
VII.D Non-relativistic Gas

Quantum particles are further characterized by a spin s. In the absence of a magnetic

field different spin states have the same energy, and a spin degeneracy factor, g = 2s+ 1,

multiplies eqs.(VII.28)–(VII.31). In particular, for a non-relativistic gas in three dimen-

sions (E(~k) = h̄2k2/2m, and
∑

~k → V
∫

d3~k/(2π)3) these equations reduce to















































βPη =
lnQη

V
= ηg

∫

d3~k

(2π)3
ln

[

1 − ηz exp

(

−βh̄
2k2

2m

)]

,

nη ≡Nη

V
= g

∫

d3~k

(2π)3
1

z−1 exp
(

βh̄2k2

2m

)

− η
,

εη ≡Eη

V
= g

∫

d3~k

(2π)3
h̄2k2

2m

1

z−1 exp
(

βh̄2k2

2m

)

− η
.

(VII.32)

To simplify these equations, we change variables to x = βh̄2k2/(2m), so that

k =

√
2mkBT

h̄
x1/2 =

2π1/2

λ
x1/2, =⇒ dk =

π1/2

λ
x−1/2dx.

Substituting into eqs.(VII.32) gives






















































βPη = − η
g

2π2

4π3/2

λ3

∫ ∞

0

dx x1/2 ln
(

1 − ηze−x
)

=
g

λ3

4

3
√
π

∫ ∞

0

dx x3/2

z−1ex − η
, (integration by parts)

nη =
g

λ3

2√
π

∫ ∞

0

dx x1/2

z−1ex − η
,

βεη =
g

λ3

2√
π

∫ ∞

0

dx x3/2

z−1ex − η
.

(VII.33)

We now define two sets of functions by

fη
m(z) =

1

(m− 1)!

∫ ∞

0

dx xm−1

z−1ex − η
. (VII.34)

For non-integer arguments, the function m! ≡ Γ(m + 1) is defined by the integral
∫∞

0
dx xme−x. In particular, from this definition it follows that (1/2)! =

√
π/2, and

(3/2)! = (3/2)
√
π/2. Eqs.(VII.33) now take the simple form























βPη =
g

λ3
fη
5/2(z),

nη =
g

λ3
fη
3/2(z),

εη =
3

2
Pη .

(VII.35)
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These results completely describe the thermodynamics of ideal quantum gases as a function

of z. To find the equation of state Pη(nη, T ), we need to solve for z in terms of density.

This requires knowledge of the behavior of the functions f η
m(z).

The high temperature, low density (non-degenerate) limit will be examined first. In

this limit, z is small, and

fη
m(z) =

1

(m− 1)!

∫ ∞

0

dx xm−1

z−1ex − η
=

1

(m− 1)!

∫ ∞

0

dx xm−1
(

ze−x
) (

1 − ηze−x
)−1

=
1

(m− 1)!

∫ ∞

0

dx xm−1
∞
∑

α=1

(

ze−x
)α

ηα+1

=
∞
∑

α=1

ηα+1zα 1

(m− 1)!

∫ ∞

0

dx xm−1e−αx

=

∞
∑

α=1

ηα+1 z
α

αm
= z + η

z2

2m
+
z3

3m
+ η

z4

4m
+ · · · .

(VII.36)

We thus find (self-consistently) that f η
m(z), and hence nη(z) and Pη(z), are indeed small

as z → 0. Eqs.(VII.35) in this limit give,















nηλ
3

g
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3/2(z) = z + η
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33/2
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+ · · · ,

βPηλ
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z3

35/2
+ η

z4

45/2
+ · · · .

(VII.37)

The first of the above equations can be solved perturbatively, by the recursive procedure

of substituting the solution up to a lower order, as

z =
nηλ

3

g
− η

z2

23/2
− z3

33/2
− · · ·

=

(

nηλ
3

g
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3
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− · · ·
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3
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)3

− · · · .

(VII.38)

Substituting this solution into the second leads to

βPηλ
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g
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nηλ
3
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+ · · · .
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The pressure of the quantum gas can thus be obtained from the virial expansion,

Pη = nηkBT

[

1 − η

25/2

(

nηλ
3

g

)

+

(

1

8
− 2

35/2

)(

nηλ
3

g

)2

+ · · ·
]

. (VII.39)

The second virial coefficient B2 = −ηλ3/(25/2g), agrees with eq.(VII.22) computed in

the canonical ensemble for g = 1. The natural (dimensionless) expansion parameter is

nηλ
3/g, and quantum mechanical effects become important when nηλ

3 ≥ g; the quantum

degenerate limit. The behavior of fermi and bose gases is very different in this degenerate

limit of low temperatures and high densities, and the two cases will be discussed separately

in the following sections.

VII.E The Degenerate Fermi Gas

At zero temperature, the fermi occupation number,

〈n~k〉− =
1

eβ
(

E(k)−µ
)

+ 1
, (VII.40)

is one for E(~k) < µ, and zero otherwise. The limiting value of µ at zero temperature is

called the fermi energy, EF , and all one-particle states of energy less than EF are occupied,

forming a fermi sea. For the ideal gas with E(~k) = h̄2k2/(2m), there is a corresponding

fermi wavenumber kF , calculated from

N =
∑

|~k|≤kF

(2s+ 1) = gV

∫ k<kF d3~k

(2π)3
= g

V

6π2
k3

F . (VII.41)

In terms of the density n = N/V ,

kF =

(

6π2n

g

)1/3

, =⇒ EF (n) =
h̄2k2

F

2m
=

h̄2

2m

(

6π2n

g

)2/3

. (VII.42)

Note that while in a classical treatment the ideal gas has a large density of states at

T = 0 (from ΩClassical = V N/N !), the quantum fermi gas has a unique ground state with

Ω = 1. Once the one-particle momenta are specified (all ~k for |~k| < kF ), there is only one

anti-symmetrized state, as constructed in eq.(VII.7).

To see how the fermi sea is modified at small temperatures, we need the behavior of

f−
m(z) for large z which, after integration by parts, is

f−
m(z) =

1

m!

∫ ∞

0

dx xm d

dx

( −1

z−1ex + 1

)

.
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Since the fermi occupation number changes abruptly from one to zero, its derivative in the

above equation is sharply peaked. We can expand around this peak by setting x = ln z+ t,

and extending the range of integration to −∞ < t < +∞, as

f−
m(z) ≈ 1

m!

∫ ∞

−∞

dt (ln z + t)
m d

dt

( −1

et + 1

)

=
1

m!

∫ ∞

−∞

dt

∞
∑
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(m

α

)

tα (ln z)
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et + 1

)

=
(ln z)

m
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∞
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α!(m− α)!
(ln z)

−α
∫ ∞

−∞

dt tα
d
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( −1

et + 1

)

.

(VII.43)

Using the (anti-) symmetry of the integrand under t → −t, and un-doing the integration

by parts yields,

1

α!

∫ ∞

−∞

dt tα
d

dt

( −1

et + 1

)

=











0 for α odd,

2

(α− 1)!

∫ ∞

0

dt
tα−1

et + 1
= 2f−

α (1) for α even.

Inserting the above into eq.(VII.43), and using tabulated values for the integrals f−
α (1),

leads to the Sommerfeld expansion,

lim
z→∞

f−
m(z) =

(ln z)
m

m!

even
∑

α=0

2f−
α (1)

m!

(m− α)!
(ln z)−α

=
(ln z)m

m!

[

1 +
π2

6

m(m− 1)

(ln z)2
+

7π4

360

m(m− 1)(m− 2)(m− 3)

(ln z)4
+ · · ·

]

.

(VII.44)

In the degenerate limit, the density and chemical potential are related by

nλ3

g
= f−

3/2(z) =
(ln z)3/2

(3/2)!

[

1 +
π2

6

3

2

1

2
(ln z)−2 + · · ·

]

� 1. (VII.45)

The lowest order result reproduces the expression in eq.(VII.41) for the fermi energy,

lim
T→0

ln z =

[

3

4
√
π

nλ3

g

]2/3

=
βh̄2

2m

(

6π2n

g

)2/3

= βEF .

Inserting the zero temperature limit into eq.(VII.45) gives the first order correction,

ln z = βEF

[

1 +
π2

8

(

kBT

EF

)2

+ · · ·
]−2/3

= βEF

[

1 − π2

12

(

kBT

EF

)2

+ · · ·
]

. (VII.46)
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The appropriate dimensionless expansion parameter is (kBT/EF ). Note that the fermion

chemical potential µ = kBT ln z, is positive at low temperatures, and negative at high

temperatures (from eq.(VII.38)). It changes sign at a temperature proportional to EF /kB.

The low temperature expansion for the pressure is

βP =
g

λ3
f−
5/2(z) =

g

λ3

(ln z)5/2

(5/2)!

[

1 +
π2

6

5

2

3

2
(ln z)−2 + · · ·

]

=
g

λ3

8(βEF )5/2

15
√
π

[

1 − 5

2

π2

12

(

kBT

EF

)2

+ · · ·
][

1 +
5π2

8

(

kBT

EF

)2

+ · · ·
]

= PF

[

1 +
5

12
π2

(

kBT

EF

)2

+ · · ·
]

,

(VII.47)

where PF = (2/5)nEF if the fermi pressure. Unlike its classical counterpart, the fermi gas

at zero temperature has finite pressure and internal energy.

The low temperature expansion for the internal energy is obtained easily from

eq.(VII.47) using

E

V
=

3

2
P =

3

5
nkBTF

[

1 +
5

12
π2

(

T

TF

)2

+ · · ·
]

, (VII.48)

where we have introduced the fermi temperature TF = EF /kB. Eq.(VII.48) leads to a low

temperature heat capacity,

CV =
dE

dT
=
π2

2
NkB

(

T

TF

)

+ O
(

T

TF

)2

. (VII.49)

The linear vanishing of the heat capacity as T → 0 is a general feature of a fermi gas, valid

in all dimensions. It has the following simple physical interpretation: The probability

of occupying single-particle states, eq.(VII.40), is very close to a step function at small

temperatures. Only particles within a distance of approximately kBT of the fermi energy

can be thermally excited. This represents only a small fraction T/TF , of the total number

of electrons. Each excited particle gains an energy of the order of kBT , leading to a

change in the internal energy of approximately kBTN(T/TF ). Hence the heat capacity

is given by CV = dE/dT ∼ NkBT/TF . This conclusion is also valid for an interacting

fermi gas. The fact that only a small number, N(T/TF ), of fermions are excited at small

temperatures accounts for many interesting properties of fermi gases. For example, the

magnetic susceptibility of a classical gas ofN non-interacting particles of magnetic moment

µB follows the Curie law, χ ∝ Nµ2
B/(kBT ). Since quantum mechanically, only a fraction

of spins contributes at low temperatures, the low temperature susceptibility saturates to

a (Pauli) value of χ ∝ Nµ2
B/(kBTF ) (see the problems for the details of this calculation.)
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