8.333: Statistical Mechanics I Problem Set # 10 Solutions Fall 2003

Quantum Phenomena

1. One dimensional chain:

(a) From the Hamiltonian
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the classical equations of motion are obtained as

d?u,
for j =1,2,---, N — 1, and with ugp = uy = 0. In a normal mode, the particles oscillate

in phase. The usual procedure is to obtain the modes, and corresponding frequencies,
by diagonalizing the matrix of coefficeints coupling the displacements on the right hand
side of the equation of motion. For any linear system, we have md?u;/dt* = K;;u;, and
we must diagonalize K;;. In the above example, KC;; is only a function of the difference
1 — j. This is a consequence of translational symmetry, and allows us to diagonalize the
matrix using Fourier modes. Due to the boundary conditions in this case, the appropriate

transformation involves the sine, and the motion of the j-th particle in a normal mode is

aa3) = | et sin () )

The origin of time is artibrary, but to ensure that uy = 0, we must set

given by
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k(n) = i

Larger values of n give wave-vectors that are simply shifted by a multiple of 7, and hence
coincide with one of the above normal modes. The number of normal modes thus equals
the number of original displacement variables, as required. Furthermore, the amplitudes

are chosen such that the normal modes are also orthonormal, i.e.
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Ug(n) (J) * Uk(m)(J) = Onym-
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By substituting the normal modes into the equations of motion we obtain the dispersion

w2 = 2} [1 — cos (%T)} = w2 sin? (;—;) ,
where wg = /K/m.

The potential energy for each normal mode is given by
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Noting that

we have

nmw
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(b) Before evaluating the classical partition function, lets evaluate the potential energy by

first expanding the displacement using the basis of normal modes, as
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The expression for the total potential energy is
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the total potential energy has the equivalent forms

U=— 5 l(ui—ui 1) = ; (1 —cosk(n)),
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The next step is to change the coordinates of phase space from u; to a,. The Jacobian
associated with this change of variables is unity, and the classical partition function is now

obtained from
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where A = h/y/2mmkpgT corresponds to the contribution to the partition function from

each momentum coordinate. Performing the Gaussian integrals, we obtain

1 kT Y N [ . (mr)]—l
TN\ 2K T
(c) The average squared amplitude of each normal mode is

(a2) = [2 day(a2) exp [-2BKa2 sin® (2% )]
" ffooo da,, exp [—QﬁKa%sm (%)

[4BK sin (

nﬁ)}—l kT 1
2N 4K gin? (2my

The variation of the displacement is then given by
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The evaluation of the above sum is considerably simplified by considering the combi-
nation
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where we have used S0 1 "cos(mn/N) = —1. It is easy to check that subject to the

boundary conditions of (u) = (u%/) = 0, the solution to the above recursion relation is

<u2> _ BL NN—J)

(d) When the last particle is free, the overall potential energy is the sum of the contributions
of each spring, i.e. U = KZ;V:_ll(uj — uj—1)%/2. Thus each extension can be treated
independently, and we introduce a new set of independent variables Au; = u; —u;—1. (In
the previous case, where the two ends are fixed, these variables were not independent.)

The partition function can be calculated separately for each spring as
1 N-1
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For each spring extension, we have

(a2 = (g = uj1)?) = 2L

The displacement

J
uj; = E Auy;,
i=1



is a sum of independent random variables, leading to the variance

(u7) = <<§; Aui>2> = ij (Au)* = %yz

i=1

The results for displacements of open and closed chains are compared in the above figure.
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2. Black Hole Thermodynamics: The (quantum) vacuum undergoes fluctuations in which
particle—antiparticle pairs are constantly created and destroyed. Near the boundary of
a black hole, sometimes one member of a pair falls into the black hole while the other

escapes. This is a hand-waving explanation for the emission of radiation from black holes.

(a) The classical escape velocity is obtained by equating the gravitational energy and the

kinetic energy on the surface as,

leading to
2GM
-
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Setting the escape velocity to the speed of light, we find
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For a mass larger than given by this ratio (i.e. M > ¢?R/2G), nothing will escape from
distances closer than R.

(b) When two black holes of mass M collapse into one, the entropy change is

AS =S, — 25 —kB_CS(A —2A)—k3634 (R2 - 2R?)
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Thus the merging of black holes increases the entropy of the universe.

Consider the coalescence of two solar mass black holes. The entropy change is

8nGhpM2
=
8w 6.7 x 107 (N - m?/kg?) - 1.38 x 10-2(J/K) - (2 x 10%)%kg?
- 3% 108(m/s) - 1.05 x 10-34(J - 5)
~ 3 x 10°4(J/K).
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In units of bits, the information lost is

B ASIn?2 B

N; 1.5 x 1077,
kg
(c) Using the thermodynamic definition of temperature % = g—f;, and the Einstein relation
E = Mc?,
1 _ 10 [kp®, (2G 2 8thpG g hd 1
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(d) The decrease in energy E of a black body of area A at temperature T is given by the

Stefan-Boltzmann law,
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(e) Using the result in part (d) we can calculate the time it takes a black hole to evaporate.
For a black hole

hed 1
M?, E=M¢ d T= —.
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which implies that

ct

Hence

e M hct _
dt — 15360G2

This can be solved to give

M(t) = (M2 - 3bt)"/°.

The mass goes to zero, and the black hole evaporates after a time

 M§ 5120G°M @3

= - ~ 2.2 x 107,

which is considerably longer than the current age of the universe (approximately x10%s).

(f) The temperature and mass of a black hole are related by M = hic®/(87kpGT). For a
black hole in thermal equilibrium with the current cosmic background radiation at T' =
2.7°K,

M A 1.05 x 10734(J - 5)(3 x 10%)3(m/s)?
T 8- 1.38 x 10-23(J/K) - 6.7 x 10~11(N - m2 /kg?) - 2.7°K

~ 4.5 x 10%%kg.
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(g) The mass inside the spherical volume of radius R must be less than the mass that
would make a black hole that fills this volume. Bring in additional mass (from infinity)
inside the volume, so as to make a volume-filling balck hole. Clearly the entropy of the
system will increase in the process, and the final entropy, which is the entropy of the black

hole is larger than the initial entropy in the volume, leading to the inequality

kgc?
S < Spu = fﬁA’

where A = 47 R? is the area enclosing the volume. The surprising observation is that the
upper bound on the entropy is proportional to area, whereas for any system of particles
we expect the entropy to be proportional to N. This should remain valid even at very
high temperatures when interactions are unimportant. The ‘holographic principle’ is an
allusion to the observation that it appears as if the degrees of freedom are living on the
surface of the system, rather than its volume. It was formulated in the context of string
theory which attempts to construct a consistent theory of quantum gravity, which replaces

particles as degrees of freedom, with strings.
sk skosk sk sk sk ok

3. Quantum Oscillator:

(a) The partition function Z, at a temperature T, is given by
Z =trp= Ze_ﬁE".

As the energy levels for a harmonic oscillator are given by

1
n=hw|n+=1,
vt (n+3)
the partition function is

1
Z = Zexp [—ﬁhw <n + 5)} — ¢ Bhw/2 + o 30hw/2 L.

1 1
T eBhw/2 _ o—Bhw/2 T 92ginh (Bhw/2)"

The expectation value of the energy is
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(b) Using the formal representation of the energy eigenstates, the density matrix p is

p = 2sinh (m%w) <; In > exp [—mw (n + %)} < n\) .

In the coordinate representation, the eigenfunctions are in fact given by

wla) = () FalE) oy (7)),

55\/%%

Ho(€) = (—1)" exp(€?) (d%) exp(~€2)

where

with

_ eXP(£2> /oo (—2iu)” exp(—u2 + 2@£u)du

0 — 00

For example,

Ho(¢)=1, and  Hi(§) = —exp(£?) -z exp(—€?) = 2€,

result in the eigenstates

and

Using the above expressions, the matrix elements are obtained as

>onexp [—fhw (n+ 5)] - (¢'In) (nlg)
>, €Xp [—ﬁhw (n + %)}

(dlpla) =Y (d'In") (n'|p|n) (nlg) =

n,n’

(c) By definition



and

But for a product of n operators,

0 0A 0A 0A
%(A-A---A)_%-A---A+A-%---A-i-----i-A-A---%.

The g—’;‘ can be moved through the A’s surrounding it only if [A, g—ﬂ = 0, in which case

aA _ %An—l
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and

However, as we can always reorder operators inside a trace, i.e. tr(BC) = tr(CB),

DA oA
tr(A.Aa_.A)_tI-(a_.A )7

xZ T

and

and the identity
0 Ay 0A 4
%tr(e)—tr<ax e),

can always be satisfied, independent of any constraint on [A, %} .

(d) The expectation values of the kinetic and potential energy are given by

p2 . p2 d mw2q2 . mw2q2
[ = 1r E— 1 = 1ir .
om om? ) ® 2 2 P

Noting that the expression for the partition function derived in part (a) is independent of

mass, we know that 0Z/9m = 0. Starting with Z = tr (e‘ﬁH>, and differentiating

0z — 9 tr <6_5H> = tr [%(—ﬁ?‘l)e_ﬁ?q =0,

om ~ Om

where we have used the result in part (c¢). Differentiating the Hamiltonian, we find that
2 2.2
tr ﬁp—e_BH + tr —BMG_BH =0.
2m? 2
Equivalently,

2 2 2
tr p—e_ﬂH = tr meYq e_ﬂH )
2m 2

which shows that the expectation values of kinetic and potential energies are equal.
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(¢) In part (a) it was found that (H) = (hw/2)(tanh(Bhw/2))"'. Note that (H) =
(p*/2m) + (mw?q?/2) , and that in part (d) it was determined that the contribution from

the kinetic and potential energy terms are equal. Hence,
<mw2q2/2> = hw/2) (tanh(Bhw/2)) "

Solving for (¢?),

(¢*) = tanh(ﬁhw/Q)) hw coth(Bhw/2).

While the classical result <q2> = kpT/mw?, vanishes as T' — 0, the quantum result satu-
rates at 7' = 0 to a constant value of (¢?) = h/(2mw). The amplitude of the displacement

curves in Problem 1 are effected by exactly the same saturation factors.

(f) Using the general operator identity
exp(A) exp(8B) = exp [3(A + B) + 8%[A, B]/2+ O(8°)] ,

the Boltzmann operator can be decomposed in the high temperature limit into those for

kinetic and potential energy; to the lowest order as

) ~ exp(—3p* /2m) - exp(— B 2).

The first term is the Boltzmann operator for an ideal gas. The second term contains an

operator diagonalized by |¢ >. The density matrix element

< ¢'|plg > =< ¢'| exp(—Bp” /2m) exp(—Bmw?q® /2)|q >
= [ <l exp(-p5* 2m)lf >< | expl~ G [2)]q >
= /dp’ < '|p' ><p'lqg > exp(—Bp"?/2m) exp(—Bg*mw?/2).
Using the free particle basis < ¢'[p/ >= \/_,e_“l p/h

2mh

<{'|plg >= 21h dp' e’ 4=/ g=Bp" /2m o —Bq* me? /2

2
_ 2,5 1 I} 1 [2m 12m
_ Bq*mw? /2 / . / o "2
=e 5 h/dp exp (p\/—2m+—2h\/—ﬁ (g q)) eXP( 4%2((1 q) )
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where we completed the square. Hence

1 ksT
ﬂe_6q2m“’2/2\/27rkaTexp —mQhBQ (¢—d)?|.
T

<{'lplg >=
The proper normalization in the high temperature limit is
Z = /dq < q|e_5p2/2m . e‘ﬁmw2q2/2\q >

= /dq/dp’ < qle™ MY S < eI 2 >

, kT
= /dq/dp|< e R e

Hence the properly normalized matrix element in the high temperature limit is

mw? mw? mkgT
< / Sl T oo = . 2 o . \2
d'1plg >timT 27TkBTeXp< T )exp[ o2 (a—4q")

(g) In the low temperature limit, we retain only the first terms in the summation

10> e <o) 1> eI <) 4
Plim T—0 =~ e—Bhw/2 | o—3Bhw/2 ’

Retaining only the term for the ground state in the numerator, but evaluating the geometric

series in the denominator,
< ¢lplg >timr—0~< ¢'[0 >< 0|q > e PP/2. (efmm -~ e_ﬁﬁ“’/z) :

Using the expression for < ¢|0 > given in part (b),

mw mw B
< '|plg >tim -0~ 3 OXP {—% ( 2 .;_q’?)} (1 e Bﬁw> ‘
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