
8.333: Statistical Mechanics I Problem Set # 3 Solutions Fall 2003

Probability Theory

1. Characteristic Functions:

The characteristic function is defined by

f(k) ≡ 〈exp(−ikx)〉 =

∫

exp(−ikx)p(x)dx.

The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth

moment of x as

f(k) =

∞
∑

n=0

(−ik)n

n!
〈xn〉.

(a) A uniform probability distribution,

p(x) =







1

2a
for − a < x < a

0 otherwise
,

for which there exist many examples, gives

f(k) =
1

2a

∫ a

−a

exp(−ikx)dx =
1

2a

1

−ik
exp(−ikx)

∣

∣

∣

∣

a

−a

=
1

ak
sin(ka) =

∞
∑

m=0

(−1)m (ak)2m

(2m + 1)!
.

Therefore,

m1 = 〈x〉 = 0, and m2 = 〈x2〉 =
1

3
a2.

(b) The Laplace PDF,

p(x) =
1

2a
exp

(

−|x|
a

)

,

for example describing light absorption through a turbid medium, gives

f(k) =
1

2a

∫ ∞

−∞

dx exp

(

−ikx − |x|
a

)

=
1

2a

∫ ∞

0

dx exp(−ikx − x/a) +
1

2a

∫ 0

−∞

dx exp(−ikx + x/a)

=
1

2a

[

1

−ik + 1/a
− 1

−ik − 1/a

]

=
1

1 + (ak)2

= 1 − (ak)2 + (ak)4 − · · · .
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Therefore,

m1 = 〈x〉 = 0, and m2 = 〈x2〉 = 2a2.

(c) The Cauchy, or Lorentz PDF describes the spectrum of light scattered by diffusive

modes, and is given by

p(x) =
a

π(x2 + a2)
.

For this distribution,

f(k) =

∫ ∞

−∞

exp(−ikx)
a

π(x2 + a2)
dx

=
1

2πi

∫ ∞

−∞

exp(−ikx)

[

1

x − ia
− 1

x + ia

]

dx.

The easiest method for evaluating the above integrals is to close the integration contours

in the complex plane, and evaluate the residue. The vanishing of the integrand at infinity

determines whether the contour has to be closed in the upper, or lower half of the complex

plane, and leads to

f(k) =















− 1

2πi

∫

C

exp(−ikx)

x + ia
dx = exp(−ka) for k ≥ 0

1

2πi

∫

B

exp(−ikx)

x − ia
dx = exp(ka) for k < 0















= exp(−|ka|).

Note that f(k) is not an analytic function in this case, and hence does not have a Tay-

lor expansion. The moments have to be determined by another method, e.g. by direct

evaluation, as

m1 = 〈x〉 = 0, and m2 = 〈x2〉 =

∫

dx
π

a
· x2

x2 + a2
→ ∞.

The first moment vanishes by symmetry, while the second (and higher) moments diverge,

explaining the non-analytic nature of f(k).

(d) The Rayleigh distribution,

p(x) =
x

a2
exp

(

− x2

2a2

)

, for x ≥ 0,

can be used for the length of a random walk in two dimensions. Its characteristic function

is

f(k) =

∫ ∞

0

exp(−ikx)
x

a2
exp

(

− x2

2a2

)

dx

=

∫ ∞

0

[cos(kx) − i sin(kx)]
x

a2
exp

(

− x2

2a2

)

dx.
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The integrals are not simple, but can be evaluated as

∫ ∞

0

cos(kx)
x

a2
exp

(

− x2

2a2

)

dx =
∞
∑

n=0

(−1)nn!

(2n)!

(

2a2k2
)n

,

and
∫ ∞

0

sin(kx)
x

a2
exp

(

− x2

2a2

)

dx =
1

2

∫ ∞

−∞

sin(kx)
x

a2
exp

(

− x2

2a2

)

dx

=

√

π

2
ka exp

(

−k2a2

2

)

,

resulting in

f(k) =
∞
∑

n=0

(−1)nn!

(2n)!

(

2a2k2
)n − i

√

π

2
ka exp

(

−k2a2

2

)

.

The moments can also be calculated directly, from

m1 = 〈x〉 =

∫ ∞

0

x2

a2
exp

(

− x2

2a2

)

dx =

∫ ∞

−∞

x2

2a2
exp

(

− x2

2a2

)

dx =

√

π

2
a,

m2 = 〈x2〉 =

∫ ∞

0

x3

a2
exp

(

− x2

2a2

)

dx = 2a2

∫ ∞

0

x2

2a2
exp

(

− x2

2a2

)

d

(

x2

2a2

)

= 2a2

∫ ∞

0

y exp(−y)dy = 2a2.

(e) It is difficult to calculate the characteristic function for the Maxwell distribution

p(x) =

√

2

π

x2

a3
exp

(

− x2

2a2

)

,

say describing the speed of a gas particle. However, we can directly evaluate the mean and

variance, as

m1 = 〈x〉 =

√

2

π

∫ ∞

0

x3

a3
exp

(

− x2

2a2

)

dx

= 2

√

2

π
a

∫ ∞

0

x2

2a2
exp

(

− x2

2a2

)

d

(

x2

2a2

)

= 2

√

2

π
a

∫ ∞

0

y exp(−y)dy = 2

√

2

π
a,

and

m2 = 〈x2〉 =

√

2

π

∫ ∞

o

x4

a3
exp

(

− x2

2a2

)

dx = 3a2.

********
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2. At each step a directed random walk can move along angles θ and φ with probability

p(θ) =
2

π
cos2

(

θ

2

)

, and p(φ) =
1

2π
,

where the solid angle factor of sin θ is already included in the definition of p(θ);

∫

p(θ)dθ =

∫ π

0

2

π
cos2

(

θ

2

)

dθ =

∫ π

0

cos θ + 1

π
dθ = 1.

(a) From symmetry arguments,

〈x〉 = 〈y〉 = 0,

while along the z-axis,

〈z〉 =
∑

i

〈zi〉 = N〈zi〉 = Na 〈cos θi〉 =
Na

2
.

The last equality follows from

〈cos θi〉 =

∫

p(θ) cos θdθ =

∫ π

0

1

π
cos θ · (cos θ + 1)dθ

=

∫ π

0

1

2π
(cos 2θ + 1)dθ =

1

2
.

The second moment of z is given by

〈

z2
〉

=
∑

i,j

〈zizj〉 =
∑

i

∑

i6=j

〈zizj〉 +
∑

i

〈

z2
i

〉

=
∑

i

∑

i6=j

〈zi〉 〈zj〉 +
∑

i

〈

z2
i

〉

= N(N − 1) 〈zi〉2 + N
〈

z2
i

〉

.

Noting that

〈

z2
i

〉

a2
=

∫ π

0

1

π
cos2 θ(cos θ + 1)dθ =

∫ π

0

1

2π
(cos 2θ + 1)dθ =

1

2
,

we find
〈

z2
〉

= N(N − 1)
(a

2

)2

+ N
a2

2
= N(N + 1)

a2

4
.

The second moments in the x and y directions are equal, and given by

〈

x2
〉

=
∑

i,j

〈xixj〉 =
∑

i

∑

i6=j

〈xixj〉 +
∑

i

〈

x2
i

〉

= N
〈

x2
i

〉

.
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Using the result

〈

x2
i

〉

a2
=
〈

sin2 θ cos2 φ
〉

=
1

2π2

∫ 2π

0

dφ cos2 φ

∫ π

0

dθ sin2 θ(cos θ + 1) =
1

4
,

we obtain
〈

x2
〉

=
〈

y2
〉

=
Na2

4
.

While the variables x, y, and z are not independent because of the constraint of unit

length, simple symmetry considerations suffice to show that the three covariances are in

fact zero, i.e.

〈xy〉 = 〈xz〉 = 〈yz〉 = 0.

(b) From the Central limit theorem, the probability density should be Gaussian. However,

for correlated random variable we may expect cross terms that describe their covariance.

Since we showed above that the covarainces between x, y, and z are all zero, we can treat

them as three independent Gaussian variables, and write

p(x, y, z) ∝ exp

[

− (x − 〈x〉)2
2σ2

x

− (y − 〈y〉)2
2σ2

y

− (z − 〈z〉)2
2σ2

z

]

.

(There will be correlations between x, y, and z appearing in higher cumulants, but all such

cumulants become irrelevant in the N → ∞ limit.) Using the moments

〈x〉 = 〈y〉 = 0, and 〈z〉 = N
a

2
,

σ2
x =

〈

x2
〉

− 〈x〉2 = N
a2

4
= σ2

y,

and σ2
z =

〈

z2
〉

− 〈z〉2 = N(N + 1)
a2

4
−
(

Na

2

)2

= N
a2

4
,

we obtain

p(x, y, z) =

(

2

πNa2

)3/2

exp

[

−x2 + y2 + (z − Na/2)
2

Na2/2

]

.

********

3. Tchebycheff’s Inequality: By definition, for a system with a PDF p(x), and average λ,

the variance is

σ2 =

∫

(x − λ)2p(x)dx.
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Let us break the integral into two parts as

σ2 =

∫

|x−λ|≥nσ

(x − λ)2p(x)dx +

∫

|x−λ|<nσ

(x − λ)2p(x)dx,

resulting in

σ2 −
∫

|x−λ|<nσ

(x − λ)2p(x)dx =

∫

|x−λ|≥nσ

(x − λ)2p(x)dx.

Now since
∫

|x−λ|≥nσ

(x − λ)2p(x)dx ≥
∫

|x−λ|≥nσ

(nσ)2p(x)dx,

we obtain

∫

|x−λ|≥nσ

(nσ)2p(x)dx ≤ σ2 −
∫

|x−λ|<nσ

(x − λ)2p(x)dx ≤ σ2,

and
∫

|x−λ|≥nσ

p(x)dx ≤ 1

n2
.

********

4. Optimal Selections:

(a) The probability that the maximum of n random numbers falls between x and x + dx

is equal to the probability that one outcome is in this interval, while all the others are

smaller than x, i.e.

pn(x) = p(r1 = x, r2 < x, r3 < x, · · · , rn < x) ×
(

n

1

)

,

where the second factor corresponds to the number of ways of choosing which rα = x. As

these events are independent

pn(x) = p(r1 = x) · p(r2 < x) · p(r3 < x) · · ·p(rn < x) ×
(n

1

)

= p(r = x) [p(r < x)]
n−1 ×

(n

1

)

.

The probability of r < x is just a cumulative probability function, and

pn(x) = n · p(x) ·
[
∫ x

0

p(r)dr

]n−1

.
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(b) If each rα is uniformly distributed between 0 and 1, p(r) = 1 (
∫ 1

0
p(r)dr =

∫ 1

0
dr = 1).

With this PDF, we find

pn(x) = n · p(x) ·
[
∫ x

0

p(r)dr

]n−1

= n

[
∫ x

0

dr

]n−1

= nxn−1,

and the mean is now given by

〈x〉 =

∫ 1

0

xpn(x)dx = n

∫ 1

0

xndx =
n

n + 1
.

The second moment of the maximum is

〈

x2
〉

= n

∫ 1

0

xn+1dx =
n

n + 2
,

resulting in a variance

σ2 =
〈

x2
〉

− 〈x〉2 =
n

n + 2
−
(

n

n + 1

)2

=
n

(n + 1)2(n + 2)
.

Note that for large n the mean approaches the limiting value of unity, while the variance

vanishes as 1/n2. There is too little space at the top of the distribution for a wide variance.

********

5. Information:

(a) For an unbiased probability estimation, we need to maximize entropy subject to the

two constraints of normalization, and of given average speed (〈|v|〉 = c.). Using Lagrange

multipliers α and β to impose these constraints, we need to maximize

S = −〈ln p〉 = −
∫ ∞

−∞

p(v) ln p(v)dv + α

(

1 −
∫ ∞

−∞

p(v)dv

)

+ β

(

c −
∫ ∞

−∞

p(v)|v|dv

)

.

Extremizing the above expression yields

∂S

∂p(v)
= − ln p(v) − 1 − α − β|v| = 0,

which is solved for

ln p(v) = −1 − α − β|v|,

or

p(v) = Ce−β|v|, with C = e−1−α.
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The constraints can now be used to fix the parameters C and β:

1 =

∫ ∞

−∞

p(v)dv =

∫ ∞

−∞

Ce−β|v|dv = 2C

∫ ∞

0

e−βvdv = 2C
1

−β
e−βv

∣

∣

∣

∣

∞

0

=
2C

β
,

which implies

C =
β

2
.

From the second constraint, we have

c =

∫ ∞

−∞

Ce−β|v||v|dv = β

∫ ∞

0

e−βvvdv,

which when integrated by parts yields

c = β

[

− 1

β
ve−βv

∣

∣

∣

∣

∞

0

+
1

β

∫ ∞

0

e−βvdv

]

=

[

− 1

β
e−βv

∣

∣

∞

0

]

=
1

β
.

or,

β =
1

c
.

The unbiased PDF is then given by

p(v) = Ce−β|v| =
1

2c
exp

(

−|v|
c

)

.

(b) When the second constraint is on the average kinetic energy,
〈

mv2/2
〉

= mc2/2, we

have

S = −
∫ ∞

−∞

p(v) ln p(v)dv + α

(

1 −
∫ ∞

−∞

p(v)dv

)

+ β

(

mc2

2
−
∫ ∞

−∞

p(v)
mv2

2
dv

)

.

The corresponding extremization,

∂S

∂p(v)
= − ln p(v) − 1 − α − β

mv2

2
= 0,

results in

p(v) = C exp

(

−βmv2

2

)

.

The normalization constraint implies

1 =

∫ ∞

−∞

p(v)dv = C

∫ ∞

−∞

e−βmv2/2 = C
√

2π/βm,
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or

C =
√

βm/2π.

The second constraint,

mc2

2
=

∫ ∞

−∞

p(v)
mv2

2
dv =

m

2

√

βm

2π

∫ ∞

−∞

exp

(

−βmv2

2

)

v2dv

=
m

2

√

βm

2π

[√
π

2

(

2

βm

)3/2
]

=
1

2β
,

gives

β =
1

mc2
,

for a full PDF of

p(v) = C exp

(

−βmv2

2

)

=
1√
2πc2

exp

(

− v2

2c2

)

.

(c) The entropy of the first PDF is given by

S1 = −〈ln p1〉 = −
∫ ∞

−∞

1

2c
exp

(−|v|
c

)[

− ln(2c) − |v|
c

]

dv

=
ln(2c)

c

∫ ∞

0

exp
(

−v

c

)

dv +
1

c

∫ ∞

0

exp
(

−v

c

) v

c
dv

= − ln(2c) exp(−v/c)|∞0 +
1

c
[−c exp(−v/c)|∞0 ]

= ln(2c) + 1 = 1 + ln 2 + ln c.

For the second distribution, we obtain

S2 = −〈ln p2〉 = − 1√
2πc2

∫ ∞

−∞

exp

(

− v2

2c2

)[

−1

2
ln
(

2πc2
)

− v2

2c2

]

=
ln
(

2πc2
)

2
√

2πc2

∫ ∞

−∞

exp
(

−v2/2c2
)

dv +
1√
2πc2

∫ ∞

−∞

v2

2c2
exp

(

−v2/2c2
)

dv

=
1

2
ln
(

2πc2
)

+
1

c2
√

2πc2

[√
2πc2c2

2

]

=
1

2
ln
(

2πc2
)

+
1

2
=

1

2
+

1

2
ln(2π) + ln c.

For a discrete probability, the information content is

Iα = ln2 M − Sα/ ln 2,

9



where M denotes the number of possible outcomes. While M , and also the proper measure

of probability are not well defined for a continuous PDF, the ambiguities disappear when

we consider the difference

I2 − I1 = (−S2 + S1) / ln 2

= − (S2 − S1) / ln 2

= − (lnπ − ln 2 − 1)

2 ln 2
≈ 0.3956.

Hence the constraint of constant energy provides 0.3956 more bits of information. (This

is partly due to the larger variance of the distribution with constant speed.)

********

6. Benford’s Law: Let us consider the observation that the probability distribution for first

integers is unchanged under multiplication by any (i.e. a random) number. Presumably

we can repeat such multiplications many times, and it is thus suggestive that we should

consider the properties of the product of random numbers. (Why this should be a good

model for stock prices is not entirely clear, but it seems to be as good an explanation as

anything else!)

Consider the x =
∏N

i=1 ri, where ri are positive, random variables taken from some rea-

sonably well behaved probability distribution. The random variable ` ≡ ln x =
∑N

i=1 ln ri

is the sum of many random contributions, and according to the central limit theorem

should have a Gaussian distribution in the limit of large N , i.e.

lim
N→∞

p(`) = exp

[

−
(

` − N`
)2

2Nσ2

]

1√
2πNσ2

,

where ` and σ2 are the mean and variance of ln r respectively. The product x is distributed

according to the log-normal distribution

p(x) = p(`)
d`

dx
=

1

x
exp

[

−
(

ln(x) − N`
)2

2Nσ2

]

1√
2πNσ2

.

The probability that the first integer of x in a decimal representation is i is now obtained

approximately as follows:

pi =
∑

q

∫ 10q(i+1)

10qi

dxp(x).
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The integral considers cases in which x is a number of magnitude 10q (i.e. has q + 1 digits

before the decimal point). Since the number is quite widely distributed, we then have to

sum over possible magnitudes q. The range of the sum actually need not be specified! The

next stage is to change variables from x to ` = lnx, leading to

pi =
∑

q

∫ q+ln(i+1)

q+ln i

d`p(`) =
∑

q

∫ q+ln(i+1)

q+ln i

d` exp

[

−
(

` − N`
)2

2Nσ2

]

1√
2πNσ2

.

We shall now make the approximation that over the range of integration (q + ln i to q +

ln(i + 1)), the integrand is approximately constant. (The approximation works best for

q ≈ N` where the integral is largest.) This leads to

pi ≈
∑

q

exp

[

−
(

q − N`
)2

2Nσ2

]

1√
2πNσ2

[ln(i + 1) − ln i] ∝ ln

(

1 +
1

i

)

,

where we have ignored the constants of proportionality which come from the sum over

q. We thus find that the distribution of the first digit is not uniform, and the properly

normalized proportions of ln(1+1/i) indeed reproduce the probabilities p1, · · · , p9 of 0.301,

.176, .125, .097, .079, .067, .058, .051, .046 according to Benford’s law. (For further

information check http://www.treasure-troves.com/math/BenfordsLaw.html.)

********
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