
III.C The Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy

The full phase space density contains much more information than necessary for de-

scription of equilibrium properties. For example, knowledge of the one particle distribution

is sufficient for computing the pressure of a gas. A one particle density refers to the ex-

pectation value of finding any of the N particles at location ~q, with momentum ~p, at time

t, which is computed from the full density ρ as

f1(~p, ~q, t) =

〈

N
∑

i=1

δ3(~p − ~pi)δ
3(~q − ~qi)

〉

=N

∫ N
∏

i=2

d3~pid
3~qiρ(~p1 = ~p, ~q1 = ~q, ~p2, ~q2, · · · , ~pN , ~qN , t).

(III.15)

To obtain the second identity above, we used the delta functions to perform one set of inte-

grals, and assumed that the density is symmetric with respect to permuting the particles.

Similarly, a two body density can be computed from

f2(~p1, ~q1, ~p2, ~q2, t) = N(N − 1)

∫ N
∏

i=3

dVi ρ(~p1, ~q1, ~p2, ~q2, · · · , ~pN , ~qN , t), (III.16)

where dVi = d3~pid
3~qi is the contribution of particle i to phase space volume. The general

s-particle density is defined by

fs(~p1, · · · , ~qs, t) =
N !

(N − s)!

∫ N
∏

i=s+1

dVi ρ(p,q, t) =
N !

(N − s)!
ρs(~p1, · · · , ~qs, t), (III.17)

where ρs is a standard unconditional PDF for the coordinates of s particles, and ρN ≡ ρ.

While ρs is properly normalized to unity when integrated over all its variable, the s-particle

density has a normalization of N !/(N−s)!. We shall use the two quantities interchangably.

The evolution of the few-body densities is governed by the BBGKY hierarchy of

equations attributed to Bogoliubov, Born, Green, Kirkwood, and Yvon. The simplest

non-trivial Hamiltonian that can be studied in kinetic theory is

H(p,q) =

N
∑

i=1

[

~pi
2

2m
+ U(~qi)

]

+
1

2

N
∑

(i,j)=1

V(~qi − ~qj). (III.18)

This Hamiltonian provides an adequate description of a weakly interacting gas. In addition

to the classical kinetic energy of particles of mass m, it contains an external potential
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U , and a two-body interaction V, between the particles. In principle, three and higher

body interactions should also be included for a realistic description, but they are not very

important in the dilute gas (nearly ideal) limit.

For evaluating the time evolution of fs, it is convenient to divide the Hamiltonian into

H = Hs + HN−s + H′, (III.19)

where Hs and HN−s include only interactions among each group of particles,

Hs =
s
∑

n=1

[

~pn
2

2m
+ U(~qn)

]

+
1

2

s
∑

(n,m)=1

V(~qn − ~qm),

HN−s =
N
∑

i=s+1

[

~pi
2

2m
+ U(~qi)

]

+
1

2

N
∑

(i,j)=s+1

V(~qi − ~qj),

(III.20)

while the interparticle interactions are contained in

H′ =

s
∑

n=1

N
∑

i=s+1

V(~qn − ~qi). (III.21)

From eq.(III.17), the time evolution of fs (or ρs) is obtained as

∂ρs

∂t
=

∫ N
∏

i=s+1

dVi

∂ρ

∂t
=

∫ N
∏

i=s+1

dVi {ρ,Hs + HN−s + H′}, (III.22)

where eq.(III.9) is used for the evolution of ρ. The three Poisson brackets in eq.(III.22)

will now be evaluated in turn. Since the first s coordinates are not integrated, the order

of integrations and differentiations for the Poisson bracket may be reversed, and

∫ N
∏

i=s+1

dVi {ρ,Hs} = {

(

∫ N
∏

i=s+1

dVi ρ

)

,Hs} = {ρs,Hs}. (III.23)

Writing the Poisson brackets explicitly, the second term of eq.(III.22) takes the form

∫ N
∏

i=s+1

dVi {ρ,HN−s} =

∫ N
∏

i=s+1

dVi

N
∑

j=1

[

∂ρ

∂~pj

·
∂HN−s

∂~qj

−
∂ρ

∂~qj

·
∂HN−s

∂~pj

]

(using eq.(III.20))

=

∫ N
∏

i=s+1

dVi

N
∑

j=s+1

[

∂ρ

∂~pj

·

(

∂U

∂~qj

+
1

2

N
∑

k=s+1

∂V(~qj − ~qk)

∂~qj

)

−
∂ρ

∂~qj

·
~pj

m

]

= 0. (III.24)
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The last equality is obtained after performing the integrations by part: The term multi-

plying ∂ρ/∂~pj has no dependence on ~pj , while ~pj/m does not depend on ~qj . The final term

in eq.(III.22), involving the Poisson bracket with H′, is

∫ N
∏

i=s+1

dVi

N
∑

j=1

[

∂ρ

∂~pj

·
∂H′

∂~qj

−
∂ρ

∂~qj

·
∂H′

∂~pj

]

=

∫ N
∏

i=s+1

dVi





s
∑

n=1

∂ρ

∂~pn

·
N
∑

j=s+1

∂V(~qn − ~qj)

∂~qn

+

N
∑

j=s+1

∂ρ

∂~pj

·
s
∑

n=1

∂V(~qj − ~qn)

∂~qj



 ,

where the sum over all particles has been subdivided into the two groups. (Note that H′

in eq.(III.21) has no dependence on the momenta.) Integration by parts shows that the

second term in the above expression is zero. The first term involves the sum of (N − s)

expressions that are equal by symmetry and simplifies to

(N − s)

∫ N
∏

i=s+1

dVi

s
∑

n=1

∂V(~qn − ~qs+1)

∂~qn

·
∂ρ

∂~pn

=(N − s)
s
∑

n=1

∫

dVs+1
∂V(~qn − ~qs+1)

∂~qn

·
∂

∂~pn

[

∫ N
∏

i=s+2

dVi ρ

]

.

(III.25)

Note that the quantity in the above square brackets is ρs+1. Thus, adding up eqs.(III.23),

(III.24), and (III.25),

∂ρs

∂t
+ {Hs, ρs} = (N − s)

s
∑

n=1

∫

dVs+1
∂V(~qn − ~qs+1)

∂~qn

·
∂ρs+1

∂~pn

, (III.26)

or in terms of the densities fs,

∂fs

∂t
+ {Hs, fs} =

s
∑

n=1

∫

dVs+1
∂V(~qn − ~qs+1)

∂~qn

·
∂fs+1

∂~pn

. (III.27)

In the absence of interactions with other particles, the density ρs for a group of

s particles, evolves as the density of an incompressible fluid (as required by Liouville’s

theorem), and is described by the streaming terms on the left hand side of eq.(III.26).

However, because of interactions with the remaining N − s particles, the flow is modified

by the collision terms on the right hand side. The collision integral is the sum of the terms

corresponding to a potential collision of any of the particles in the group of s, with any

of the remaining N − s particles. To describe the probability of finding the additional

particle that collides with a member of this group, the result must depend on the joint

PDF of s + 1 particles described by ρs+1. This results in a hierarchy of equations with

ρ̇1 depends on ρ2, ρ̇2 depends on ρ3, etc., which is at least as complicated as the original

equation for the full phase space density. To proceed further, a reasonable approximation

for terminating the hierarchy is needed.
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III.D The Boltzmann Equation

To estimate the relative importance of the different terms appearing in eqs.(III.27),

let us examine the first two equations in the hierarchy,

[

∂

∂t
−

∂U

∂~q1
·

∂

∂~p1
+

~p1

m
·

∂

∂~q1

]

f1 =

∫

dV2
∂V(~q1 − ~q2)

∂~q1
·
∂f2

∂~p1
, (III.28)

and
[

∂

∂t
−

∂U

∂~q1
·

∂

∂~p1
−

∂U

∂~q2
·

∂

∂~p2
+

~p1

m
·

∂

∂~q1
+

~p2

m
·

∂

∂~q2
−

∂V(~q1 − ~q2)

∂~q1
·

(

∂

∂~p1
−

∂

∂~p2

)]

f2 =

∫

dV3

[

∂V(~q1 − ~q3)

∂~q1
·

∂

∂~p1
+

∂V(~q2 − ~q3)

∂~q2
·

∂

∂~p2

]

f3 .

(III.29)

Note that two of the streaming terms in eq.(III.29) have been combined by using

∂V(~q1 − ~q2)/∂~q1= −∂V(~q2 − ~q1)/∂~q2, which is valid for a symmetric potential such that

V(~q1 − ~q2)= V(~q2 − ~q1).

• Time scales: All terms within square brackets in the above equations have dimensions

of inverse time, and we estimate their relative magnitudes by dimensional analysis, using

typical velocities and length scales. The typical speed of a gas particle at room temperature

is v ≈ 102ms−1. For terms involving the external potential U , or the inter-atomic potential

potential V, an appropriate length scale can be extracted from the range of variations of

the potential.

(a) The terms proportional to
1

τU

∼
∂U

∂~q
·

∂

∂~p
,

involve spatial variations of the external potential U(~q ), which take place over macro-

scopic distances L. We shall refer to the associated time τU , as an extrinsic time scale,

as it can be made arbitrarily long by increasing system size. For a typical value of

L ≈ 10−3m, we get τU ≈ L/v ≈ 10−5s.

(b) From the terms involving the inter-atomic potential V, we can extract two additional

time scales, which are intrinsic to the gas under study. In particular, the collision

duration
1

τc

∼
∂V

∂~q
·

∂

∂~p
,

is the typical time over which two particles are within the effective range d, of their

interaction. For short range interactions (including van der Waals and Lenard–Jones,

despite their power law decaying tails), d ≈ 10−10m is of the order of a typical atomic

49



size, resulting in τc ≈ 10−12s. This is usually the shortest time scale in the problem.

The situation is somewhat more complicated for long range interactions, such as the

Coulomb gas in a plasma. For a neutral plasma, the Debye screening length λ replaces

d in the above equation, as discussed in problems.

(c) There are also collision terms on the right hand side of eqs.(III.27), which depend on

fs+1, and lead to an inverse time scale

1

τ×
∼

∫

dV
∂V

∂~q
·

∂

∂~p

fs+1

fs

∼

∫

dV
∂V

∂~q
·

∂

∂~p
N

ρs+1

ρs

.

The integrals are only non-zero over the volume of the inter-particle potential d3. The

term fs+1/fs is related to the probability of finding another particle per unit volume,

which is roughly the particle density n = N/V ≈ 1026m−3. We thus obtain the mean

free time

τ× ≈
τc

nd3
≈

1

nvd2
, (III.30)

which is the typical distance a particle travels between collisions. For short range

interactions, τ× ≈ 10−8s is much longer than τc, and the collision terms on the right

hand side of eqs.(III.27) are smaller by a factor of nd3 ≈ (1026m−3)(10−10m)3 ≈ 10−4.

The Boltzmann equation is obtained for short range interactions in the dilute regime

by exploiting τc/τ× ≈ nd3 � 1. (By contrast, for long range interactions such that

nd3 � 1, the Vlasov equation is obtained by dropping the collision terms on the left hand

side, as discussed in problems.) From the above discussion, it is apparent that eq.(III.28)

is different from the rest of the hierarchy: It is the only one in which the collision terms

are absent from the left hand side. For all other equations, the right hand side is smaller

by a factor of nd3, while in eq.(III.28) it may indeed dominate the left hand side. Thus a

possible approximation scheme is to truncate the equations after the first two, by setting

the right hand side of eq.(III.29) to zero.

The left hand side of the equation for f2 includes terms proportional to both τ−1
U

and τ−1
c . We shall argue that the two sets of terms can be treated independently, the

former acting on center of mass, and the latter acting on relative coordinates. But f2 is

proportional to the joint PDF ρ2 for finding one particle at (~p1, ~q1), and another at (~p2, ~q2),

at the same time t. It is reasonable to expect that at distances much larger than the range

of the potential V, the particles are independent, i.e.

{

ρ2(~p1, ~q1, ~p2, ~q2, t) −→ ρ1(~p1, ~q1, t)ρ1(~p2, ~q2, t), or

f2(~p1, ~q1, ~p2, ~q2, t) −→ f1(~p1, ~q1, t)f1(~p2, ~q2, t), for |~q2 − ~q1| � d,
(III.31)
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For example, imagine that the gas particles are suddenly allowed to invade an empty volume

after the removal of a barrier. The density f1 will undergo a complicated evolution, and

its relaxation time will be at least comparable to τU . The two body density f2, will also

reach its final value at a comparable time interval. However, it is expected to relax to

a form similar to eq.(III.31) over a much shorter time of the order of τc. At separations

comparable to d, the behavior of f2 is governed by two particle collisions. At time intervals

longer than τc (but possibly shorter than τU ), the ‘steady state’ behavior of f2 at small

relative distances is thus obtained by equating the largest terms in eq.(III.29), i.e.

[

~p1

m
·

∂

∂~q1
+

~p2

m
·

∂

∂~q2
−

∂V(~q1 − ~q2)

∂~q1
·

(

∂

∂~p1
−

∂

∂~p2

)]

f2 = 0. (III.32)

We expect f2(~q1, ~q2) to have slow variations over the center of mass coordinate ~Q = (~q1 +

~q2)/2, and large variations over the relative coordinate ~q = ~q2 − ~q1. Therefore, ∂f2/∂~q �

∂f2/∂ ~Q, and ∂f2/~q2 ≈ −∂f2/∂~q1 ≈ ∂f2/∂~q, leading to

∂V(~q1 − ~q2)

∂~q1
·

(

∂

∂~p1
−

∂

∂~p2

)

f2 = −

(

~p1 − ~p2

m

)

·
∂

∂~q2
f2 . (III.33)

The above equation (along with the boundary conditions imposed by eq.(III.31)) describes

a steady state situation established by collisions in the center of mass frame of two particles.

The relaxation of f1 to equilibrium is controlled by the collision terms on the right

hand side of eq.(III.28), which can be written as

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3~p2d
3~q2

∂V(~q1 − ~q2)

∂~q1
·

(

∂

∂~p1
−

∂

∂~p2

)

f2 ≈

∫

d3~p2d
3~q2

(

~p1 − ~p2

m

)

·
∂

∂~q2
f2 .

(III.34)

The first identity if obtained from eq.(III.28) by noting that the added term proportional

to ∂f2/∂~p2 is a complete derivative and integrates to zero, while the second equality

follows from eq.(III.33). (Since it relies on establishing the ‘steady state’ in the relative

coordinates, this approximation is valid as long as we examine events in time with a

resolution longer than τc.)

• Scattering theory: The integrand in eq.(III.34) is a derivative of f2 with respect to ~q

along the direction of relative motion ~p = ~p2 − ~p1, of the colliding particles. As such, it

can be integrated to f2(~p1
′, ~Q, ~p2

′, ~Q, t) − f2(~p1, ~Q, ~p2, ~Q, t), where ~p1
′, and ~p2

′ are the
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momenta of the two particles immediately after the collision. (As we are only concerned

with variations of f1 at length scales larger than d, we shall ignore the small differences

in positions before and after each collision.) More precisely, this is achieved by a change

of variables from the three components of ~q2 to a one-dimensional variable a along the

trajectory of motion, and a two component vector ~b perpendicular to it. The complicated

curvilinear nature of this transformation need not bother us, as after the partial integration

over a, we only need to specify the coordinates before the collision. It is customary to set

~b = ~0 for a head–on collision ([~p1 − ~p2] ‖ [~q1 − ~q2]). With this choice, ~b is known as the

impact vector, and

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3~p2d
2~b |~v1 − ~v2| [f2(~p1

′, ~q1, ~p2
′, ~q1, t) − f2(~p1, ~q1, ~p2, ~q1, t)] , (III.35)

where |~v1 − ~v2| = |~p1 − ~p2|/m is the relative speed of the two particles.

It is more convenient to describe the scattering of two particles in terms of the relative

momenta ~P = ~p1 − ~p2 and ~P ′ = ~p1
′ − ~p2

′, before and after the collision. Note that

d2~b |~v1 − ~v2| is just the flux of particles impinging on the element of area d2~b. For a given

~b, the initial momentum ~P is deterministically transformed to the final momentum ~P ′.

To find the functional form ~P ′(| ~P |,~b), one must integrate the equations of motion. In

elastic collisions, the magnitude of ~P is preserved, and it merely rotates to a final direction

indicated by the angles (θ, φ) ≡ Ω(~b) in spherical coordinates. Since there is a one to one

correspondence between the impact vector ~b, and the solid angle Ω, we make a change of

variables between the two resulting in

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3~p2dΩ
dσ

dΩ
|~v1 − ~v2| [f2(~p1

′, ~q1, ~p2
′, ~q1, t) − f2(~p1, ~q1, ~p2, ~q1, t)] . (III.36)

The Jacobian of this transformation dσ/dΩ has dimensions of area, and is known as the

differential cross-section. It is equal to the area presented to an incoming beam which

scatters into the solid angle Ω. In eq.(III.36), the out-going momenta ~p1
′ and ~p′2 are

functions of ~p1, ~p2, and Ω, obtained from the two conditions ~p1
′+~p′2 = ~p1+~p2 (conservation

of momentum), and ~p1
′ − ~p′2 = |~p1 − ~p2|Ω̂ (conservation of energy), as











~p1
′ =
(

~p1 + ~p2 + |~p1 − ~p2|Ω̂
)

/2,

~p2
′ =
(

~p1 + ~p2 − |~p1 − ~p2|Ω̂
)

/2.
(III.37)
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For the scattering of two hard spheres of diameter d, it is easily to show that the

scattering angle is related to the impact parameter b by sin(θ/2) = b/d for all φ. The

differential cross-section is then obtained from

dσ = b db dφ = d sin

(

θ

2

)

d cos

(

θ

2

)

dθ

2
dφ =

d2

4
sin θdθ dφ =

d2

4
dΩ.

(Note that the solid angle in three dimensions is given by dΩ = sin θdθ dφ.) Integrating

over all angles leads to the total cross–section of σ = πd2, which is evidently correct. The

differential cross-section for hard spheres is independent of both θ and | ~P |. This is not the

case for soft potentials. For example, the Coulomb potential V = e2/| ~Q| leads to

dσ

dΩ
=

(

me2

2| ~P |2 sin2(θ/2)

)2

.

(The dependence on | ~P | can be obtained by obtaining a distance of closest approach from

| ~P |2/m + e2/b ≈ 0.)

• The Boltzmann transport equation is obtained from eq.(III.36) after one further ap-

proximation known as the assumption of molecular chaos. The approximation consists of

replacing f2 by using eq.(III.31), leading to

[

∂

∂t
−

∂U

∂~q1
·

∂

∂~p1
+

~p1

m
·

∂

∂~q1

]

f1 =

−

∫

d3~p2dΩ
dσ

dΩ
|~v1 − ~v2| [f1(~p1, ~q1, t)f1(~p2, ~q1, t) − f1(~p1

′, ~q1, t)f1(~p2
′, ~q1, t)] .

(III.38)

While the approximation f2(~q1, ~q2) → f1(~q1)f1(~q2), is certainly justified for separations

much larger than d, in eq.(III.38) it has been applied to short distances describing collisions.

The simplification results in a closed form equation for f1 whose consequences we shall

explore in the next section.

The streaming terms on the left hand side of the Boltzmann equation describe the

motion of a single particle in the external potential U . The collision terms on the right

hand side have a simple physical interpretation: The probability of finding a particle of

momentum ~p1 at ~q1 is suddenly altered if it undergoes a collision with another particle

of momentum ~p2. The probability of such a collision is the product of kinematic factors

described by the differential cross-section dσ/dΩ, the ‘flux’ of incident particles propor-

tional to |~v2 − ~v1|, and the joint probability of finding the two particles, approximated by

f1(~p1)f1(~p2). The first term on the right hand side of eq.(III.38) subtracts this probability
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and integrates over all possible momenta and solid angles describing the collision. The sec-

ond term, describes an addition to the probability which results from the inverse process:

A particle can suddenly appear at (~p1, ~q1) as a result of a collision between two particles

initially with momenta ~p1
′ and ~p2

′. The cross-section, and the momenta (~p1
′, ~p2

′) may

have a complicated dependence on (~p1, ~p2) and Ω, determined by the specific form of the

potential V. Remarkably, various equilibrium properties of the gas are quite independent

of this potential.
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