
8.333: Statistical Mechanics I Problem Set # 10 Solutions Fall 2003

Quantum Phenomena

1. One dimensional chain:

(a) From the Hamiltonian

H =

N−1
∑

i=1

p2
i

2m
+

K

2

[

u2
1 +

N−1
∑

i=2

(ui − ui−1)
2
+ u2

N−1

]

,

the classical equations of motion are obtained as

m
d2uj

dt2
= −K(uj − uj−1) − K(uj − uj+1) = K(uj−1 − 2uj + uj+1),

for j = 1, 2, · · · , N − 1, and with u0 = uN = 0. In a normal mode, the particles oscillate

in phase. The usual procedure is to obtain the modes, and corresponding frequencies,

by diagonalizing the matrix of coefficeints coupling the displacements on the right hand

side of the equation of motion. For any linear system, we have md2ui/dt2 = Kijuj , and

we must diagonalize Kij . In the above example, Kij is only a function of the difference

i − j. This is a consequence of translational symmetry, and allows us to diagonalize the

matrix using Fourier modes. Due to the boundary conditions in this case, the appropriate

transformation involves the sine, and the motion of the j-th particle in a normal mode is

given by

ũk(n)(j) =

√

2

N
e±iωnt sin (k(n) · j) .

The origin of time is artibrary, but to ensure that uN = 0, we must set

k(n) ≡ nπ

N
, for n = 1, 2, · · · , N − 1.

Larger values of n give wave-vectors that are simply shifted by a multiple of π, and hence

coincide with one of the above normal modes. The number of normal modes thus equals

the number of original displacement variables, as required. Furthermore, the amplitudes

are chosen such that the normal modes are also orthonormal, i.e.

N−1
∑

j=1

ũk(n)(j) · ũk(m)(j) = δn,m.
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By substituting the normal modes into the equations of motion we obtain the dispersion

relation

ω2
n = 2ω2

0

[

1 − cos
(nπ

N

)]

= ω2
0 sin2

( nπ

2N

)

,

where ω0 ≡
√

K/m.

The potential energy for each normal mode is given by

Un =
K

2

N
∑

i=1

|ui − ui−1|2 =
K

N

N
∑

i=1

{

sin
(nπ

N
i
)

− sin
[nπ

N
(i − 1)

]}2

=
4K

N
sin2

( nπ

2N

)

N
∑

i=1

cos2
[

nπ

N

(

i − 1

2

)]

.

Noting that

N
∑

i=1

cos2
[

nπ

N

(

i − 1

2

)]

=
1

2

N
∑

i=1

{

1 + cos
[nπ

N
(2i − 1)

]}

=
N

2
,

we have

Uk(n) = 2K sin2
( nπ

2N

)

.

(b) Before evaluating the classical partition function, lets evaluate the potential energy by

first expanding the displacement using the basis of normal modes, as

uj =

N−1
∑

n=1

an · ũk(n)(j).

The expression for the total potential energy is

U =
K

2

N
∑

i=1

(ui − ui−1)
2 =

K

2

N
∑

i=1

{

N−1
∑

n=1

an

[

ũk(n)(j) − ũk(n)(j − 1)
]

}2

.

Since

N−1
∑

j=1

ũk(n)(j) · ũk(m)(j − 1) =
1

N
δn,m

N−1
∑

j=1

{− cos [k(n)(2j − 1)] + cos k(n)} = δn,m cos k(n),

the total potential energy has the equivalent forms

U =
K

2

N
∑

i=1

(ui − ui−1)
2

= K

N−1
∑

n=1

a2
n (1 − cos k(n)) ,

=
N−1
∑

i=1

a2
k(n)ε

2
k(n) = 2K

N−1
∑

i=1

a2
k(n) sin2

( nπ

2N

)

.
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The next step is to change the coordinates of phase space from uj to an. The Jacobian

associated with this change of variables is unity, and the classical partition function is now

obtained from

Z =
1

λN−1

∫ ∞

−∞
da1 · · ·

∫ ∞

−∞
daN−1 exp

[

−2βK
N−1
∑

n=1

a2
n sin2

( nπ

2N

)

]

,

where λ = h/
√

2πmkBT corresponds to the contribution to the partition function from

each momentum coordinate. Performing the Gaussian integrals, we obtain

Z =
1

λN−1

N−1
∏

n=1

{
∫ ∞

−∞
dan exp

[

−2βKa2
n sin2

( nπ

2N

)]

}

,

=
1

λN−1

(

πkBT

2K

)

N−1

2
N−1
∏

n=1

[

sin
( nπ

2N

)]−1

.

(c) The average squared amplitude of each normal mode is

〈

a2
n

〉

=

∫∞
−∞ dan(a2

n) exp
[

−2βKa2
n sin2

(

nπ
2N

)]

∫∞
−∞ dan exp

[

−2βKa2
n sin2

(

nπ
2N

)]

=
[

4βK sin2
( nπ

2N

)]−1

=
kBT

4K

1

sin2
(

nπ
2N

) .

The variation of the displacement is then given by

〈

u2
j

〉

=

〈[

N−1
∑

n=1

anũn(j)

]2〉

=

N−1
∑

n=1

〈

a2
n

〉

ũ2
n(j)

=
2

N

N−1
∑

n=1

〈

a2
n

〉

sin2
(nπ

N
j
)

=
kBT

2KN

N−1
∑

n=1

sin2
(

nπ
N j
)

sin2
(

nπ
2N

) .

The evaluation of the above sum is considerably simplified by considering the combi-

nation

〈

u2
j+1

〉

+
〈

u2
j−1

〉

− 2
〈

u2
j

〉

=
kBT

2KN

N−1
∑

n=1

2 cos
[

2nπ
N j

]

− cos
[

2nπ
N (j + 1)

]

− cos
[

2nπ
N (j − 1)

]

1 − cos
(

nπ
N

)

=
kBT

2KN

N−1
∑

n=1

2 cos
(

2nπ
N j

) [

1 − cos
(

nπ
N

)]

1 − cos
(

nπ
N

) = −kBT

KN
,
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where we have used
∑N−1

n=1 cos(πn/N) = −1. It is easy to check that subject to the

boundary conditions of
〈

u2
0

〉

=
〈

u2
N

〉

= 0, the solution to the above recursion relation is

〈

u2
j

〉

=
kBT

K

j(N − j)

N
.

(d) When the last particle is free, the overall potential energy is the sum of the contributions

of each spring, i.e. U = K
∑N−1

j=1 (uj − uj−1)
2/2. Thus each extension can be treated

independently, and we introduce a new set of independent variables ∆uj ≡ uj − uj−1. (In

the previous case, where the two ends are fixed, these variables were not independent.)

The partition function can be calculated separately for each spring as

Z =
1

λN−1

∫ ∞

−∞
du1 · · ·

∫ ∞

−∞
duN−1 exp



− K

2kBT

N−1
∑

j=1

(uj − uj−1)
2





=
1

λN−1

∫ ∞

−∞
d∆u1 · · ·

∫ ∞

−∞
d∆uN−1 exp



− K

2kBT

N−1
∑

j=1

∆u2
j



 =

(

2πkBT

λ2K

)(N−1)/2

.

For each spring extension, we have

〈

∆u2
j

〉

=
〈

(uj − uj−1)
2
〉

=
kBT

K
.

The displacement

uj =

j
∑

i=1

∆ui,
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is a sum of independent random variables, leading to the variance

〈

u2
j

〉

=

〈(

j
∑

i=1

∆ui

)2〉

=

j
∑

i=1

(∆ui)
2

=
kBT

K
j.

The results for displacements of open and closed chains are compared in the above figure.

********

2. Black Hole Thermodynamics: The (quantum) vacuum undergoes fluctuations in which

particle–antiparticle pairs are constantly created and destroyed. Near the boundary of

a black hole, sometimes one member of a pair falls into the black hole while the other

escapes. This is a hand-waving explanation for the emission of radiation from black holes.

(a) The classical escape velocity is obtained by equating the gravitational energy and the

kinetic energy on the surface as,

G
Mm

R
=

mv2
E

2
,

leading to

vE =

√

2GM

r
.

Setting the escape velocity to the speed of light, we find

R =
2G

c2
M.

For a mass larger than given by this ratio (i.e. M > c2R/2G), nothing will escape from

distances closer than R.

(b) When two black holes of mass M collapse into one, the entropy change is

∆S = S2 − 2S1 =
kBc3

4Gh̄
(A2 − 2A1) =

kBc3

4Gh̄
4π
(

R2
2 − 2R2

1

)

=
πkBc3

Gh̄

[

(

2G

c2
2M

)2

− 2

(

2G

c2
M

)2
]

=
8πGkBM2

ch̄
> 0.

Thus the merging of black holes increases the entropy of the universe.

Consider the coalescence of two solar mass black holes. The entropy change is

∆S =
8πGkBM2

�
ch̄

≈ 8π · 6.7 × 10−11(N · m2/kg2) · 1.38 × 10−23(J/K) · (2 × 1030)2kg2

3 × 108(m/s) · 1.05 × 10−34(J · s)
≈ 3 × 1054(J/K).

5



In units of bits, the information lost is

NI =
∆S ln 2

kB
= 1.5 × 1077.

(c) Using the thermodynamic definition of temperature 1
T = ∂S

∂E , and the Einstein relation

E = Mc2,

1

T
=

1

c2

∂

∂M

[

kBc3

4Gh̄
4π

(

2G

c2
M

)2
]

=
8πkBG

h̄c3
M, =⇒ T =

h̄c3

8πkBG

1

M
.

(d) The decrease in energy E of a black body of area A at temperature T is given by the

Stefan-Boltzmann law,

1

A

∂E

∂t
= −σT 4, where σ =

π2k4
B

60h̄3c2
.

(e) Using the result in part (d) we can calculate the time it takes a black hole to evaporate.

For a black hole

A = 4πR2 = 4π

(

2G

c2
M

)2

=
16πG2

c4
M2, E = Mc2, and T =

h̄c3

8πkBG

1

M
.

Hence
d

dt

(

Mc2
)

= − π2k4
B

60h̄3c2

(

16πG2

c4
M2

)(

h̄c3

8πkBG

1

M

)4

,

which implies that

M2 dM

dt
= − h̄c4

15360G2
≡ −b.

This can be solved to give

M(t) =
(

M3
0 − 3bt

)1/3
.

The mass goes to zero, and the black hole evaporates after a time

τ =
M3

0

3b
=

5120G2M�3

h̄c4
≈ 2.2 × 1074s,

which is considerably longer than the current age of the universe (approximately ×1018s).

(f) The temperature and mass of a black hole are related by M = h̄c3/(8πkBGT ). For a

black hole in thermal equilibrium with the current cosmic background radiation at T =

2.7◦K,

M ≈ 1.05 × 10−34(J · s)(3 × 108)3(m/s)3

8π · 1.38 × 10−23(J/K) · 6.7 × 10−11(N · m2/kg2) · 2.7◦K
≈ 4.5 × 1022kg.
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(g) The mass inside the spherical volume of radius R must be less than the mass that

would make a black hole that fills this volume. Bring in additional mass (from infinity)

inside the volume, so as to make a volume-filling balck hole. Clearly the entropy of the

system will increase in the process, and the final entropy, which is the entropy of the black

hole is larger than the initial entropy in the volume, leading to the inequality

S ≤ SBH =
kBc3

4Gh̄
A,

where A = 4πR2 is the area enclosing the volume. The surprising observation is that the

upper bound on the entropy is proportional to area, whereas for any system of particles

we expect the entropy to be proportional to N . This should remain valid even at very

high temperatures when interactions are unimportant. The ‘holographic principle’ is an

allusion to the observation that it appears as if the degrees of freedom are living on the

surface of the system, rather than its volume. It was formulated in the context of string

theory which attempts to construct a consistent theory of quantum gravity, which replaces

particles as degrees of freedom, with strings.

********

3. Quantum Oscillator:

(a) The partition function Z, at a temperature T , is given by

Z = tr ρ =
∑

n

e−βEn .

As the energy levels for a harmonic oscillator are given by

εn = h̄ω

(

n +
1

2

)

,

the partition function is

Z =
∑

n

exp

[

−βh̄ω

(

n +
1

2

)]

= e−βh̄ω/2 + e−3βh̄ω/2 + · · ·

=
1

eβh̄ω/2 − e−βh̄ω/2
=

1

2 sinh (βh̄ω/2)
.

The expectation value of the energy is

〈H〉 = −∂ ln Z

∂β
=

(

h̄ω

2

)

cosh(βh̄ω/2)

sinh(βh̄ω/2)
=

(

h̄ω

2

)

1

tanh(βh̄ω/2)
.
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(b) Using the formal representation of the energy eigenstates, the density matrix ρ is

ρ = 2 sinh

(

βh̄ω

2

)

(

∑

n

|n > exp

[

−βh̄ω

(

n +
1

2

)]

< n|
)

.

In the coordinate representation, the eigenfunctions are in fact given by

〈n|q〉 =

(

mω

πh̄

)1/4
Hn(ξ)√

2nn!
exp

(

−ξ2

2

)

,

where

ξ ≡
√

mω

h̄
q,

with

Hn(ξ) = (−1)n exp(ξ2)

(

d

dξ

)n

exp(−ξ2)

=
exp(ξ2)

π

∫ ∞

−∞
(−2iu)n exp(−u2 + 2iξu)du.

For example,

H0(ξ) = 1, and H1(ξ) = − exp(ξ2)
d

dξ
exp(−ξ2) = 2ξ,

result in the eigenstates

〈0|q〉 =

(

mω

πh̄

)1/4

exp

(

−mω

2h̄
q2

)

,

and

〈1|q〉 =

(

mω

πh̄

)1/4√
2mω

h̄
q · exp

(

−mω

2h̄
q2

)

.

Using the above expressions, the matrix elements are obtained as

〈q′|ρ|q〉 =
∑

n,n′

〈q′|n′〉 〈n′|ρ|n〉 〈n|q〉 =

∑

n exp
[

−βh̄ω
(

n + 1
2

)]

· 〈q′|n〉 〈n|q〉
∑

n exp
[

−βh̄ω
(

n + 1
2

)]

= 2 sinh

(

βh̄ω

2

)

·
∑

n

exp

[

−βh̄ω

(

n +
1

2

)]

· 〈q′|n〉 〈n|q〉 .

(c) By definition

eA =

∞
∑

n=0

1

n!
An,
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and
∂eA

∂x
=

∞
∑

n=0

1

n!

∂An

∂x
.

But for a product of n operators,

∂

∂x
(A · A · · ·A) =

∂A

∂x
· A · · ·A + A · ∂A

∂x
· · ·A + · · ·+ A · A · · · ∂A

∂x
.

The ∂A
∂x

can be moved through the A′s surrounding it only if
[

A, ∂A
∂x

]

= 0, in which case

∂A

∂x
= n

∂A

∂x
An−1, and

∂eA

∂x
=

∂A

∂x
eA.

However, as we can always reorder operators inside a trace, i.e. tr(BC) = tr(CB),

and

tr

(

A · · ·A · · · ∂A

∂x
· · ·A

)

= tr

(

∂A

∂x
· An−1

)

,

and the identity
∂

∂x
tr
(

eA
)

= tr

(

∂A

∂x
· eA

)

,

can always be satisfied, independent of any constraint on
[

A, ∂A
∂x

]

.

(d) The expectation values of the kinetic and potential energy are given by

〈

p2

2m

〉

= tr

(

p2

2m
ρ

)

, and

〈

mω2q2

2

〉

= tr

(

mω2q2

2
ρ

)

.

Noting that the expression for the partition function derived in part (a) is independent of

mass, we know that ∂Z/∂m = 0. Starting with Z = tr
(

e−βH), and differentiating

∂Z

∂m
=

∂

∂m
tr
(

e−βH) = tr

[

∂

∂m
(−βH)e−βH

]

= 0,

where we have used the result in part (c). Differentiating the Hamiltonian, we find that

tr

[

β
p2

2m2
e−βH

]

+ tr

[

−β
mω2q2

2
e−βH

]

= 0.

Equivalently,

tr

[

p2

2m
e−βH

]

= tr

[

mω2q2

2
e−βH

]

,

which shows that the expectation values of kinetic and potential energies are equal.
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(e) In part (a) it was found that 〈H〉 = (h̄ω/2) (tanh(βh̄ω/2))
−1

. Note that 〈H〉 =
〈

p2/2m
〉

+
〈

mω2q2/2
〉

, and that in part (d) it was determined that the contribution from

the kinetic and potential energy terms are equal. Hence,

〈

mω2q2/2
〉

=
1

2
(h̄ω/2) (tanh(βh̄ω/2))

−1
.

Solving for
〈

q2
〉

,

〈

q2
〉

=
h̄

2mω
(tanh(βh̄ω/2))

−1
=

h̄

2mω
coth(βh̄ω/2).

While the classical result
〈

q2
〉

= kBT/mω2, vanishes as T → 0, the quantum result satu-

rates at T = 0 to a constant value of
〈

q2
〉

= h̄/(2mω). The amplitude of the displacement

curves in Problem 1 are effected by exactly the same saturation factors.

(f) Using the general operator identity

exp(βA) exp(βB) = exp
[

β(A + B) + β2[A, B]/2 + O(β3)
]

,

the Boltzmann operator can be decomposed in the high temperature limit into those for

kinetic and potential energy; to the lowest order as

exp

(

−β
p2

2m
− β

mω2q2

2

)

≈ exp(−βp2/2m) · exp(−βmω2q2/2).

The first term is the Boltzmann operator for an ideal gas. The second term contains an

operator diagonalized by |q >. The density matrix element

< q′|ρ|q > =< q′| exp(−βp2/2m) exp(−βmω2q2/2)|q >

=

∫

dp′ < q′| exp(−βp2/2m)|p′ >< p′| exp(−βmω2q2/2)|q >

=

∫

dp′ < q′|p′ >< p′|q > exp(−βp′2/2m) exp(−βq2mω2/2).

Using the free particle basis < q′|p′ >= 1√
2πh̄

e−iq·p/h̄,

< q′|ρ|q >=
1

2πh̄

∫

dp′eip′(q−q′)/h̄e−βp′2/2me−βq2mω2/2

= e−βq2mω2/2 1

2πh̄

∫

dp′ exp



−
(

p′
√

β

2m
+

i

2h̄

√

2m

β
(q − q′)

)2


 exp

(

−1

4

2m

βh̄2 (q − q′)2
)

,
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where we completed the square. Hence

< q′|ρ|q >=
1

2πh̄
e−βq2mω2/2

√

2πmkBT exp

[

−mkBT

2h̄2 (q − q′)2
]

.

The proper normalization in the high temperature limit is

Z =

∫

dq < q|e−βp2/2m · e−βmω2q2/2|q >

=

∫

dq

∫

dp′ < q|e−βp2/2m|p′ >< p′|e−βmω2q2/2|q >

=

∫

dq

∫

dp |< q|p >|2 e−βp′2/2me−βmω2q2/2 =
kBT

h̄ω
.

Hence the properly normalized matrix element in the high temperature limit is

< q′|ρ|q >lim T→∞=

√

mω2

2πkBT
exp

(

− mω2

2kBT
q2

)

exp

[

−mkBT

2h̄2 (q − q′)2
]

.

(g) In the low temperature limit, we retain only the first terms in the summation

ρlim T→0 ≈ |0 > e−βh̄ω/2 < 0| + |1 > e−3βh̄ω/2 < 1| + · · ·
e−βh̄ω/2 + e−3βh̄ω/2

.

Retaining only the term for the ground state in the numerator, but evaluating the geometric

series in the denominator,

< q′|ρ|q >lim T→0≈< q′|0 >< 0|q > e−βh̄ω/2 ·
(

eβh̄ω/2 − e−βh̄ω/2
)

.

Using the expression for < q|0 > given in part (b),

< q′|ρ|q >lim T→0≈
√

mω

πh̄
exp

[

−mω

2h̄

(

q2 + q′2
)

]

(

1 − e−βh̄ω
)

.

********
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