
8.333: Statistical Mechanics I Problem Set # 1 Solutions Fall 2000

Surface Tension

1. Capillary forces:

(a) i: The work done by a water droplet on the outside world, needed to increase the

radius from R to R + ∆R is

∆W = (P − Po) · 4πR2 · ∆R,

where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium,

this should be equal to the increase in the surface energy S∆A = S · 8πR · ∆R, where S

is the surface tension, and

∆Wtotal = 0, =⇒ ∆Wpressure = −∆Wsurface ,

resulting in

(P − Po) · 4πR2 · ∆R = S · 8πR · ∆R, =⇒ (P − Po) =
2S

R
.

(a) ii: In a soap bubble, there are two air-soap surfaces with almost equal radii of curva-

tures, and

Pfilm − Po = Pinterior − Pfilm =
2S

R
,

leading to

Pinterior − Po =
4S

R
.

Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R.

(b) ii: When steam condenses on a solid surface, water either forms a droplet, or spreads

on the surface. There are two ways to consider this problem:

Method 1: Energy associated with the interfaces

In equilibrium, the total energy associated with the three interfaces should be mini-

mum, and therefore

dE = SawdAaw + SasdAas + SwsdAws = 0.

Since the total surface area of the solid is constant,

dAas + dAws = 0.

From geometrical considerations (see proof below), we obtain

dAws cos θ = dAaw.
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From these equations, we obtain

dE = (Saw cos θ − Sas + Sws) dAws = 0, =⇒ cos θ =
Sas − Sws

Saw

.

Proof of dAws cos θ = dAaw:

Consider a droplet which is part of a sphere of radius R, which is cut by the substrate

at an angle θ. The areas of the involved surfaces are

Aws = π(R sin θ)2, and Aaw = 2πR2(1 − cos θ).

Let us consider a small change in shape, accompanied by changes in R and θ. These

variations should preserve the volume of water, i.e. constrained by

V =
πR3

3

(

cos3 θ − 3 cos θ + 2
)

.

Introducing x = cos θ, we can re-write the above results as



















Aws = πR2
(

1 − x2
)

,

Aaw = 2πR2 (1 − x) ,

V =
πR3

3

(

x3 − 3x + 2
)

.

The variations of these quantities are then obtained from



































dAws = 2πR

[

dR

dx
(1 − x2) − Rx

]

dx,

dAaw = 2πR

[

2
dR

dx
(1 − x) − R

]

dx,

dV = πR2

[

dR

dx
(x3 − 3x + 2) + R(x2 − x)

]

dx = 0.

From the last equation, we conclude

1

R

dR

dx
= −

x2 − x

x3 − 3x + 2
= −

x + 1

(x − 1)(x + 2)
.

Substituting for dR/dx gives,

dAws = 2πR2 dx

x + 2
, and dAaw = 2πR2 x · dx

x + 2
,

resulting in the required result of

dAaw = x · dAws = dAws cos θ.
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Method 2: Balancing forces on the contact line

Another way to interpret the result is to consider the force balance of the equilibrium

surface tension on the contact line. There are four forces acting on the line: (1) the surface

tension at the water–gas interface, (2) the surface tension at the solid–water interface, (3)

the surface tension at the gas–solid interface, and (4) the force downward by solid–contact

line interaction. The last force ensures that the contact line stays on the solid surface, and

is downward since the contact line is allowed to move only horizontally without friction.

These forces should cancel along both the y–direction x–directions. The latter gives

the condition for the contact angle known as Young’s equation,

Sas = Saw · cos θ + Sws , =⇒ cos θ =
Sas − Sws

Saw

.

The critical condition for the complete wetting occurs when θ = 0, or cos θ = 1, i.e. for

cos θC =
Sas − Sws

Saw

= 1.

Complete wetting of the substrate thus occurs whenever

Saw ≤ Sas − Sws.

(c) Typical length scales at which the surface tension effects become significant are given

by the condition that the forces exerted by surface tension and relevant pressures become

comparable, or by the condition that the surface energy is comparable to the other energy

changes of interest.

Example 1: Size of water drops not much deformed on a non-wetting surface.

This is given by equalizing the surface energy and the gravitational energy,

S · 4πR2 ≈ mgR = ρV gR =
4π

3
R4g,

leading to

R ≈

√

3S

ρg
≈

√

3 · 7 × 10−2N/m

103kg/m3 × 10m/s2
≈ 1.5 × 10−3m = 1.5mm.

Example 2: Swelling of spherical gels in a saturated vapor:

Osmotic pressure of the gel (about 1 atm) = surface tension of water, gives

πgel ≈
N

V
kBT ≈

2S

R
,
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where N is the number of counter ions within the gel. Thus,

R ≈

(

2 × 7 × 10−2N/m

105N/m2

)

≈ 10−6m.

********

2. Surfactants are molecules having a hydrophilic group and a hydrophobic tail, and prefer

to go to the interface between water and air, or water and oil. Some examples are,

CH3 − (CH2)11 − SO−

3 · Na+,

CH3 − (CH2)11 − N+(CH3)3 · Cl−,

CH3 − (CH2)11 − O − (CH2 − CH2 − O)12 − H.

(a) The surfactant molecules are spread over the surface of water and behave as a two

dimensional gas. The gas has a pressure proportional to the density and the absolute

temperature, which comes from the two dimensional degrees of freedom of the molecules.

Thus the surfactants lower the free energy of the surface when the surface area is increased.

∆Fsurfactant =
N

A
kBT · ∆A = (S − So) · ∆A, =⇒ S = So −

N

A
kBT.

(Note that surface tension is defined with a sign opposite to that of hydrostatic pressure.)

(b) As shown in Problem 1(b), the contact angle satisfies

cos θ =
Sas − Sws

Saw

.

Touching the surface of the droplet with a small piece of soap reduces Saw, hence cos θ

increases, or equivalently, the angle θ decreases.

(c) When the surfactant molecules are dense their interaction becomes important, resulting

in
∂S

∂A

∣

∣

∣

∣

T

=
NkBT

(A − Nb)2
−

2a

A

(

N

A

)2

,

and
∂T

∂S

∣

∣

∣

∣

A

= −
A − Nb

NkB

.

Integrating the first equation, gives

S(A, t) = f(T ) −
NkBT

A − Nb
+ a

(

N

A

)2

,
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where f(T ) is a function of only T , while integrating the second equation, yields

S(A, T ) = g(A) −
NkBT

A − Nb
,

with g(A) a function of only A. By comparing these two equations we get

S(A, T ) = So −
NkBT

A − Nb
+ a

(

N

A

)2

,

where So represents the surface tension in the absence of surfactants and is independent

of A and T . The equation resembles the van der Waals equation of state for gas-liquid

systems. The factor Nb in the second term represents the excluded volume effect due to

the finite size of the surfactant molecules. The last term represents the binary interaction

between two surfactant molecules. If surfactant molecules attract each other the coefficient

a is positive the surface tension increases.

(d) Taking A and T as independent variables, we obtain

δQ = dE − S · dA, =⇒ δQ =
∂E

∂A

∣

∣

∣

∣

T

dA +
∂E

∂T

∣

∣

∣

∣

A

dT − S · dA,

and

δQ =

(

∂E

∂A

∣

∣

∣

∣

T

− S

)

dA +
∂E

∂T

∣

∣

∣

∣

A

dT.

From the above result, the heat capacities are obtained as















CA ≡
δQ

δT

∣

∣

∣

∣

A

=
∂E

∂T

∣

∣

∣

∣

A

CS ≡
δQ

δT

∣

∣

∣

∣

S

=

(

∂E

∂A

∣

∣

∣

∣

T

− S

)

∂A

∂T

∣

∣

∣

∣

S

+
∂E

∂T

∣

∣

∣

∣

S

,

resulting in

CS − CA =

(

∂E

∂A

∣

∣

∣

∣

T

− S

)

∂A

∂T

∣

∣

∣

∣

S

.

Using the chain rule relation

∂T

∂S

∣

∣

∣

∣

A

·
∂S

∂A

∣

∣

∣

∣

T

·
∂A

∂T

∣

∣

∣

∣

S

= −1,

we obtain

CS − CA =

(

∂E

∂A

∣

∣

∣

∣

T

− S

)

·





−1

∂T

∂S

∣

∣

∣

A
· ∂S

∂A

∣

∣

∣

T



 .

********
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