ZN (N !)2

∑

P,P ′

ηP ηP ′

N
∏

α=1

[

∫

d3~kα

(2π)3
e
−i~kα·

(

~x
P−1α

−~x ′

P ′
−1

α

)

−βh̄2k2

α
/2m

]

.

(VII.14)

144



The gaussian integrals in the square brackets are equal to

1

λ3
exp

[

− π

λ2

(

~xP−1α − ~x ′
P ′

−1
α

)2
]

.

Setting β = P−1α in eq.(VII.14) gives

〈{~x ′}|ρ|{~x}〉 =
1

ZNλ3N (N !)2

∑

P,P ′

ηP ηP ′

exp



− π

λ2

N
∑

β=1

(

~xβ − ~x ′
P ′

−1
Pβ

)2



 . (VII.15)

Finally, we set Q = P ′−1P , and use the results ηP = ηP−1

, and ηQ = ηP ′−1P = ηP ′

ηP , to

get (after performing
∑

P = N !)

〈{~x ′}|ρ|{~x}〉 =
1

ZNλ3NN !

∑

Q

ηQ exp



− π

λ2

N
∑

β=1

(

~xβ − ~x ′
Qβ

)2



 . (VII.16)

The canonical partition function, ZN , is obtained from the normalization condition

tr(ρ) = 1, =⇒
∫ N
∏

α=1

d3~xα 〈{~x}|ρ|{~x}〉 = 1,

as

ZN =
1

N !λ3N

∫ N
∏

α=1

d3~xα

∑

Q

ηQ exp



− π

λ2

N
∑

β=1

(~xβ − ~xQβ)
2



 . (VII.17)

The quantum partition function thus involves a sum over N ! possible permutations. The

classical result ZN =
(

V/λ3
)N

/N !, is obtained from the term corresponding to no particle

exchange, Q ≡ 1. The division by N ! finally justifies the factor that was (somewhat

artificially) introduces in classical statistical mechanics to deal with the phase space of

identical particles. However, this classical result is only valid at very high temperature

and is modified by the quantum corrections coming from the remaining permutations.

As any permutation involves a product of factors exp[−π(~x1 − ~x2)
2/λ2], its contributions

vanishes as λ→ 0 for T → ∞.

The lowest order correction comes from the simplest permutation which is the ex-

change of two particles. The exchange of particles 1 and 2 is accompanied by a factor of

η exp[−2π(~x1−~x2)
2/λ2]. As each of the possible N(N −1)/2 pairwise exchanges gives the

same contribution to ZN , we get

ZN =
1

N !λ3N

∫ N
∏

α=1

d3~xα

{

1 +
N(N − 1)

2
η exp

[

−2π

λ2
(~x1 − ~x2)

2

]

+ · · ·
}

. (VII.18)
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For any α ≥ 2,
∫

d3~xα = V ; in the remaining two integrations we can use the relative,

~r12 = ~x2 − ~x1, and center of mass coordinates to get

ZN =
1

N !λ3N
V N

[

1 +
N(N − 1)

2V
η

∫

d3~r12 e
−2π~r 2

12
/λ2

+ · · ·
]

=
1

N !

(

V

λ3

)N


1 +
N(N − 1)

2V
·
(
√

2πλ2

4π

)3

η + · · ·



 .

(VII.19)

From the corresponding free energy,

F = −kBT lnZN = −NkBT ln

[

e

λ3
· V
N

]

− kBTN
2

2V
· λ3

23/2
η + · · · , (VII.20)

the gas pressure is computed as

P = − ∂F

∂V

∣

∣

∣

∣

T

=
NkBT

V
− N2kBT

V 2
· λ3

25/2
η + · · · = nkBT

[

1 − ηλ3

25/2
n+ · · ·

]

. (VII.21)

Note that the first quantum correction is equivalent to a second virial coefficient of

B2 = − ηλ3

25/2
. (VII.22)

The resulting correction to pressure is negative for bosons, and positive for fermions. In the

classical formulation, a second virial coefficient was obtained from a two-body interaction.

The classical potential V(~r ) that leads to the second virial coefficient in eq.(VII.22) is

obtained from

f(~r ) = e−βV(~r ) − 1 = ηe−2π~r 2/λ2

, =⇒

V(~r ) = −kBT ln
[

1 + ηe−2π~r 2/λ2
]

≈ −kBTη e
−2π~r 2/λ2

.
(VII.23)

(The final approximation corresponds to high temperatures, where only the first correc-

tion is important). Thus the effects of quantum statistics at high temperatures are ap-

proximately equivalent to introducing an interaction between particles. The interaction is

attractive for bosons, repulsive for fermions, and operates over distances of the order of

the thermal wavelength λ.
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VII.C Grand Canonical Formulation

Calculating the partition function by performing all the sums in eq.(VII.17) is a

formidable task. Alternatively, we can compute ZN in the energy basis as

ZN = tr
(

e−βH) =

′
∑

{~kα}

exp

[

−β
N
∑

α=1

E(~kα)

]

=

′
∑

{n~k
}

exp



−β
∑

~k

E(~k)n(~k)



 . (VII.24)

These sums are still difficult to perform due to the restrictions of symmetry on the allowed

values of ~k or {n~k}: The occupation numbers {n~k} are restricted to
∑

~k n~k = N , and

n~k = 0, 1, 2, · · · for bosons, while n~k = 0 or 1 for fermions. As usual, the first constraint

can be removed by looking at the grand partition function,

Qη(T, µ) =

∞
∑

N=0

eβµN
′
∑

{n~k
}

exp



−β
∑

~k

E(~k)n~k





=

η
∑

{n~k
}

∏

~k

exp
[

−β
(

E(~k) − µ
)

n~k

]

.

(VII.25)

The sums over {n~k} can now be performed independently for each ~k, subject to the re-

strictions on occupation numbers imposed by particle symmetry.

• For fermions, n~k = 0 or 1, and

Q− =
∏

~k

[

1 + exp
(

βµ− βE(~k)
)

]

. (VII.26)

• For bosons, n~k = 0, 1, 2, · · ·, and summing the geometric series gives

Q+ =
∏

~k

[

1 − exp
(

βµ− βE(~k)
)

]−1

. (VII.27)

The results for both cases can be presented simultaneously as

lnQη = −η
∑

~k

ln
[

1 − η exp
(

βµ− βE(~k)
)

]

, (VII.28)

with η = −1 for fermions, and η = +1 for bosons.

In the grand canonical formulation, different one-particle states are occupied indepen-

dently, with a joint probability

pη

({

n(~k)
})

=
1

Qη

∏

~k

exp
[

−β
(

E(~k) − µ
)

n~k

]

. (VII.29)
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The average occupation number of a state of energy E(~k) is given by

〈n~k〉η = − ∂ lnQη

∂
(

βE(~k)
)

=
1

z−1eβE(~k) − η
, (VII.30)

where z = exp(βµ). The average values of the particle number and internal energy are

then given by






















Nη =
∑

~k

〈n~k〉η =
∑

~k

1

z−1eβE(~k) − η

Eη =
∑

~k

E(~k)〈n~k〉η =
∑

~k

E(~k)

z−1eβE(~k) − η

. (VII.31)
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