
8.333: Statistical Mechanics I Problem Set # 2 Solutions Fall 2003

Thermodynamics

1. Temperature Scales:

(a) The ideal gas temperature is defined through the equation of state

θ =
PV

NkB

.

The thermodynamic temperature is defined for a reversible Carnot cycle by

Thot

Tcold

=
Qhot

Qcold

.

For an ideal gas, the internal energy is a function only of θ, i.e. E = E(θ), and

d̄Q = dE − d̄W =
dE

dθ
· dθ + PdV.
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Consider the Carnot cycle indicated in the figure. For the segment 1 to 2, which undergoes

an isothermal expansion, we have

dθ = 0, =⇒ d̄Qhot = PdV, and P =
NkBθhot

V
.

Hence, the heat input of the cycle is related to the expansion factor by

Qhot =

∫ V2

V1

NkBθhot

dV

V
= NkBθhot ln

(

V2

V1

)

.
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A similar calculation along the low temperature isotherm yields

Qcold =

∫ V3

V4

NkBθcold

dV

V
= NkBθcold ln

(

V3

V4

)

,

and thus
Qhot

Qcold

=
θhot

θcold

ln (V2/V1)

ln (V3/V4)
.

(b) Next, we calculate the volume expansion/compression ratios in the adiabatic processes.

Along an adiabatic segment

d̄Q = 0, =⇒ 0 =
dE

dθ
· dθ +

NkBθ

V
· dV, =⇒

dV

V
= −

1

NkBθ

dE

dθ
· dθ.

Integrating the above between the two temperatures, we obtain



















ln

(

V3

V2

)

= −
1

NkB

∫ θhot

θcold

1

θ

dE

dθ
· dθ, and

ln

(

V4

V1

)

= −
1

NkB

∫ θhot

θcold

1

θ

dE

dθ
· dθ.

While we cannot explicitly evaluate the integral (since E(θ) is arbitrary), we can nonethe-

less conclude that
V1

V4

=
V2

V3

.

(c) Combining the results of parts (a) and (b), we observe that

Qhot

Qcold

=
θhot

θcold

.

Since the thermodynamic temperature scale is defined by

Qhot

Qcold

=
Thot

Tcold

,

we conclude that θ and T are proportional. If we further define θ(triple pointH20
) =

T (triple pointH20
) = 273.16, θ and T become identical.

********

2. Equations of State:

(a) Since there is only one form of work, we can choose any two parameters as independent

variables. For example, selecting T and V , such that E = E(T, V ), and S = S(T, V ), we

obtain

dE = TdS − PdV = T
∂S

∂T

∣

∣

∣

∣

V

dT + T
∂S

∂V

∣

∣

∣

∣

T

dV − PdV,

2



resulting in
∂E

∂V

∣

∣

∣

∣

T

= T
∂S

∂V

∣

∣

∣

∣

T

− P.

Using the Maxwell’s relation †

∂S

∂V

∣

∣

∣

∣

T

=
∂P

∂T

∣

∣

∣

∣

V

,

we obtain
∂E

∂V

∣

∣

∣

∣

T

= T
∂P

∂T

∣

∣

∣

∣

V

− P.

Since T
∂P

∂T

∣

∣

∣

∣

V

= T
NkB

V
= P, for an ideal gas,

∂E

∂V

∣

∣

∣

∣

T

= 0.

Thus E depends only on T , i.e. E = E(T ).

(b) If E = E(T ),
∂E

∂V

∣

∣

∣

∣

T

= 0, =⇒ T
∂P

∂T

∣

∣

∣

∣

V

= P.

The solution for this equation is P = f(V )T, where f(V ) is any function of only V.

(c) The van der Waals equation of state is given by

[

P − a

(

N

V

)2
]

· (V − Nb) = NkBT,

or

P =
NkBT

(V − Nb)
+ a

(

N

V

)2

.

From these equations, we conclude that

CV ≡
∂E

∂T

∣

∣

∣

∣

V

, =⇒
∂CV

∂V

∣

∣

∣

∣

T

=
∂2E

∂V ∂T
=

∂

∂T

{

T
∂P

∂T

∣

∣

∣

∣

V

− P

}

= T
∂2P

∂T 2

∣

∣

∣

∣

V

= 0.

********

3. Clausius-Clapeyron Equation:

The Clausius-Clapeyron equation describes the variation of boiling temperature with pres-

sure. It is usually derived from the condition that the chemical potentials of the gas and

liquid phases are the same at coexistence, i.e.

µliquid(P, T ) = µgas(P, T ),

† dL = Xdx + Y dy + · · · , =⇒ ∂X
∂y

∣

∣

∣

x
= ∂Y

∂x

∣

∣

y
= ∂2L

∂x·∂y
.
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and

µliquid(P + dP, T + dT ) = µgas(P + dP, T + dT ).

From these equations, we conclude that along the coexistence line

dP

dT

∣

∣

∣

∣

coX

=

∂µg

∂T

∣

∣

∣

P
−

∂µl

∂T

∣

∣

∣

P

∂µl

∂P

∣

∣

∣

T
−

∂µg

∂P

∣

∣

∣

T

.

The variations of the Gibbs free energy, G = Nµ(P, T ) from the extensivity condition, are

given by

V =
∂G

∂P

∣

∣

∣

∣

T

, S = −
∂G

∂T

∣

∣

∣

∣

P

.

In terms of intensive quantities

v =
V

N
=

∂µ

∂P

∣

∣

∣

∣

T

, s =
S

N
= −

∂µ

∂T

∣

∣

∣

∣

P

,

where s and v are molar entropy and volume, respectively. Thus, the coexistence line

satisfies the condition
dP

dT

∣

∣

∣

∣

coX

=
Sg − Sl

Vg − Vl

=
sg − sl

vg − vl

.

(a) If we approximate the adiabatic processes as taking place at constant volume V (vertical

lines in the P − V diagram), we find

W =

∮

PdV = PV − (P − dP )V = V dP.
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Here, we have neglected the volume of liquid state, which is much smaller than that

of the gas state. As the error is of the order of

∂V

∂P

∣

∣

∣

∣

S

dP · dP = O(dP 2),

we have

W = V dP + O(dP 2).

The efficiency of any Carnot cycle is given by

η =
W

QH

= 1 −
TC

TH

,

and in the present case,

QH = L, W = V dP, TH = T, TC = T − dT.

Substituting these values in the universal formula for efficiency, we obtain the Clausius-

Clapeyron equation
V dP

L
=

dT

T
, or

dP

dT

∣

∣

∣

∣

coX

=
L

T · V
.

(b) The statement “At the sink L(T − dT ) is supplied to condense one mole of water”

is incorrect. In the P − V diagram shown, the state at “1” corresponds to pure water,

“2” corresponds to pure vapor, but the states “3” and “4” have two phases coexisting. In

going from the state 3 to 4 less than one mole of steam is converted to water. Part of the

steam has already been converted into water during the adiabatic expansion 2 → 3, and

the remaining portion is converted in the adiabatic compression 4 → 1. Thus the actual

latent heat should be less than the contribution by one mole of water.

(c) For an ideal gas

V =
NkBT

P
, =⇒

dP

dT

∣

∣

∣

∣

coX

=
LP

NkBT 2
, or

dP

P
=

L

NkBT 2
dT.

Integrating this equation, the boiling temperature is obtained as a function of the pressure

P , as

P = C · exp

(

−
L

kBTBoiling

)

.
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(d) For TC = −120oF = 189oK, and TH = 80oF = 300oK, the limiting efficiency, as that

of a Carnot engine, is

ηmax =
TH − TC

TH

= 0.37.

The output power, equal to (input power) x (efficiency), is

Power output =
90 × 106tons

hr
·

1hr

3600sec
·
1000kg

ton
·
2.3 × 106J

kg
× 0.37 = 2 × 1013watts.

********

4. Glass:

(a) Since in the present context we are considering only chemical work, we can regard

entropy as a function of two independent variables, e.g. E, and N , which appear naturally

from dS = dE/T − µdN/T . Since entropy is an extensive variable, λS = S(λE, λN).

Differentiating this with respect to λ and evaluating the resulting expression at λ = 1,

gives

S(E, N) =
∂S

∂E

∣

∣

∣

∣

N

E +
∂S

∂N

∣

∣

∣

∣

E

N =
E

T
−

Nµ

T
,

leading to

µ =
E − TS

N
.

(b) Finite temperature entropies can be obtained by integrating d̄Q/T , starting from S(T =

0) = 0. Using the heat capacities to obtain the heat inputs, we find











Ccrystal = αT 3 =
T

N

dScrystal

dT
, =⇒ Scrystal =

NαT 3

3
,

Cglass = βT =
T

N

dSglass

dT
, =⇒ Sglass = βNT.

(c) Since dE = TdS + µdN , for dN = 0, we have

{

dE = TdS = αNT 3dT (crystal),

dE = TdS = βNTdT (glass).

Integrating these expressions, starting with the same internal energy Eo at T = 0, yields











E = Eo +
αN

4
T 4 (crystal),

E = Eo +
βN

2
T 2 (glass).
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(d) From the condition of chemical equilibrium between the two phases, µcrystal = µglass,

we obtain
(

1

3
−

1

4

)

· αT 4 =

(

1 −
1

2

)

· βT 2, =⇒
αT 4

12
=

βT 2

2
,

resulting in a transition temperature

Tmelt =

√

6β

α
.

(e) From the assumptions of the previous parts, we obtain the latent heats for the glass to

crystal transition as

L = Tmelt (Sglass − Scrystal) = NTmelt

(

βTmelt −
αT 3

melt

3

)

= NT 2

melt

(

β −
αT 2

melt

3

)

= NT 2

melt(β − 2β) = −NβT 2

melt < 0.

(f) The above result implies that the entropy of the crystal phase is larger than that of

the glass phase. This is clearly unphysical, and one of the assumptions must be wrong.

The questionable step is the assumption that the glass phase is subject to the third law

of thermodynamics, and has zero entropy at T = 0. In fact, glass is a non-ergodic state of

matter which does not have a unique ground state, and violates the third law.

********
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