
8.333: Statistical Mechanics I Problem Set # 12 Solutions Fall 2003

1. Numerical estimates

(a) Thermal wavelengths are given by

λ ≡ h√
2πmkBT

.

For a neutron at room temperature, using the values

m = 1.67 × 10−27kg, T = 300 oK,

kB = 1.38 × 10−23JK−1, h = 6.67 × 10−34Js,

we obtain λ = 1Å.

The typical wavelength of a phonon in a solid is λ = 0.01 m, which is much longer

than the neutron wavelength. The minimum wavelength is, however, of the order of atomic

spacing (3 − 5 Å), which is comparable to the neutron thermal wavelength.

(b) Degeneracy criterion: Quantum mechanical effects become important if nλ3 ≥ 1. In

the high temperature limit the ideal gas law is valid, and the degeneracy criterion can be

reexpressed in terms of pressure P = nkBT , as

nλ3 =
nh3

(2πmkBT )3/2
=

P

(kBT )5/2

h3

(2πm)3/2
� 1.

It is convenient to express the answers starting with an imaginary gas of ‘protons’ at room

temperature and pressure, for which

mp = 1.7 × 10−34Kg, P = 1 atm. = 105 Nm−2,

and (nλ3)proton =
10−5

(4.1 × 10−21)5/2

(6.7 × 10−34)3

(2π · 1.7 × 10−27)3/2
= 2 × 10−5.

The quantum effects appear below T = TQ, at which nλ3 becomes order of unity. Using

nλ3 = (nλ3)proton

(mp

m

)3/2

, and TQ = Troom(nλ3)3/2,

we obtain the following table:

m/mp nλ3 TQ(K)

Hydrogen H2 2 0.7 × 10−5 2.6

Helium He 4 3.0 × 10−6 1.9

Oxygen O2 32 0.1 × 10−6 0.5
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(c) Dispersion relation: A spectrum of low energy excitations scaling as

E(k) ∝ ks,

in d-dimensional space, leads to a low temperature heat capacity that vanishes as

C ∝ T d/s.

Therefore, from CV = 20.4 T 3JKg−1 oK−1 in d = 3, we can conclude s = 1, i.e. a spectrum

of the form

E(k) = h̄cs|~k|,

corresponding to sound waves of speed cs. Inserting all the numerical factors, we have

CV =
12π4NkB

5

(

T

Θ

)3

, where Θ =
h̄cs

kB

(

6π2N

V

)1/3

.

Hence, we obtain

E = h̄csk = kB

(

2π2kBV

5

T 3

CV

)1/3

k = (2 × 10−32Jm) k,

corresponding to a sound speed of cs ≈ 2 × 102ms−1.

********

2. Solid-liquid transition of He3

(a) Entropy of solid He3 comes from the nuclear spin degeneracies, and is given by

ss =
Ss

N
=

kB ln(2N )

N
= kB ln 2.

(b) Fermi temperature for liquid 3He may be obtained from its density as

TF =
εF

kB
=

h2

2mkB

(

3N

8πV

)2/3

≈ (6.7 × 10−34)2

2 · (6.8 × 10−27)(1.38 × 10−23)

(

3

8π × 46 × 10−30

)2/3

≈ 9.2 oK.

(c) Heat capacity comes from the density of excited states at the fermi surface, and is given

by

CV = kB
π2

6
kBT D(εF ) =

π2

6
k2

BT
3N

2kBTF
=

π2

4
NkB

T

TF
.
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(d) Entropy can be obtained from the heat capacity as

CV =
TdS

dT
, ⇒ s` =

1

N

∫ T

0

CV dT

T
=

π2

4
kB

T

TF
.

As T → 0, s` → 0, while ss remains finite. This is an unusual situation in which the solid

has more entropy than the liquid! (The finite entropy is due to treating the nuclear spins

as independent. There is actually a weak coupling between spins which causes magnetic

ordering at a much lower temperature, removing the finite entropy.)

(e) Clausius-Clapeyron equation can be obtained by equating the chemical potentials at

the phase boundary,

µ`(T, P ) = µs(T, P ), and µ`(T + ∆T, P + ∆P ) = µs(T + ∆T, P + ∆P ).

Expanding the second equation, and using the thermodynamic identities

(

∂µ

∂T

)

P

= S, and

(

∂µ

∂P

)

T

= −V,

results in
(

∂P

∂T

)

melting

=
s` − ss

v` − vs
.

(f) The negative slope of the phase boundary results from the solid having more entropy

than the liquid, and can be calculated from the Clausius-Clapeyron relation

(

∂P

∂T

)

melting

=
s` − ss

v` − vs
≈ kB

π2

4

(

T
TF

)

− ln 2

v` − vs
.

Using the values, T = 0.1 oK, TF = 9.2 J oK, and v` − vs = 3 Å3, we estimate

(

∂P

∂T

)

melting

≈ −2.7 × 106Pa ◦K−1,

in reasonable agreement with the observations.

********
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3. Boson Ferromagnetism:

(a) Average occupation numbers of the one-particle states in the grand canonical ensemble

of chemical potential µ, are given by the Bose-Einstein distribution

ns(~k) =
1

eβ[H(s)−µ] − 1
, (for s = −1, 0, 1)

=
1

exp
[

β
(

h̄2k2

2m − µ0sB
)

− βµ
]

− 1
.

(b) Total numbers of particles with spin s are given by

Ns =
∑

{~k}

ns(~k), =⇒ Ns =
V

(2π)3

∫

d3k
1

exp
[

β
(

h̄2k2

2m − µ0sB
)

− βµ
]

− 1
.

After a change of variables, k ≡ x1/2
√

2mkBT/h, we get

Ns =
V

λ3
f+
3/2

(

zeβµ0sB
)

,

where

f+
m(z) ≡ 1

Γ(m)

∫ ∞

0

dx xm−1

z−1ex − 1
, λ ≡ h√

2πmkBT
, z ≡ eβµ.

(c) Magnetization is obtained from

M(T, µ) = µ0 (N+ − N−)

= µ0
V

λ3

[

f+
3/2

(

zeβµ0B
)

− f+
3/2

(

ze−βµ0sB
)

]

.

Expanding the result for small B gives

f+
3/2

(

ze±βµ0B
)

≈ f+
3/2 (z[1 ± βµ0B]) ≈ f+

3/2(z) ± z · βµ0B
∂

∂z
f+
3/2(z).

Using zdf+
m(z)/dz = f+

m−1(z), we obtain

M = µ0
V

λ3
(2βµ0B) · f+

1/2(z) =
2µ2

0

kBT

V

λ3
· B · f+

1/2(z),

and

χ ≡ ∂M

∂B

∣

∣

∣

∣

B=0

=
2µ2

0

kBT

V

λ3
· f+

1/2(z).
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(d) In the high temperature limit, z is small. Use the Taylor expansion for f+
m(z) to write

the total density n(B = 0), as

n(B = 0) =
N+ + N0 + N−

V

∣

∣

∣

∣

B=0

=
3

λ3
f+
3/2(z)

≈ 3

λ3

(

z +
z2

23/2
+

z3

33/2
+ · · ·

)

.

Inverting the above equation gives

z =

(

nλ3

3

)

− 1

23/2

(

nλ3

3

)2

+ · · · .

The susceptibility is then calculated as

χ =
2µ2

0

kBT

V

λ3
· f+

1/2(z),

χ/N =
2µ2

0

kBT

1

nλ3

(

z +
z2

21/2
+ · · ·

)

=
2µ2

0

3kBT

[

1 +

(

− 1

23/2
+

1

21/2

) (

nλ3

3

)

+ O
(

n2
)

]

.

(e) Bose-Einstein condensation occurs when z = 1, at a density

n =
3

λ3
f+
3/2(1),

or a temperature

Tc(n) =
h2

2πmkB

(

n

3 ζ 3/2

)2/3

,

where ζ 3/2 ≡ f+
3/2(1) ≈ 2.61.

Since limz→1 f+
1/2(z) = ∞, the susceptibility χ(T, n) diverges on approaching Tc(n)

from the high temperature side.

(f) Chemical potential for T < Tc: Since ns(~k, B) =
[

z−1eβEs(~k,B) − 1
]−1

is a positive

number for all ~k and sz, µ is bounded above by the minimum possible energy, i.e.

for T < Tc, and B finite, zeβµ0B = 1, =⇒ µ = −µ0B.

Hence the macroscopically occupied one particle state has ~k = 0, and sz = +1.

(g) Spontaneous magnetization: Contribution of the excited states to the magnetization

vanishes as B → 0. Therefore the total magnetization for T < Tc is due to the macroscopic

occupation of the (k = 0, sz = +1) state, and

M(T, n) = µ0 V n+(k = 0)

= µ0 V
(

n − nexcited

)

= µ0

(

N − 3 V

λ3
ζ 3/2

)

.

********
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